Supporting Information for Publication

Engineering the Defects of UiO-66 MOF for an Improved Catalytic Detoxification of CWA Simulant: Methyl Paraoxon

Selva Balasubramanian ^{a,b}, Arockia Jayalatha Kulandaisamy ^b, and John Bosco Balaguru Rayappan ^{a,b*}

^aCentre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu - 613 401, India

^bSchool of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University, Thanjavur, Tamil Nadu - 613 401, India

*Corresponding Author John Bosco Balaguru Rayappan, Ph.D. Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) & School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur – 613 401, Tamil Nadu, India Phone: +91 4362 350 009; Ext: 2255 Fax: +91 4362 264 120 Email: <u>rjbosco@ece.sastra.edu</u>

S. No.	Sample	ZrCl ₄ (mmol)	H ₂ BDC (mmol)	Modulator (Equivalence)	Synthesis Temperature (°C)	Duration (h)
1.	S1	6 mmol	6 mmol	8**	80	24
2.	S2	6 mmol	6 mmol	8***	80	24
3.	$\begin{array}{c} S3 - A\\ S3 - B\\ S3 - C\end{array}$	6 mmol	6 mmol	4* 8* 12*	80	24
4.	$\begin{array}{c} S4-A\\ S4-B\\ S4-C \end{array}$	6 mmol	6 mmol	4* 8* 12*	100	24
5.	$\begin{array}{c} \mathbf{S5}-0\\ \mathbf{S5}-\mathbf{A}\\ \mathbf{S5}-\mathbf{B}\\ \mathbf{S5}-\mathbf{C} \end{array}$	6 mmol	6 mmol	0* 4* 8* 12*	120	24
6.	$\begin{array}{c} S6-A\\ S6-B \end{array}$	6 mmol	6 mmol	0.89 mL# 1.39 mL#	120	24

Table S1. Synthesis conditions of UiO-66 MOFs.

* HCl, ** Acetic acid, *** Formic acid, # water

Section S1: PXRD analysis

Fig. S1. PXRD pattern of as-synthesized UiO-66 samples resulting from various synthesis conditions: (a) & (b) Influence of HCl at 100 and 120°C synthesis temperature, (c) & (d) Influence of synthesis temperature at constant HCl equivalence of 4 and 12, (e) & (f) Change in intensity of $(1\ 1\ 1)$ & $(2\ 0\ 0)$ reflection with respect to HCl equivalence, and synthesis temperature.

Sample description	Crystallite Size (nm)	Lattice Constant "a"	Microstrai n (ε)	Crystallinity Index (%)	Dislocation Density (10 ⁻⁴)
S1	40	20.14	0.68	70.28	6.54
S2	38	20.41	0.75	77.12	6.99
S3 – A	42	20.28	0.66	76.99	5.71
S3 – B	39	20.41	0.72	77.26	6.69
S3 – C	39	20.44	0.73	77.31	6.79
S4 – A	41	20.41	0.68	77.74	5.97
S4 – B	39	20.40	0.72	78.37	6.60
S4 – C	37	20.33	0.78	80.78	7.67
S5-0	39	20.30	0.71	78.94	6.60
S5 – A	41	20.35	0.68	77.69	6.62
S5 – B	37	20.33	0.76	78.74	7.34
S5-C	41	20.35	0.68	81.75	6.19
S6 – A	41	20.21	0.69	77.64	6.16
S6 – B	37	20.21	0.76	79.99	7.34

Table S2. Calculated lattice parameters values of as synthesized UiO-66 samples.

Section S2: TEM micrographs of UiO-66 MOFs

Fig. S2. TEM micrographs of UiO-66 samples with respect to synthesis condition: (a -c) Increase of HCl equivalence (4, 8, 12 Equivalence) modulated samples synthesized at 80°C, and (d - f) Increase of synthesis temperature (80, 100, 120°C) for an 8 Equi. HCl modulated samples.

Section S3: XPS analysis and measurement of atomic elements for the synthesized UiO-66 MOFs

Fig. S3. XPS spectra of 8 equi. HCl modulated UiO-66 sample synthesized at 80°C. a) survey, b) Zr 3d, c) O 1S, and d) C 1S.

