Supporting Information

New Phenanthrenequinones from *Cymbidium ensifolium* Roots and Their Antiinflammatory Activity on Lipopolysaccharide-Activated BV2 Microglial Cells

May Thazin Thant ^a, Hasriadi Hasriadi ^b, Preeyaporn Poldorn ^c, Siriporn Jungsuttiwong ^d, Pornchai Rojsitthisak ^{e,f}, Chotima Böttcher ^g, Pasarapa Towiwat ^{b,h} and Boonchoo Sritularak ^{a,e,*}

- ^a Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- ^b Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- ^c Hong Kong Quantum AI Laboratory, Ltd., Hong Kong, 999077, China
- ^d Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- ^e Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- ^f Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- ^g Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin 13125, Germany
- ^h Animal Models of Chronic Inflammation-associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand

*Corresponding author

Dr. Boonchoo Sritularak

Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

Phone: +6622188356, Fax: +6622188356, Boonchoo.sr@chula.ac.th

TABLE OF CONTENTS

Figure S1. HR-ESI-MS spectrum of compound 1.	4
Figure S2. UV spectrum of compound 1	4
Figure S3. FT-IR spectrum of compound 1.	5
Figure S4. ¹ H NMR (acetone- d_6 , 400 MHz) spectrum of compound 1	5
Figure S5. ¹³ C NMR and DEPT (acetone- d_6 , 100 MHz) spectra of compound 1	6
Figure S6. HSQC (acetone- d_6 , 400/100 MHz) spectrum of compound 1	6
Figure S7. HMBC (acetone- d_6 , 400/100 MHz) spectrum of compound 1	7
Figure S8. NOESY (acetone- <i>d</i> ₆ , 400 MHz) spectrum of compound 1	7
Figure S9. HR-ESI-MS spectrum of compound 2.	8
Figure S10. UV spectrum of compound 2	8
Figure S11. FT-IR spectrum of compound 2.	9
Figure S12. CD spectrum of compound 2	9
Figure S13. ¹ H NMR (CDCl ₃ , 400 MHz) spectrum of compound 2	10
Figure S14. ¹³ C NMR and DEPT (CDCl ₃ , 100 MHz) spectra of compound 2	10
Figure S15. HSQC (CDCl ₃ , 400/100 MHz) spectrum of compound 2	11
Figure S16. HMBC (CDCl ₃ , 400/100 MHz) spectrum of compound 2	11
Figure S17. HMBC (CDCl ₃ , 400/100 MHz) spectrum (expansion) of compound 2	12
Figure S18. NOESY (CDCl ₃ , 400 MHz) spectrum of compound 2	12
Figure S19. COSY (CDCl ₃ , 400 MHz) spectrum of compound 2.	13
Figure S20. HR-ESI-MS spectrum of compound 3.	13
Figure S21. UV spectrum of compound 3	14
Figure S22. FT-IR spectrum of compound 3.	14
Figure S23. ¹ H NMR (acetone- <i>d</i> ₆ ,, 400 MHz) spectrum of compound 3	15
Figure S24. ¹³ C NMR and DEPT (acetone- d_6 , 100 MHz) spectra of compound 3	15
Figure S25. HSQC (acetone- <i>d</i> ₆ , 400/100 MHz) spectrum of compound 3	16
Figure S26. HMBC (acetone- d_6 , 400/100 MHz) spectrum of compound 3	16
Figure S27. HMBC (acetone- d_6 , 400/100 MHz) spectrum (expansion) of compound 3	17
Figure S28. NOESY (acetone- d_6 , 400 MHz) spectrum of compound 3.	17

Figure S29. The whole western blots of N1 (P-NF κ B, NF κ B and β -actin)		
Figure S30. The whole western blots of N2 (P-NF κ B, NF κ B and β -actin)	19	
Figure S31. The whole western blots of N3 (P-NF κ B, NF κ B and β -actin)	20	

Figure S1. HR-ESI-MS spectrum of compound 1

Figure S2. UV spectrum of compound 1 (0.0625 mg in 3ml of MeOH)

Figure S3. FT-IR spectrum of compound 1

Figure S4. ¹H NMR (acetone-*d*₆, 400 MHz) spectrum of compound 1

Figure S5. ¹³C NMR and DEPT (acetone- d_6 , 100 MHz) spectra of compound 1

Figure S6. HSQC (acetone- d_6 , 400/100 MHz) spectrum of compound 1

Figure S7. HMBC (acetone-*d*₆, 400/100 MHz) spectrum of compound 1

Figure S8. NOESY (acetone- d_6 , 400 MHz) spectrum of compound 1

Figure S9. HR-ESI-MS spectrum of compound 2

Figure S10. UV spectrum of compound 2 (0.05 mg in 3ml of MeOH)

Figure S11. FT-IR spectrum of compound 2

Figure S12. CD spectrum of compound 2 (0.1 mg in 3ml of MeOH)

Figure S14. ¹³C NMR and DEPT (CDCl₃, 100 MHz) spectra of compound 2

Figure S15. HSQC (CDCl₃, 400/100 MHz) spectrum of compound 2

Figure S16. HMBC (CDCl₃, 400/100 MHz) spectrum of compound 2

Figure S17. HMBC (CDCl₃, 400/100 MHz) spectrum (expansion) of compound 2

Figure S18. NOESY (CDCl₃, 400 MHz) spectrum of compound 2

Figure S19. COSY (CDCl₃, 400 MHz) spectrum of compound 2

Figure S20. HR-ESI-MS spectrum of compound 3

Figure S21. UV spectrum of compound 3 (0.05 mg in 3ml of MeOH)

Figure S22. FT-IR spectrum of compound 3

Figure S23. ¹H NMR (acetone-*d*₆, 400 MHz) spectrum of compound 3

Figure S24. ¹³C NMR and DEPT (acetone- d_6 , 100 MHz) spectra of compound 3

Figure S25. HSQC (acetone- d_6 , 400/100 MHz) spectrum of compound 3

Figure S26. HMBC (acetone- d_6 , 400/100 MHz) spectrum of compound 3

Figure S27. HMBC (acetone- d_6 , 400/100 MHz) spectrum (expansion) of compound 3

Figure S28. NOESY (acetone- d_6 , 400 MHz) spectrum of compound 3

P-p65-NF-kB (N1)

P65-NF-kB (N1)

Beta-actin (rabbit) (N1)

Figure S29. The whole western blots of N1 (P-NF κ B, NF κ B and β -actin)

P-p65-NF-kB (N2)

Beta-actin (rabbit) (N2)

Figure S30. The whole western blots of N2 (P-NF κ B, NF κ B and β -actin)

P-p65-NF-kB (N3)

Beta-actin (rabbit) (N3)

Figure S31. The whole western blots of N3 (P-NF κ B, NF κ B and β -actin)