Transformation of 5-Acylated *N*-Fluoroalkyl-1,2,3-Triazoles to Trifluoromethylated Ring-Fused Isoquinolines, 1,3-Oxazines, and 1,3-Oxazin-6-ones via Ketenimines

Lukáš Janecký^{a,b}, Blanka Klepetářová^a, Petr Beier^{a,*}

^aInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic,
 Flemingovo nám. 2, 166 10 Prague, Czech Republic
 ^bDepartment of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, CZ-128 43
 Prague 2, Czech Republic

*Corresponding author: beier@uochb.cas.cz

Supporting information

Contents

General information	S2
X-ray crystallography	S3
Crystal data for 2c	S3
Crystal data for 5c	S3
Crystal data for 6g	S4
Synthesis of previously unpublished triazoles 1	S5
General procedure:	S5
Characterization of triazoles 1	S5
Synthesis of cyclopenta[c]isoquinolines 2 and 3 S	\$11
General procedure:S	\$11
Characterization of cyclopenta[c]isoquinolines 2 and 3	311
Synthesis of indeno[1,2- <i>c</i>]isoquinolines 4 S	\$13
General procedure:S	\$13
Characterization of indeno[1,2-c]isoquinolines 4 S	313

Synthesis of 6,6-difluoro-1,3-oxazines 5	S15
General procedure:	S15
Characterization of indeno[1,2-c]isoquinolines 5	S15
Synthesis of 1,3-oxazin-6-ones 6	S16
General procedure:	S16
Characterization of 1,3-oxazin-6-ones 6	S16
References	S18
Copies of NMR spectra	S19

General information

All commercially available chemicals were used as received unless stated otherwise. Flash column chromatography was performed using silica gel 60 (0.040–0.063 mm). Automated flash column chromatography was performed on Teledyne ISCO CombiFlash Rf⁺ Lumen Automated Flash Chromatography System with UV/Vis detection. ¹H, ¹³C, and ¹⁹F NMR spectra were measured at ambient temperature using 5 mm diameter NMR tubes. ¹³C NMR spectra were proton decoupled. The chemical shift values (δ) are reported in ppm relative to internal Me₄Si (0 ppm for ¹H and ¹³C NMR) or residual solvents and internal CFCl₃ (0 ppm for ¹⁹F NMR). Coupling constants (*J*) are reported in Hertz. Structural elucidation was aided by additional acquisition of various 2D NMR spectra (¹H-¹H COSY, ¹H-¹³C HSQC, ¹H-¹³C HMBC). High resolution mass spectra (HRMS) were recorded on a Waters Micromass AutoSpec Ultima or Agilent 7890A GC coupled with Waters GCT Premier orthogonal acceleration time-of-flight detector using electron impact (EI) or chemical ionization (CI), on an LTQ Orbitrap XL using electrospray ionization (ESI), Q-Tof micro (Waters) is a quadrupole orthogonal acceleration time-of-flight tandem mass spectrometer using atmospheric-pressure chemical ionization (APCI), and on a Bruker solariX 94 ESI/MALDI-FT-ICR using dual ESI/MALDI ionization. Microwave experiments were done on CEM Focused Microwave[™] Synthesis System, Model Discover. The method was set-up to 300 W, temperature 165-195 °C, hold time 5-120 min.

X-ray crystallography

Single-crystal diffraction data of **2c**, **5c** and **6g** were collected at 180 K using Bruker D8 VENTURE system equipped with a Photon 100 CMOS detector, a multilayer monochromator, and a CuK α Incoatec microfocus sealed tube (λ = 1.54178 Å). The frames were integrated with the Bruker SAINT¹ software package. The structure was solved by direct methods with SIR92² (**2c** and **5c**) or by charge-flipping methods using Superflip³ (**6g**) and refined by full-matrix least-squares on F² with CRYSTALS.⁴ The positional and anisotropic thermal parameters of all non-hydrogen atoms were refined. All hydrogen atoms were located in a difference Fourier map, but repositioned geometrically and then refined with riding constraints.

Crystal data for 2c (light yellow, 0.046 x 0.053 x 0.358 mm):

 $C_{15}H_{11}F_4NO_2$, triclinic, space group *P*-1, *a* = 4.8502(2) Å, *b* = 10.1006(3) Å, *c* = 14.4402(5) Å, α = 109.3028(12)°, β = 97.3122(13)°, γ = 95.9100(13)°, *V* = 654.23(4) Å³, *Z* = 2, *M* = 313.25, 10818 reflections measured, 2461 independent reflections. Final *R* = 0.0335, *wR* = 0.0929, *GoF* = 0.9780 for 2292 reflections with *I* > 2 σ (I) and 199 parameters. CCDC 2361631.

