Porous hydrogel microspheres with excellent temperature-sensitive, magnetic and fluorescent properties for drug delivery

Shilin Tang^a, Chen He^a, Haie Zhu^{a, **}, Zhenyang Wen^a, Xiaoling Zhang^a, Qifeng Liu^a, Bo Tang^{a, *}, Tian Xia^a, Chaolong Yang^a

^aCollege of Materials Science and Engineering Chongqing University of Technology Chongqing 400054, China Corresponding author E-mail: **<u>zhuhaie@cqut.edu.cn</u> * tangbo@cqut.edu.cn

Preparation of OA/NaUA-Fe₃O₄ nanoparticles:

Firstly, certain amount of FeCl₃-6H₂O (11.55 g) and FeCl₂-4H₂O (5.79 g) were dissolved in deionized water (40 mL) before introduced into a three-necked round-bottomed flask under nitrogen atmosphere. Then, NH₃-H₂O (35 mL) was added to the above solution under vigorous stirring to obtain a black precipitate, which was heated at 70 °C for 1 h. After that, the black precipitate was separated by a magnetite and washed with deionized water several times to remove excess NH₃-H₂O to obtain Fe₃O₄ nanoparticles . Secondly, the purified Fe₃O₄ nanoparticles were redispersed in a mixture of anhydrous ethanol (25 mL) and deionized water (25 mL) and introduced to a three-necked round-bottomed flask under nitrogen under vigorous stirring. Then, oleic acid (OA, 2 g) was added into the above mixture after the temperature reached up to 80 °C, the reaction proceeded for 1 h to prepare OA-Fe₃O₄ nanoparticles, which were collected by a magnetite and purified with anhydrous ethanol when the mixture was cooled to room temperature. Thirdly, the purified hydrophobic OA-Fe₃O₄ nanoparticles were redispersed in CHCl₃ (25 mL) and added into a three-necked flask, then an aqueous solution (40 mL) containing 3 g of NaUA was added to the solution. The mixture was stirred at 45 °C for 1 h and sonicated for 10 min to remove chloroform until the weight of the final solution became constant. Finally, water-soluble OA/NaUA-Fe₃O₄ nanoparticles with a solid content of 7 wt% were obtained.

Preparation of Eu(AA)₃Phen:

Firstly, certain amount of Eu_2O_3 (2 mmol) was dissolved in excess concentrated HCl and evaporated to near dryness to generate $EuCl_3$, which was then dissolved with anhydrous ethanol (40 mL) to obtain a solution of $EuCl_3$ in anhydrous ethanol. Secondly, AA (12 mmol) and Phen (4 mmol) were dissolved in 40 mL anhydrous ethanol and added into a single-neck round-bottom flask. Then 40 mL of the above $EuCl_3$ solution was slowly dropped into the flask under constant stirring. The pH value of the mixture solution was adjusted to 8 with 28 wt% NH₃·H₂O solution, and the mixture was stirred at 60 °C for 8 h. Finally, the mixture was filtered, then washed with anhydrous ethanol and dried in vacuum at 50 °C for 6 h to obtain a powder of $Eu(AA)_3$ Phen.

Fig. S1 (a) Effect of continuous phase flow rates on the microdroplet size when the dispersed phase flow rate is 5 μ L/min; (b) Effect of dispersed phase flow rates on the microdroplet size when the continuous phase flow rate is 30 μ L/min.

Fig. S2 SEM images of two different porous hydrogel microspheres: (a-b) $A_{15}C_2$; (c-d) $A_{15}C_8$. (The two samples were prepared at the same flow rate of continuous/disperse phase of 20μ L·min⁻¹/ 5μ L·min⁻¹)

Fig. S3 Nitrogen adsorption-desorption isotherms of porous hydrogel microspheres A15C2, A15C5 and A15C8.

Fig. S4 Optical microscope images of porous hydrogel microspheres A₁₅C₅ at different temperatures showing different diameters: (a) 25 °C, 78μm, (b)30 °C, 77μm, (c)35°C, 76μm, (d)40°C, 74μm, (e)45°C, 61μm, (f) 50°C, 52μm, (g) 55 °C, 50μm.

Fig. S5 TEM images of Fe₃O₄/P(St-co-Eu(AA)₃Phen) nanomicrospheres: (a) A₁₀; (b) A₁₅; (c) A₂₀; (d) A₁₅ image at high magnification. (The average diameters of A₁₀, A₁₅, A₂₀ analyzed from Fig. S4 a-c are 122 nm, 83 nm and 58 nm, respectively.)

Fig. S6 Standard curve of BSA aqueous solution