Fig. S4. 3-dimensional representation of elemental composition with respect to the synthesis condition: (a) variation in HCl equivalence @ 80°C, (b) variation in HCl equivalence @ 100°C, (c) comparison of water modulated samples with unmodulated and HCl modulated sample, (d) change of synthesis temperature at constant 4 equi. HCl, (e) change of synthesis temperature at constant 12 equi. HCl, and (f) increase of COOH concentration by increase in HCl concentration @120°C.

Sample description	Zr 3d		0 18			C 18		
	Zr 3d _{5/2}	Zr 3d _{3/2}	СООН	Zr-O-C	Zr-O-Zr	С=О	С-О	C-C
S1	60.27	39.73	32.14	43.44	24.42	21.06	19.74	59.20
S2	61.27	38.73	37.11	39.39	23.5	20.28	16.90	62.82
S3 – A	61.18	38.82	39.39	38.95	21.66	22.62	13.84	63.54
S3 – B	61.61	38.39	39.28	41.71	19.01	22.65	5.78	71.57
S3 – C	61.57	38.43	38.86	43.52	17.62	24.87	11.12	64.01
S4 – A	61.24	38.76	24.86	53.67	21.47	21.68	16.2	62.12
S4 – B	61.89	38.11	34.35	46.08	19.57	22.42	3.51	74.07
S4 – C	61.70	38.30	36.67	44.12	19.21	19.63	2.02	78.35
S5-0	61.26	38.74	17.08	66.08	16.84	19.58	6.72	73.7
S5 – A	61.68	38.32	19.98	63.38	16.64	22.58	2.61	74.81
S5 – B	61.92	38.08	34.4	45.01	20.60	23.97	7.61	68.42
S5 – C	62.19	37.81	33.58	46.41	20.01	22.94	71.84	5.23
S6 – A	58.03	41.97	34.46	44.02	21.52	21.18	24.90	53.92
S6 – B	61.39	38.61	37.17	38.54	24.29	20.60	14.50	64.90

Table S3. Elemental composition of Zr, C, O in the synthesized UiO-66 samples.

Section S4: N₂ adsorption-desorption Isotherm

Fig. S5. N_2 adsorption-desorption pattern of UiO-66 samples: various HCl equivalence @ 80°C (a), @100°C (b), 4 equivalence at various synthesis temperature (c), 8 at various synthesis temperature equivalence (d), Changes in BET surface with respect to the HCl equivalence (e) and synthesis temperature (f).

Sample description	BET surface area (m²/g)	Pore size (nm)	V _{total} pore volume (cm ³ /g)	Micropore volume (cm ³ /g)	Mesopore volume (cm ³ /g)	Micropore s %	Mesopore s %
S3 – A	604	9.19	0.3776	0.2772	0.1004	73.4	26.6
S3 - B	750	6.77	0.4623	0.3281	0.1342	70.9	29.1
S3-C	743	6.88	0.4650	0.3113	0.1537	66.9	33.1
S4 - A	662	6.50	0.3917	0.2979	0.0938	76.1	23.9
S4 - B	748	5.82	0.4456	0.3123	0.1333	70.1	29.9
S4 - C	782	5.70	0.4735	0.3040	0.1695	64.2	35.8
S5 - 0	635	7.69	0.3856	0.2892	0.0964	75	25
S5-A	664	5.09	0.3757	0.3011	0.0746	80.2	19.8
S5-B	725	4.74	0.4153	0.3091	0.1062	74.4	25.6
S5-C	882	5.08	0.4761	0.3311	0.145	69.5	30.5
S6-A	611	12.73	0.4881	0.2652	0.2229	54.3	45.7
S6-B	669	9.84	0.4693	0.2879	0.1814	61.3	38.7

Table S4. Estimated BET surface area, pore volume and pore size distribution from N₂-isotherm analysis.