Figure S1 ORTEP diagram of 2c. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data for **5c** (light yellow, 0.080 x 0.127 x 0.516 mm):

 $C_{19}H_{14}F_5NO_2$, orthorhombic, space group *Pbca*, *a* = 18.7156(7) Å, *b* = 8.5123(3) Å, *c* = 21.5158(9) Å, *V* = 3427.7(2) Å³, *Z* = 8, *M* = 383.32, 46820 reflections measured, 3381 independent reflections. Final *R* = 0.0398, *wR* = 0.1033, *GoF* = 0.9901 for 2934 reflections with *I* > 2 σ (*I*) and 245 parameters. CCDC 2361590.

Figure S2. ORTEP diagram of 5c. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data for **6g** (colorless, 0.030 x 0.516 x 0.572 mm):

 $C_{15}H_8F_3NO_2S$, monoclinic, space group $P2_1/c$, a = 9.1250(3) Å, b = 14.3039(5) Å, c = 11.2617(4) Å, β = 109.1605(11)°, V = 1388.48(9) Å³, Z = 4, M = 323.29, 32093 reflections measured, 2637 independent reflections. Final R = 0.0284, wR = 0.0719, GoF = 0.9336 for 2497 reflections with I > 2 σ (I) and 218 parameters. The thiophene ring displays substitutional disorder of sulphur and carbon atoms with occupancy ratios of 0.827(2) and 0.173(2), the original positions are rotated around the bonding axis by 180°. CCDC 2361632.

Figure S3. ORTEP diagram of **6g.** Displacement ellipsoids are drawn at the 50% probability level. Only the more occupied part of the disordered group is shown for clarity.

Synthesis of previously unpublished triazoles 1

General procedure:

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with the corresponding copper(I) acetylide (1.0 mmol, 1.0 equiv.), 240 mg 3Å molecular sieves and a stirring bar. Then it was cooled to 0 °C, followed by the addition of a solution of azide in THF (~1.5 mmol, 4 mL), EDIPA (523 μ I, 3.0 mmol, 3.0 equiv.) and the corresponding acyl chloride (2.0 mmol, 2.0 equiv.). The reaction mixture was warmed to room temperature and stirred for 16-20 h. The crude suspension was filtered via a short plug of silica gel and washed by THF (3 x 10 mL). The filtrate was evaporated with Celite (water bath 40 °C) and purified by column chromatography (cyclohexane/EtOAc or pentane/toluene) to obtain pure triazole **1**.

Characterization of triazoles 1

1-(4-(3-Methoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)-2methylprop-2-en-1-one (**1a**):

Prepared according to the general procedure. Yield: 318.3 mg colorless oil; 71%; ¹H NMR (401 MHz, CDCl₃) δ 7.31 (t, *J* = 7.9 Hz, 1H), 7.22 (dd, *J* = 2.6, 1.5 Hz, 1H), 7.11 (ddd, *J* = 7.7, 1.7, 1.0 Hz, 1H), 6.94 (ddd, *J* =

8.3, 2.6, 1.0 Hz, 1H), 6.07 (q, J = 1.5 Hz, 1H), 5.60 (t, J = 1.0 Hz, 1H), 3.81 (s, 3H), 2.04 (dd, J = 1.5, 0.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.7, 160.1, 146.4, 144.5, 133.0, 130.5 (d, J = 1.8 Hz), 130.2, 129.2, 119.9, 117.0 (dt, J = 287.9, 40.0 Hz), 115.8, 112.7, 110.9 (q, J = 43.5 Hz), 55.4, 16.6; ¹⁹F NMR (377

MHz, CDCl₃) δ –82.7 (s, 3F), –94.9 (s, 2F); HRMS (ESI⁺) *m*/z calcd for C₁₅H₁₃F₅N₃O₂ [M+H]⁺: 362.09224, found 362.09220.

 Me_2N

1-(4-(4-(Dimethylamino)phenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)-2methylprop-2-en-1-one (**1b**):

Prepared according to the general procedure. Yield: 193.0 mg yellow solid; 52%; m.p. 82 – 84 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.46 (m, 2H), 6.72–6.68 (m, 2H), 6.03 (q, *J* = 1.5 Hz, 1H), 5.63 (q, *J* = 0.9 Hz, 1H), 2.99 (s, 6H), 2.05 (dd, *J* = 1.6, 0.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.2,

151.0, 147.2, 144.3, 132.5, 128.5, 128.2 (t, J = 2.0 Hz), 117.0 (qt, J = 287.9, 40.3 Hz), 115.2, 112.0, 110.8 (tq, J = 271.4, 43.2 Hz), 40.1, 16.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.6 (s, 3F), –94.8 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₆H₁₆F₅N₄O [M+H]⁺: 375.12388, found 375.12394.

