Rational design of graphdiyne-based single-atom catalysts for electrochemical CO₂ reduction reaction

Liyun Jiang^{1,3}, Mengdie Zhao^{2,3}, Qi Yu^{2,*}

¹ School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001, China

² School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi

University of Technology, Hanzhong 723001, China

³ These authors contributed equally

*Corresponding author:

<u>qiyu@snut.edu.cn</u> (Qi. Yu)

Figure S1. The optimized structure of TM_1/GDY and the schematic of screening site GDY.

Figure S2. Differential charge density diagram of CO_2 adsorbed by TM_1/GDY .

Figure S3. The schematic diagram of projected electronic densities of states of GDY, Os_1/GDY , and Os_1/GDY - CO_2 .

SACs	$\Delta G_{\rm HER}$ (eV)	ΔG_{CO2RR} (eV)
Fe/GDY	0.16	0.31
Ru/GDY	-0.95	-0.69
Os/GDY	-1.15	-0.51
Co/GDY	0.18	0.43
Rh/GDY	-0.31	0.39
Ir/GDY	-0.47	0.24

Table S1 The change of free energy in the first protonation step of CO2RR adsorption and HER on TM_1/GDY catalysts.

Table S2 The free energies of CO₂RR on Os/GDY.

CO ₂ RR	ΔG (eV)
$\mathrm{CO}_2 \rightarrow \mathrm{^*CO}_2$	-0.52
$*CO_2 \rightarrow *COOH$	-0.57
$*COOH \rightarrow *CO$	-1.40
$*CO \rightarrow *COH$	-0.14
$*CO \rightarrow *CHO$	-0.79
$*CHO \rightarrow *CHOH$	-0.91
$^{*}\mathrm{CHO} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-1.17
$^{*}\mathrm{CH}_{2}\mathrm{O} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	-1.03
$^{*}\mathrm{CH}_{2}\mathrm{O} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-1.66
$^{*}\mathrm{CH}_{3}\mathrm{O} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	-0.88
$^{*}\mathrm{CH}_{3}\mathrm{O} \rightarrow ^{*}\mathrm{OCH}_{4}$	-2.33
$^{*}\mathrm{OCH}_{4} \rightarrow \mathrm{CH}_{4}$	-2.12