Photocatalysis oxidative desulfurization of dibenzothiophene in extremely deep liquid fuels on the Z-scheme catalyst of ZnO-CuInS₂-ZnS intelligently integrated with carbon quantum dots: Performance, mechanism, and stability[†]

Manh B. Nguyen

Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam. Email: nguyenbamanh@ich.vast.vn

Table S1. Characterization

The morphology of both ZnO, CuInS₂, ZnS, ZCZ and ZCZ-CQD materials was examined by transmission electron microscopy (TEM) with an acceleration voltage of 200 kV (Leica IEO 906E). X-ray diffraction (XRD) analysis was conducted using a D8 Advance X-ray diffractometer (Bruker, Germany) equipped with a CuK α radiation source (2 θ range ~ 5–50° and λ = 0.154 06 nm). Elemental composition was determined by energy-dispersive X-ray spectroscopy (EDS) using a JEOL JED-2300 energy-dispersive spectrometer. The specific surface area was measured using a Tristar-3030 system (Micromeretics-USA) with N₂ adsorption at 77 K employing the Brunauer-Emmett-Teller (BET) method. X-ray photoelectron spectroscopy (XPS) was performed using a Thermo VG Multilab 2000 instrument. Photoluminescence (PL) and UV-vis diffuse reflectance spectroscopy (DRS) were recorded on a Cary Eclipse fluorescence spectrophotometer (Varian) and a UV-2600 spectrophotometer (Shimadzu), respectively.

Scavenging experiments of reaction radicals involve adding 2 mM of hydroxyl radical scavengers, p-benzoquinone (p-BQ), superoxide radical scavengers, ammonium oxalate monohydrate (AO) into the reaction system before light irradiation.

Materials	Zn	0	Cu	In	S	С	N	Total
ZnO	76.52	23.48	-	-	-	-	-	100
CuInS ₂	-	-	25.8	48.69	25.51	-	-	100
ZnS	65.97	-		-	34.03	-	-	100
ZCZ-CQD	47.28	6.38	6.29	14.24	22.16	2.7	0.95	100

Table S1. Elemental composition (wt%) of ZnO, CuInS2, ZnS and ZCZ-CQD samples

	Materials	ZnO	CuInS ₂	ZnS	ZCZ-CQD	ZCZ-CQD	
						after reaction	
Zn2p	Zn 2p _{3/2}	1021.57	-	1021.64	1021.86	1021.99	
	Zn 2p _{1/2}	1044.66	-	1044.77	1044.94	1045.07	
	С=С/С-О	-	-	-	530.22	530.77	
O1s	Zn–O	531.22	-	-	531.57	531.96	
	–OH	532.77	-	-	532.36	533.00	
S2p	S2p _{3/2}	-	161.59	161.50	161.54	161.83	
	S2p _{1/2}	-	163.26	163.08	163.16	163.40	
	Cu^+	-	932.04	-	931.56	931.75	
Cu2p		-	951.81	-	951.50	951.57	
	Cu ²⁺		933.17	-	932.85	933.19	
		-	953.19	-	952.93	953.26	
	In^{2+}	-	444.95	-	444.63	445.44	
In3d		-	452.58	-	452.22	453.01	
	In ³⁺		445.74	-	445.37	445.90	
		-	453.12	-	452.86	453.47	
C1s	C–C/C=C	-	-	-	284.77	284.92	
	С–О	-	-	-	286.31	286.44	
	С=О	-	-	-	288.40	288.92	

Materials	Reaction conditions	Light source	Photocatalytic performance (%)	Time (min)	Ref.
ZCZ-CQD	$m_{catalyst} = 1.5 \text{ g/L}$ [DBT] = 300 mg/L,	300 W Xe lamp	98.32	120	This work
a-Fe ₂ O ₃ /g-C ₃ N ₄ /HNTs	$m_{catalyst} = 2.5 \text{ g/L}$ [DBT] = 200 mg/L	300 W Xe lamp	96.01	180	1
AgCl/PbMoO ₄	$m_{catalyst} = 1.5 \text{ g/L}$ [DBT] = 200 mg/L	-	97.0	120	2
Ag-AgBr/Al-MCM-41	$m_{catalyst} = 2.0 \text{ g/L}$ $[DBT] = 500 \text{ mg/L},$	125 W high- pressure Hg	98	360	3
Ni-WO ₃ @g-C ₃ N ₄	$m_{catalyst} = 2.0 \text{ g/L}$ [DBT] = 100 mg/L	-	97.0	180	4
CeO ₂ /ATP/g-C ₃ N ₄	[DBT] = 200 mg/L	300 W Xe lamp	98	180	5

Figure S1. Full scan XPS spectra of ZnO, CuInS₂, ZnS and ZCZ-CQD samples

Figure S2. High-resolution S 2p XPS spectra of $CuInS_2$ (A) ZnS (B) and ZCZ-CQD (C) and CZC-CQD after 10 cycles (D)

Figure S3. SEM image of ZCZ-CQD sample

Figure S4. Mott-schotky plot of ZnO, $CuInS_2$ and ZnS samples

over ZCZ-CQD photocatalyst after 10 min

Figure S6. XRD patterns of ZCZ-CQD before and after 10 cycles reaction

References

- Zhou, X.; Liu, H.; Liu, S.; zhang, L.; Wang, T.; Wang, C.; Su, D. Constructing Efficient Q-Fe2O3/g-C3N4/HNTs-Loaded Heterojunction Photocatalysts for Photocatalytic Oxidative Desulfurization: Influencing Factors, Kinetics, and Mechanism. *Fuel* 2023, *332* (P1), 126147. https://doi.org/10.1016/j.fuel.2022.126147.
- (2) Chang, H.; Yi, H.; Ke, Q.; Zhang, J. Preparation of a AgCl/PbMoO4 Composite and Investigation of Its Photocatalytic Oxidative Desulfurization Performance. ACS Omega 2020, 5 (19), 10927–10938. https://doi.org/10.1021/acsomega.0c00695.
- (3) Pham, X. N.; Nguyen, B. M.; Thi, H. T.; Van Doan, H. Synthesis of Ag-AgBr/Al-MCM-41 Nanocomposite and Its Application in Photocatalytic Oxidative Desulfurization of Dibenzothiophene. *Advanced Powder Technology* 2018. https://doi.org/10.1016/j.apt.2018.04.019.
- (4) Saeed, M.; Munir, M.; Intisar, A.; Waseem, A. Facile Synthesis of a Novel Ni-WO3@g-C3N4Nanocomposite for Efficient Oxidative Desulfurization of Both Model and Real Fuel. ACS Omega 2022, 2. https://doi.org/10.1021/acsomega.2c00886.
- (5) Li, X.; Zhu, W.; Lu, X.; Zuo, S.; Yao, C.; Ni, C. Integrated Nanostructures of

CeO2/Attapulgite/g-C3N4 as Efficient Catalyst for Photocatalytic Desulfurization: Mechanism, Kinetics and Influencing Factors. *Chemical Engineering Journal* **2017**, *326*, 87–98. https://doi.org/10.1016/j.cej.2017.05.131.