Ethyl 2-(4-(3,5-dimethoxyphenyl)-5-methacryloyl-1H-1,2,3-triazol-1yl)-2,2-difluoroacetate (**1c**):

Prepared according to the general procedure. Yield: 301.1 mg pale yellow oil; 38%; ¹H NMR (401 MHz, CDCl₃) δ 6.74 (d, *J* = 2.3 Hz, 2H), 6.48 (t, *J* = 2.3 Hz, 1H), 6.05 (q, *J* = 1.5 Hz, 1H), 5.67 (q, *J* = 0.9 Hz, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 6H), 2.05–2.04 (m, 3H), 1.41 (t,

 $J = 7.2 \text{ Hz}, 3\text{H}; {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCI}_3) \delta 188.0, 161.2, 158.2 (t, J = 33.9 \text{ Hz}), 146.9, 144.2, 132.8, 130.1, 129.8 (t, J = 1.8 \text{ Hz}), 110.2 (t, J = 269.2 \text{ Hz}), 105.8, 102.0, 65.2, 55.6, 16.7, 13.9; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCI}_3) \delta -85.7 (s); \text{HRMS} (\text{ESI}^+) m/z \text{ calcd for } C_{18}\text{H}_{20}\text{F}_2\text{N}_3\text{O}_5 \text{ [M+H]}^+: 396.13655, \text{ found } 396.13633.$

1-(4-(3,5-Dimethoxyphenyl)-1-(1,1,2,2-tetrafluoroethyl)-1H-1,2,3-triazol-5-yl)-2-methylprop-2-en-1-one

(**1d**):

Prepared according to the general procedure. Yield: 192.5 mg pale yellow oil; 52%; ¹H NMR (401 MHz, CDCl₃) δ 6.75 (d, *J* = 2.2 Hz, 2H), 6.74 (tt, *J* = 52.2, 5.1 Hz, 1H); 6.49 (t, *J* = 2.3 Hz, 1H), 6.08 (q, *J* = 1.5 Hz, 1H), 5.62 (q, *J* = 0.9 Hz, 1H), 3.79 (s, 6H), 2.06 (dd, *J* = 1.5, 0.9 Hz,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.0, 161.3, 146.6, 144.5, 133.0, 130.3, 129.8, 112.9 (tt, *J* = 268.5, 29.3 Hz), 107.8 (tt, *J* = 254.5, 33.7 Hz), 105.6, 102.1, 55.6, 16.6; ¹⁹F NMR (377 MHz, CDCl₃) δ –97.4 (q, *J* = 8.9, 8.2 Hz, 2F), -137.8 (dt, *J* = 52.6, 8.4 Hz, 2F); HRMS (ESI⁺) *m*/*z* calcd for C₁₆H₁₆F₄N₃O₃ [M+H]⁺: 374.11223, found 374.11229.

2-Methyl-1-(1-(perfluoroethyl)-4-(p-tolyl)-1H-1,2,3-triazol-5-yl)prop-2-en-1-one (1e):

Prepared according to the general procedure. Yield: 226.7 mg pale yellow oil; 53%; ¹H NMR (401 MHz, CDCl₃) δ 7.52–7.48 (m, 2H), 7.24–7.21 (m, 2H), 6.05

(q, J = 1.5 Hz, 1H), 5.60 (q, J = 1.0 Hz, 1H), 2.37 (s, 3H), 2.04 (dd, J = 1.5, 1.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.9, 146.7, 144.5, 140.0, 132.9, 129.9 (t, J = 1.8 Hz), 129.9, 127.5, 125.1, 117.1 (qt, J = 287.9, 40.0 Hz), 110.9 (tq, J = 271.9, 43.5 Hz), 21.4, 16.6; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.7 (s, 3F), –94.9 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₅H₁₃F₅N₃O [M+H]⁺: 346.09733, found 346.09737.

1-(4-(2-Bromophenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)-2-methylprop-2en-1-one (**1f**):

Prepared according to the general procedure. After column chromatography (cyclohexane/EtOAc), the pure product was obtained as by crystallization from pentane/Et₂O. Yield: 274.0 mg white solid; 53%; m.p. 67 - 69 °C;¹H NMR (401

MHz, CDCl₃) δ 7.70–7.63 (m, 1H), 7.39–7.29 (m, 3H), 5.93 (q, *J* = 1.5 Hz, 1H), 5.59 (q, *J* = 1.0 Hz, 1H), 1.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.8, 146.7, 144.2, 133.6, 132.7 (t, *J* = 1.8 Hz), 132.4, 132.2, 131.5, 129.5, 127.8, 123.8, 117.1 (qt, *J* = 288.3, 39.6 Hz), 111.0 (tq, *J* = 271.9, 43.3 Hz), 16.6; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.3 (s, 3F), –94.5 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₀F₅BrN₃O [M+H]⁺: 409.99219, found 409.99224.

