Supplementary Information

for

# A novel extraction method for three ochratoxins in human urine based on Polystyrene/polyethersulfone electrospun nanofibers coated with copper nanoparticles

Lanling Chu<sup>a</sup>, Yuqi Dai<sup>a</sup>, Chen Hou<sup>a</sup>, Xuejun Kang<sup>c</sup>, Qianqian Jiang<sup>b\*</sup>, Xiaoman

Jiang <sup>b</sup>\*, Jing Li <sup>b</sup>, Hongyu Qin <sup>b</sup>

<sup>a</sup> College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China

<sup>b</sup> Yantai Key Laboratory of Special Medical Food (Preparatory), School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264005, Shandong, China

<sup>c</sup> School of Biological Science & Medical Engineering, Southeast University, Nanjing
 210096, China

\*Corresponding authors at: School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264005, Shandong, China

E-mail address: jxmldu@163.com; jiangqianqian@yitsd.edu.cn

### 1 Part 1

#### 2 Preparation of artificial urine:

Dissolve the following substances separately in 200mL of deionized water: urine (2.427 g), uric acid (0.034 g), creatinine (0.090 g), trisodium citrate (0.297 g), sodium chloride (0.634 g), potassium chloride (0.45 g), ammonium chloride (0.161 g), calcium chloride dihydrate (0.089 g), magnesium sulfate heptahydrate (0.1 g), sodium bicarbonate (0.034 g), NaC<sub>2</sub>O<sub>4</sub> (0.003 g), sodium sulfate (0.258 g), sodium dihydrogen phosphate monohydrate (0.1 g), and sodium dihydrogen phosphate (0.011 g) were added to 200 mL deionized water. The mixture was sonicated until completely dissolved and store at 4 °C for later use.



12 Fig. S1. Chromatogram of three ochratoxins in spiked urine sample with FPSPE (A)

<sup>13</sup> and without PFSPE (B)

| Matrix  | Method | Analyte | Recovery | Adsorbents            | Volume   | LODs    | Ref. |
|---------|--------|---------|----------|-----------------------|----------|---------|------|
|         |        |         | (%)      |                       | of       | (       |      |
|         |        |         |          |                       | organic  | ng/mL   |      |
|         |        |         |          |                       | reagents | )       |      |
|         |        |         |          |                       | (mL)     |         |      |
| Rice,   | UPLC - | OTA     | 82 - 109 | C18                   | 28       | 0.27    | [1]  |
| wine    | MS/MS  |         |          |                       |          |         |      |
| Chicken | HPLC - | OTA     | 86.4 -   | Graphene              | 2.1      | 0.20    | [2]  |
| liver   | FLD    |         | 102.9    | oxide                 |          |         |      |
| Grains  | HPLC - | ΟΤΑ     | 78.9 -   | GMA-NH <sub>2</sub> - | 10.0     | 0.4     | [3]  |
|         | FLD    |         | 106.4    | MIL-                  |          |         |      |
|         |        |         |          | 53@SMIPs              |          |         |      |
| Urine   | HPLC - | OTA     | 71.3% -  | PS/PES-               | 0.7      | 0.108 - | This |
|         | FLD    | OTB     | 92.0%    | CuNPs                 |          | 0.162   | work |
|         |        | OTC     | (AR)     | nanofiber             |          |         |      |

## **Table S1**. Comparison of the proposed method with reported methods in literature.

| Sample | Detection level of analytes |     |      | Sample   | Detection level of analytes |     |      |  |
|--------|-----------------------------|-----|------|----------|-----------------------------|-----|------|--|
|        | (ng/mL)                     |     |      |          | (ng/mL)                     |     |      |  |
|        | OTA                         | OTB | OTC  | -        | OTA                         | OTB | OTC  |  |
| male1  | ND                          | ND  | ND   | female1  | ND                          | ND  | ND   |  |
| male2  | ND                          | ND  | 0.31 | female2  | ND                          | ND  | ND   |  |
| male3  | ND                          | ND  | ND   | female3  | ND                          | ND  | ND   |  |
| male4  | ND                          | ND  | ND   | female4  | ND                          | ND  | ND   |  |
| male5  | 0.96                        | ND  | ND   | female5  | ND                          | ND  | ND   |  |
| male6  | ND                          | ND  | ND   | female6  | ND                          | ND  | ND   |  |
| male7  | ND                          | ND  | ND   | female7  | ND                          | ND  | 0.48 |  |
| male8  | ND                          | ND  | ND   | female8  | ND                          | ND  | ND   |  |
| male9  | 1.64                        | ND  | ND   | female9  | ND                          | ND  | ND   |  |
| male10 | ND                          | ND  | ND   | female10 | ND                          | ND  | ND   |  |
| male11 | ND                          | ND  | ND   | female11 | ND                          | ND  | ND   |  |
| male12 | ND                          | ND  | ND   | female12 | ND                          | ND  | 0.33 |  |
| male13 | ND                          | ND  | ND   | female13 | ND                          | ND  | ND   |  |
| male14 | ND                          | ND  | ND   | female14 | ND                          | ND  | ND   |  |
| male15 | 0.52                        | ND  | ND   | female15 | ND                          | ND  | ND   |  |

 Table. S2. Determination of three ochratoxins in actural urine samples.

17 ND: no detection

#### 18 Reference

- 19 [1] Y. J, Hou, N. Long, Q. B. Xu, Y. Li, P. Y. Song, M. H. Yang, J. Wang, L. D. Zhou,
- 20 P. Sheng, W. J. Kong, Development of a Nafion-MWCNTs and in-situ generated Au
- 21 nanopopcorns dual-amplification electrochemical aptasensor for ultrasensitive
- 22 detection of OTA, Food. Chem, 2023, 403, 134375.
- 23 [2] Y. Cui, H. Ma, D. Liu, M. Li, R. Hao, J. Li, Y. Jiang, Graphene Oxide Adsorbent-
- 24 Based Dispersive Solid Phase Extraction Coupled with Multi-pretreatment Clean-up
- 25 for Analysis of Trace Ochratoxin A in Chicken Liver, *Chromatographia*, 2020, **83**(10),
- 26 1307-1314.
- 27 [3] X. Zhang, J. He, H. G. Wang, P. F. Xu, M. Y. Wang, Surface Molecularly Imprinted
- 28 Polymers Based on NH2-MIL-53 for Selective Extraction Ochratoxin A in Real
- 29 Sample, Macrom. Res, 2022, 30, 719-730.