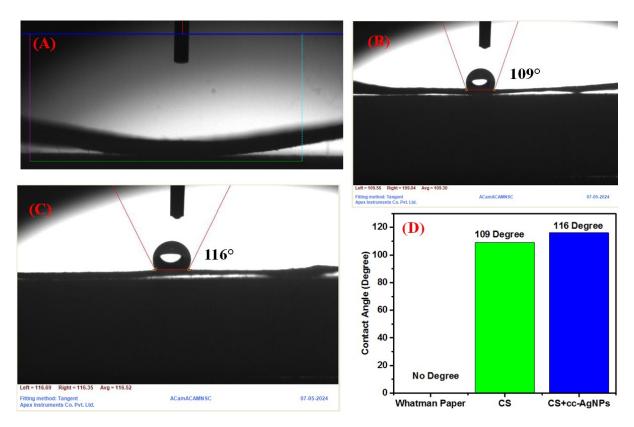
## **Supplementary Information**

## Highly Selective and Flexible Silver Nanoparticles-Based Paper Sensor for on-site Colorimetric Detection of Paraquat Pesticide


Sanjeev Bhandari<sup>a</sup>, Vijay Singh Parihar<sup>b\*</sup>, Minna Kellomäki<sup>b</sup>, Mrityunjoy Mahato<sup>a\*</sup>

<sup>a</sup>Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.

<sup>b</sup>Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland.

**Table S1:** Peak assignments of the composite film.

| S.No. | Peak (cm-1) | Peak assignment           | References |
|-------|-------------|---------------------------|------------|
| 1.    | 1020        | C-O-C stretching          | 34         |
| 2.    | 2920        | C-H stretching            | 35         |
| 3.    | 750         | N-H bending               | 33         |
| 4.    | 3627        | O-H stretching            | 37         |
| 5.    | 1582        | Asymmetric C=O stretching | 38         |
| 6.    | 1405        | Symmetric C=O stretching  | 39         |
| 7.    | 3393        | O-H stretching            | 38         |
| 8.    | 882         | C=O stretching            | 39         |
| 9.    | 2355        | C-N stretching            | 40         |



**Fig. S1:** (A) Contact angle measurements on Whatman paper, (B) CS film on Whatman paper, (C) CS+cc-AgNPs film on Whatman paper.

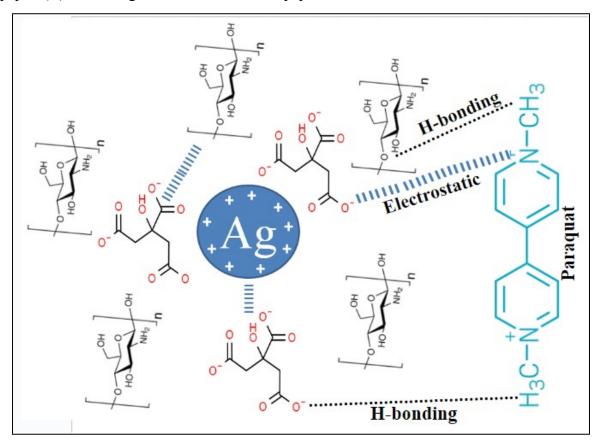



Fig. S2: Schematic diagram for sensing mechanism of paraquat pesticide.

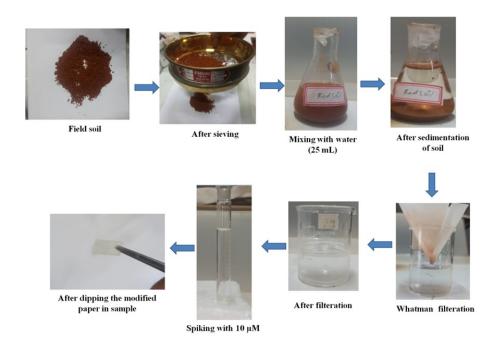



Fig. S3: Scheme for preparing soil samples