(E)-1-(4-(3,5-Dimethoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)-3-phenylprop-2-en-1-one (**1g**):

Prepared according to the general procedure. Yield: 423.0 mg yellow oil; 75%; ¹H NMR (401 MHz, CDCl₃) δ 7.46–7.41 (m, 4H), 7.40–7.35 (m, 2H), 6.95 (d, *J* = 16.1 Hz, 1H), 6.88 (d, *J* = 2.3 Hz, 2H), 6.50 (t, *J* = 2.3 Hz, 1H), 3.76 (s, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 183.8, 161.3, 149.4, 146.9, 133.3, 132.2, 131.5 (t, *J* = 1.8 Hz), 129.6, 129.3, 129.1, 125.5, 117.1 (qt, *J* = 287.9, 39.6 Hz), 111.0 (tq, *J* = 272.5, 43.1 Hz), 106.1, 102.3, 55.6; ¹⁹F NMR (377 MHz, CDCl₃) δ – 82.2 (s, 3F), –94.4 (s, 2F); HRMS (ESI⁺) *m*/*z* calcd for C₂₁H₁₇F₅N₃O₃ [M+H]⁺: 454.11846, found 454.11837.

N^{∽™}`N∽CF₂CF₃

02N

OMe

(4-(3,5-Dimethoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5yl)(phenyl)methanone (**1h**):

Prepared according to the general procedure. Yield: 343.4 mg pale yellow oil; 64%; ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.76 (m, 2H), 7.65–7.60 (m, 1H), 7.48–7.43 (m, 2H), 6.76 (d, *J* = 2.3 Hz, 2H), 6.39 (t, *J* = 2.3 Hz, 1H), 3.64 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 185.7, 161.2, 146.6,

135.7, 135.2, 130.7 (t, J = 1.7 Hz), 129.8, 129.4, 129.4, 117.0 (qt, J = 287.9, 40.0 Hz), 110.9 (tq, J = 272.5, 43.3 Hz), 105.6, 102.4, 55.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.6 (s, 3F), –94.5 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₉H₁₅F₅N₃O₃ [M+H]⁺: 428.10281, found 428.10270.

S7

Prepared according to the general procedure. Yield: 170.0 mg colorless oil; 31%; ¹H NMR (401 MHz, CDCl₃) δ 8.17 (d, *J* = 8.9 Hz, 2H), 7.84 (d, *J* = 8.9 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 183.1, 166.1, 148.2, 143.9, 134.1, 132.4 (2C), 128.2, 127.9, 124.3, 116.9 (qt, *J* = 288.3, 39.7 Hz), 115.0, 110.9 (tq, *J* = 273.5, 43.6 Hz), 55.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -82.6 (s, 3F), -94.8 (s, 2F); HRMS (APCl⁺) *m/z* calcd for C₁₈H₁₂F₅N₄O₄ [M+H]⁺: 443.07732, found 443.07684.

(4-(2-Bromophenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)(4methoxyphenyl)methanone (**1j**):

Prepared according to the general procedure. Yield: 232.3 mg pale yellow oil; 49%; ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.67 (m, 2H), 7.57 (ddd, *J* = 7.9, 1.3, 0.5 Hz, 1H), 7.34 (ddd, *J* = 7.7, 2.0, 0.6 Hz, 1H), 7.28

(td, J = 7.5, 1.3 Hz, 1H), 7.20 (ddd, J = 7.9, 7.4, 1.8 Hz, 1H), 6.85–6.81 (m, 2H), 3.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 182.3, 165.3, 146.6, 133.5, 133.2 (d, J = 2.2 Hz), 132.5, 132.3, 131.3, 129.2, 128.2, 127.6, 123.7, 117.2 (qt, J = 288.3, 39.6 Hz), 114.3, 111.0 (tq, J = 272.3, 43.3 Hz), 55.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.3 (s, 3F), –94.4 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₈H₁₂F₅BrN₃O₂ [M+H]⁺: 476.00276, found 476.00287.

(4-Methoxyphenyl)(1-(perfluoroethyl)-4-(p-tolyl)-1H-1,2,3-triazol-5yl)methanone (**1k**):

Prepared according to the general procedure. Yield: 317.0 mg pale yellow oil; 77%; ¹H NMR (401 MHz, CDCl₃) δ 7.75–7.70 (m, 2H), 7.55–7.51 (m, 2H), 7.14–7.10 (m, 2H), 6.92–6.87 (m, 2H), 3.85 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 165.6, 146.5, 139.7, 132.5,

130.4 (t, J = 1.9 Hz), 129.8, 128.4, 127.5, 125.1, 117.1 (qt, J = 287.9, 40.0 Hz), 114.7, 111.0 (tq, J = 271.9, 43.3 Hz), 55.8, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.3 (s, 3F), –94.4 (s, 2F); HRMS (ESI⁺) *m*/*z* calcd for C₁₉H₁₅F₅N₃O₂ [M+H]⁺: 412.10789, found 412.10785.