Section S5: Estimation of missing linker defects from TGA plateau

The chemical reaction of ideal defect free UiO-66 can be represented as, $Zr_6O_6(BDC)_6 + 57 O_2(g) \rightarrow 6 ZrO_2 + 48 CO_2(g) + 12 H_2O(g)....(1)$

Molecular weight of ideal UiO-66 (Zr_6O_6 (BDC)₆) = 1626.28 g mol⁻¹

Total number of linker molecules per Zr cluster = 6

Weight of residual $ZrO_2 = 739.34$ g mol⁻¹

Normalized weight of dehydroxylated UiO-66 (Zr_6O_6 (BDC)₆) = 220.20%

The theoretical weight loss corresponds to per linker:

$$W_{th-Ui0-66} = \frac{(220.20 - 100)}{6}\% = 20\%.....(2)$$

The number of experimental linkers per defective $Zr_6 - SBU$,

$$N_{missed \ linkers} = \frac{(Weight \ loss_{exp} - 100\%)}{20\%}.....(3)$$

The number of linker deficiencies (x) per Zr_6 cluster can be calculated by following equation and fitted to empirical molecular formula $Zr_6O_{6+x}(BDC)_{6-x}$,

 $x = 6 - N_{missed \ linkers} \dots \dots (4)$

Fig. S6. TGA plateau of UiO-66 synthesized samples under different synthesis condition: (a) 4 Equi. HCl modulated sample at 80, 100 & 120°C, (b) 12 Equi. HCl modulated sample at 80, 100 & 120°C, (c) influence of various HCl equivalence at 100°C, (d) influence of water equivalence at 120°C, and (e) influence of modulators at 80°C.

Sample description	Weight loss _{exp} %	N missed linkers	Linker deficiencies (x)	$Zr_6O_{6+x}(BDC)_{6-x}$	Final residue (wt. %)
S1	212.32	5.616	0.384	Zr ₆ O _{6.38} (BDC) _{5.61}	28.13
<i>S2</i>	193.30	4.665	1.335	Zr ₆ O _{7.33} (BDC) _{4.66}	28.35
S3 - A	192.16	4.608	1.392	Zr ₆ O _{7.39} (BDC) _{4.61}	28.41
S3 - B	181.11	4.0555	1.9445	Zr ₆ O _{7.94} (BDC) _{4.06}	29.98
S3 - C	180.93	4.0465	1.9535	Zr ₆ O _{7.95} (BDC) _{4.05}	28.67
S4 - A	194.92	4.746	1.254	Zr ₆ O _{7.25} (BDC) _{4.75}	28.24
S4 - B	189.45	4.4725	1.5275	Zr ₆ O _{7.53} (BDC) _{4.47}	29.86
S4 - C	187.63	4.3815	1.6185	Zr ₆ O _{7.62} (BDC) _{4.38}	27.14
S5 - 0	219.87	5.9935	0.0065	Zr ₆ O ₆ (BDC) _{5.99}	26.89
S5-A	210.94	5.547	0.453	Zr ₆ O _{6.45} (BDC) _{5.55}	27.79
S5-B	211.21	5.5605	0.4395	Zr ₆ O _{6.44} (BDC) _{5.56}	26.89
S5-C	184.68	4.234	1.766	Zr ₆ O _{7.76} (BDC) _{4.24}	32.98
S6-A	179.08	3.954	2.046	Zr ₆ O _{8.04} (BDC) _{3.96}	28.70
S6-B	182.09	4.1045	1.8955	Zr ₆ O _{7.89} (BDC) _{4.11}	28.61

Table S5. Calculated values of weight loss, missed linkers and corresponding deficiency of as synthesized UiO-66 samples.

Section S6: FTIR analysis

Fig. S7. FTIR spectra of $ZrCl_4$ precursor (orange), H_2BDC (red), 8 Equi. HCl modulated UiO-66 synthesized at 80°C (olive green) and the corresponding UiO-66 after TGA.

Section S7: Conversion of DMNP

Fig. S8. Conversion profile of DMNP by UiO-66 with respect to its synthesis temperature (a, b) and HCl equivalence (c, d), modulators pKa (e), and calibration curve of DMNP stock for different concentration (f).

Table S6. Zeta potentia	l analysis of modulators	assisted UiO-66 samples.
-------------------------	--------------------------	--------------------------

S. No.	Sample Description	Zeta potential (mV)	Conversion Efficiency (%)
1.	S1 (8 Equi. Acetic acid)	31.6	89.8
2.	S2 (8 Equi. Formic acid)	30.2	90.0
3.	S3-B (8 Equi. HCl)	13.4	94.9