N^{-N}N-CF₂CF₃ O (4-Butyl-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)(4methoxyphenyl)methanone (**1**I):

Prepared according to the general procedure. Yield: 167.1 mg colorless oil; 35%; ¹H NMR (401 MHz, CDCl₃) δ 7.76–7.72 (m, 2H), 7.01–6.97 (m, 2H), 3.91 (s, 3H), 2.60–2.56 (m, 2H), 1.66–1.59 (m, 2H), 1.30–1.22 (m, 2H), 0.82 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 183.4, 165.5, 148.3, 132.4,

132.0 (t, J = 1.8 Hz), 128.9, 117.1 (qt, J = 287.9, 40.0 Hz), 114.7, 110.9 (tq, J = 271.6, 43.3 Hz), 55.9, 31.0, 24.9, 22.3, 13.7; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.7 (s, 3F), –94.8 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₆H₁₇F₅N₃O₂ [M+H]⁺: 378.12354, found 378.12374.

Ethyl 2,2-*difluoro*-2-(5-(4-*methoxybenzoyl*)-4-*phenyl*-1H-1,2,3-*triazol*-1*yl*)*acetate* (**1m**):

Prepared according to the general procedure. Yield: 328.2 mg pale yellow oil; 41%; ¹H NMR (400 MHz, CDCl₃) δ 8.24–8.20 (m, 2H), 7.53–7.48 (m, 2H), 7.53–7.48 (m, 2H), 7.47–7.41 (m, 4H), 4.54 (q, *J* = 7.2 Hz,

2H), 1.42 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (t, J = 33.2 Hz), 148.9, 131.9, 130.3, 129.6, 129.1, 129.0, 128.9, 126.8, 121.1, 116.0, 110.3 (t, J = 267.0 Hz), 104.4, 73.5, 65.1, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –85.6 (s); HRMS (ESI⁺) m/z calcd for C₂₀H₁₇F₂N₃O₄ [M+H]⁺: 402.12599, found 402.12576.

(4-Methoxyphenyl)(4-phenyl-1-(1,1,2,2-tetrafluoroethyl)-1H-1,2,3-triazol-5-yl)methanone (**1n**):

Prepared according to the general procedure. Yield: 215.5 mg pale yellow oil; 57%; ¹H NMR (401 MHz, CDCl₃) δ 7.78–7.73 (m, 2H), 7.67–7.62 (m, 2H), 7.34–7.30 (m, 3H), 6.92–6.88 (m, 2H), 6.81 (tt, *J* = 52.3,

5.0 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 165.6, 146.7, 132.5, 130.6 (t, *J* = 1.8 Hz), 129.5, 129.0, 128.2, 128.1, 127.7, 114.7, 113.0 (t, *J* = 269.1, 29.3 Hz), 107.9 (tt, *J* = 254.6, 33.9 Hz), 55.8; ¹⁹F NMR (377 MHz, CDCl₃) δ –97.3 (s, 2F), –137.6 (dt, *J* = 52.2, 8.4 Hz, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₈H₁₄F₄N₃O₂ [M+H]⁺: 380.10167, found 380.10171.

(4-(3,5-Dimethoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5yl)(p-tolyl)methanone (**1o**):

Prepared according to the general procedure. Yield: 193.0 mg colorless oil; 35%; ¹H NMR (401 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.28–7.25 (m, 2H), 6.80 (d, *J* = 2.3 Hz, 2H), 6.42 (t, *J* = 2.3 Hz, 1H), 3.67 (s, 6H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃)

δ 185.3, 161.1, 147.3, 146.4, 132.9, 130.9 (d, J = 1.8 Hz), 130.2, 129.9, 129.5, 117.0 (dt, J = 287.9, 40.0 Hz), 110.9 (q, J = 43.5 Hz), 105.5, 102.4, 55.4, 22.0; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.7 (s, 3F), –94.6 (s, 2F); HRMS (ESI⁺) m/z calcd for C₂₀H₁₇F₅N₃O₃ [M+H]⁺: 442.11846, found 442.11839.

(4-(3,5-Dimethoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5yl)(thiophen-2-yl)methanone (**1p**):

Prepared according to the general procedure. Yield: 366.3 mg pale yellow oil; 68%; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.35 (dd, *J* = 3.9, 1.2 Hz, 1H), 7.06 (dd, *J* = 5.0, 3.9 Hz, 1H), 6.81 (d, *J* = 2.3 Hz, 2H), 6.42 (t, *J* = 2.3 Hz, 1H), 3.69 (s, 6H); ¹³C NMR (101 MHz, CDCl₃)

δ 177.1, 161.2, 146.7, 142.4, 138.2, 136.7, 130.4 (t, J = 1.8 Hz), 129.3, 129.3, 117.0 (qt, J = 287.9, 39.6

Hz), 111.0 (tq, J = 272.7, 43.5 Hz), 105.6, 102.5, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.6 (s, 3F), –94.8 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₇H₁₃F₅N₃O₃S [M+H]⁺: 434.05923, found 434.05915.

(4-(3,5-Dimethoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5yl)(furan-2-yl)methanone (**1q**):

Prepared according to the general procedure. Yield: 110.0 mg pale yellow oil; 26%; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, *J* = 1.7, 0.7 Hz, 1H), 7.16–7.12 (m, 1H), 6.78 (d, *J* = 2.3 Hz, 2H), 6.56 (dd, *J* = 3.7, 1.7 Hz, 1H), 6.44 (t, *J* = 2.3 Hz, 1H), 3.72 (s, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 171.6, 161.2, 151.4, 149.6, 147.2, 129.9 (t, *J* = 1.8 Hz), 129.5, 122.7, 117.0 (qt, *J* = 288.3, 39.8 Hz), 113.7, 110.9 (tq, *J* = 272.6, 43.4 Hz), 105.6, 102.3, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.7 (s, 3F), – 95.0 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₃F₅N₃O₄ [M+H]⁺: 418.08207, found 418.08201.

(4-(3,5-Dimethoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5yl)(naphthalen-2-yl)methanone (**1r**):

7.0, 1.3 Hz, 1H), 6.86 (d, J = 2.3 Hz, 2H), 6.38 (t, J = 2.3 Hz, 1H), 3.64 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 185.7, 161.2, 146.7, 136.7, 133.3, 132.8, 132.4, 130.8 (t, J = 1.8 Hz), 130.1, 130.1, 129.7, 129.4, 128.1, 127.6, 123.5, 117.0 (qt, J = 287.9, 39.8 Hz), 111.0 (tq, J = 272.6, 43.3 Hz), 105.5, 102.3, 55.3; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.6 (s, 3F), –94.5 (s, 2F); HRMS (ESI⁺) m/z calcd for C₂₃H₁₇F₅N₃O₃ [M+H]⁺: 478.11846, found 478.11824.

(3,5-Dimethoxyphenyl)(1-(perfluoroethyl)-4-(p-tolyl)-1H-1,2,3-triazol-5yl)methanone (**1s**):

Prepared according to the general procedure. Yield: 124.0 mg pale yellow oil; 19%; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.50 (m, 2H), 7.15–7.11 (m, 2H), 6.88 (d, *J* = 2.3 Hz, 2H), 6.68 (t, *J* = 2.3 Hz, 1H), 3.73 (s, 6H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.6, 161.4, 146.9, 139.9, 136.9, 130.1

(t, J = 1.8 Hz), 129.8, 127.6, 125.0, 117.1 (qt, J = 288.3, 40.0 Hz), 110.9 (tq, J = 272.2, 43.5 Hz), 108.1, 107.4, 55.7, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.5 (s, 3F), –94.4 (s, 2F); HRMS (ESI⁺) *m/z* calcd for $C_{20}H_{17}F_5N_3O_3$ [M+H]⁺: 442.11846, found 442.11855.

OMe

Prepared according to the general procedure. Yield: 188.3 mg pale orange oil; 33%; ¹H NMR (401 MHz, CDCl₃) δ 8.46–8.42 (m, 1H), 8.00–7.90 (m, 3H), 7.65 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.58 (ddd, *J* = 8.1, 6.8, 1.3 Hz, 1H), 7.52 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.48 (d, *J* = 2.3 Hz, 2H), 6.75 (t, *J* = 2.3 Hz, 1H), 3.89 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 184.5, 160.9, 147.1, 136.7, 133.8, 133.1 (t, *J* = 1.8 Hz), 131.6, 130.6, 129.2, 128.7, 127.4, 126.6, 125.2, 125.1, 125.0, 117.2 (qt, *J* = 287.9, 39.6 Hz), 111.1 (tq, *J* = 273.2, 43.3 Hz), 108.3, 107.0, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.2 (s, 3F), –94.1 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₂₃H₁₇F₅N₃O₃ [M+H]⁺: 478.11846, found 478.11833.

Synthesis of cyclopenta[c]isoquinolines 2 and 3

General procedure:

Under air atmosphere, a 10 mL microwave glass tube was charged with triazole **1** (0.095–0.193 mmol in 0.95–1.93 mL DCE) and CuF₂ (1.1 equiv., pre-dried on vacuum at 90°C for 2 h). The mixture was heated under microwave irradiation (300 W) to 165 °C for 30 min. The crude reaction mixture was filtered via a paper, washed with Et_2O , evaporated with Celite and purified by column chromatography (cyclohexane/EtOAc).

Characterization of cyclopenta[c]isoquinolines 2 and 3

2-Fluoro-6,8-dimethoxy-2-methyl-5-(trifluoromethyl)-2,3-dihydro-1H-cyclopenta[c]isoquinolin-1-one (**2a**):

Prepared according to the general procedure. Yield: 22.3 mg yellow solid; 41%; m.p. 63-65 °C; ¹H NMR (401 MHz, CDCl₃) δ 9.05 (dt, *J* = 8.3, 1.1 Hz, 1H), 8.40 (dtt, *J* = 9.9, 2.2, 1.2 Hz, 1H), 8.00 (ddd, *J* = 8.3, 7.0, 1.2 Hz, 1H), 7.82 (ddd, *J* = 8.6, 7.0, 1.3 Hz, 1H), 3.75 (dd, *J* = 21.6, 18.3 Hz, 1H), 3.59 (dd, *J* = 18.3, 11.1 Hz, 1H), 1.75 (d, *J* = 22.7

Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.5 (d, *J* = 18.7 Hz), 165.2 (d, *J* = 5.5 Hz), 153.6 (q, *J* = 33.7 Hz), 134.5, 133.8, 129.7, 125.8 (q, *J* = 3.5 Hz), 124.2 (2C), 123.0, 121.6 (q, *J* = 277.7 Hz), 95.4 (d, *J* = 186.0 Hz), 43.0 (d, *J* = 25.3 Hz), 21.7 (d, *J* = 26.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –63.35 (d, *J* = 2.1 Hz, 3F), – 151.8 to –152.0 (m, 1F); HRMS (EI) *m*/*z* calcd for C₁₄H₉F₄NO [M]⁺: 283.0615, found 283.0611.

2-Fluoro-2,7-dimethyl-5-(trifluoromethyl)-2,3-dihydro-1H-cyclopenta[c]isoquinolin-1-one (**2b**):

Prepared according to the general procedure. Yield: 21.4 mg white solid; 55%; m.p. 128–130 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, *J* = 8.6 Hz, 1H), 8.16–8.11 (m, 1H), 7.83 (dd, *J* = 8.6, 1.8 Hz, 1H), 3.72 (dd, *J* = 21.8, 18.2 Hz, 1H), 3.57 (dd, *J* = 18.2, 11.1 Hz, 1H), 2.63 (d, *J* = 1.1 Hz, 3H), 1.74 (d, *J* = 22.7 Hz, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 200.6 (d, *J* = 19.1 Hz), 164.3 (d, *J* = 5.9 Hz), 152.8 (q, *J* = 33.2 Hz), 140.2, 136.7, 132.0, 124.6 (q, *J* = 3.3 Hz), 124.5, 123.9, 122.9, 121.7 (q, *J* = 277.3 Hz), 95.4 (d, *J* = 186.0 Hz), 43.0 (d, *J* = 24.9

Hz), 22.5, 21.7 (d, J = 26.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –63.4 (d, J = 2.3 Hz, 3F), –151.8 to –152.1 (m, 1F); HRMS (EI) *m*/*z* calcd for C₁₅H₁₁F₄NO [M]⁺: 297.0771, found 297.0770.

2-fluoro-8-methoxy-2-methyl-5-(trifluoromethyl)-2,3-dihydro-1Hcyclopenta[c]isoquinolin-1-one (**2c**):

Prepared according to the general procedure. Yield: 36.0 mg white solid; 60%; m.p. 151–153 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.32 (dd, *J* = 2.8, 1.4 Hz, 1H), 8.27–8.23 (m, *J* = 9.5, 2.0 Hz, 1H), 7.36 (ddd, *J* = 9.4, 2.6, 1.1 Hz, 1H), 4.05 (s, 3H), 3.69 (dd, *J* = 21.9, 18.3 Hz, 1H), 3.53 (dd, *J* = 18.3, 11.2 Hz, 1H), 1.73 (d,

J = 22.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.6 (d, J = 19.1 Hz), 166.1 (d, J = 5.5 Hz), 164.4, 152.4 (q, J = 33.2 Hz), 136.6, 127.5 (q, J = 3.3 Hz), 122.6, 121.9, 121.6 (q, J = 277.5 Hz), 119.7, 101.9, 95.2 (d, J = 185.6 Hz), 56.1, 42.9 (d, J = 24.9 Hz), 21.6 (d, J = 26.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –63.10 (d, J = 2.1 Hz, 3F), –151.59 to –151.86 (m, 1F); HRMS (ESI⁺) *m*/*z* calcd for C₁₅H₁₂F₄NO₂ [M+H]⁺: 314.07987, found 314.07961.

2-Fluoro-6,8-dimethoxy-2-methyl-5-(trifluoromethyl)-2,3-dihydro-1Hcyclopenta[c]isoguinolin-1-one (**2d**):

Prepared according to the general procedure. Yield: 24.8 mg yellow solid; 76%. <u>Scale-up reaction</u>: Under air atmosphere, a 10 mL microwave glass tube was charged with triazole **1** (2.11 mmol in 5.0 mL DCE) and CuF₂ (2.321 mmol). The mixture was heated under microwave irradiation (300 W) to 165 °C for 30 min.

The crude reaction mixture was filtered via a paper, washed with Et₂O, evaporated with Celite and purified by column chromatography (cyclohexane/EtOAc); yield: 571.0 mg yellow solid; 79%. m.p. 131–132 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 2.4 Hz, 1H), 6.69 (d, *J* = 2.4 Hz, 1H), 4.02 (d, *J* = 10.5 Hz, 6H), 3.71–3.43 (m, 2H), 1.72 (d, *J* = 22.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.6 (d, *J* = 19.1 Hz), 166.1 (d, *J* = 5.5 Hz), 166.0, 158.1, 151.4 (q, *J* = 35.0 Hz), 138.1, 121.7 (q, *J* = 275.6 Hz), 121.2, 113.9, 101.9, 96.3, 95.1, 94.5, 56.3 (d, *J* = 11.4 Hz), 42.8 (d, *J* = 24.9 Hz), 21.8 (d, *J* = 26.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –63.9 (s, 3F), –151.4 to –151.6 (m, 1F); HRMS (ESI⁺) *m/z* calcd for C₁₆H₁₄F₄NO₃ [M+H]⁺: 344.09043, found 344.09039.

2-Fluoro-6,8-dimethoxy-2-methyl-5-(trifluoromethyl)-2,3-dihydro-1Hcyclopenta[c]isoquinolin-1-one (**3a**):

Under air atmosphere, a 10 mL microwave glass tube was charged with the corresponding triazole **1** (37.1 mg, 0.112 mmol in 1.12 mL DCE), KF (7.2 mg, 0.123 mmol) and NaOH (13.4 mg, 0.336 mmol). The mixture was heated under microwave irradiation (300 W) to 165 °C for 30 min. The crude reaction mixture was

filtered via a paper, washed with Et₂O, evaporated with Celite and purified by column chromatography (cyclohexane/EtOAc). Yield: 9.1 mg yellow solid; 31%; m.p. 130–131 °C; ¹H NMR (400 MHz, CDCl₃) δ

9.24–9.22 (m, 1H), 8.39 (dqd, J = 8.6, 2.1, 1.0 Hz, 1H), 7.98 (ddd, J = 8.3, 7.0, 1.1 Hz, 1H), 7.80 (ddd, J = 8.7, 7.0, 1.3 Hz, 1H), 6.53 (td, J = 2.1, 0.6 Hz, 1H), 5.81 (td, J = 1.7, 0.6 Hz, 1H), 4.03 (t, J = 1.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 165.0, 152.2 (q, J = 33.2 Hz), 142.4, 134.0, 133.9, 129.3, 127.0, 125.6 (q, J = 3.3 Hz), 124.3, 124.0, 121.8 (q, J = 277.3 Hz), 120.7, 34.3; ¹⁹F NMR (377 MHz, CDCl₃) δ –63.2 (d, J = 2.1 Hz); HRMS (ESI⁺) *m/z* calcd for C₁₄H₉F₃NO [M+H]⁺: 264.06308, found 264.06311.

6,8-Dimethoxy-2-methylene-5-(trifluoromethyl)-2,3-dihydro-1Hcyclopenta[c]isoquinolin-1-one (**3b**):

Under air atmosphere, a 10 mL microwave glass tube was charged with the corresponding triazole **1** (73.4 mg, 0.188 mmol in 1.88 mL DCE), KF (12.0 mg, 0.206 mmol) and NaOH (22.5 mg, 0.563 mmol). The mixture was heated under microwave irradiation (300 W) to 165 $^{\circ}$ C for 30 min. The crude reaction mixture

was filtered via a paper, washed with Et_2O , evaporated with Celite and purified by column chromatography (cyclohexane/EtOAc). Yield: 28.1 mg pale yellow solid; 46%; m.p. 90–92 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.26 (d, *J* = 2.3 Hz, 1H), 6.69 (d, *J* = 2.4 Hz, 1H), 6.46 (td, *J* = 2.1, 0.7 Hz, 1H), 5.76 (td, *J* = 1.8, 0.7 Hz, 1H), 4.05 (s, 3H), 4.01 (s, 3H), 3.94 (t, *J* = 2.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 192.8, 165.9, 165.4, 158.0, 150.2 (q, *J* = 35.0 Hz), 142.7, 138.2, 125.4, 121.9 (q, *J* = 275.7 Hz), 119.9, 113.7, 101.7, 95.1, 56.3, 56.2, 34.1; ¹⁹F NMR (377 MHz, CDCl₃) δ –63.6 (s); HRMS (EI) *m/z* calcd for C₁₆H₁₂F₃NO₃ [M]⁺: 323.0764, found 323.0753.

Synthesis of indeno[1,2-c]isoquinolines 4

General procedure:

Under air atmosphere, a 10 mL microwave glass tube was charged with triazole **1** (0.052–0.188 mmol in 0.52–1.88 mL DCE) and CuF_2 (1.1 equiv., pre-dried on vacuum at 90°C for 2 h). The mixture was heated under microwave irradiation (300 W) to 165 °C for 30 min. The red precipitation of indeno[1,2-*c*]isoquinoline was filtered via a paper and washed with Et₂O (2 x 10 mL). Then isoquinoline **4** on the filtration paper was separated from CuF_2 by dissolving in DCM (limited solubility, 100-150 mL) and the solution was evaporated to obtain the pure product.

Characterization of indeno[1,2-c]isoquinolines 4

7,9-Dimethoxy-5-(trifluoromethyl)-11H-indeno[1,2-c]isoquinolin-11-one (4a):

Prepared according to the general procedure. Yield: 34.8 mg red solid; 68%; m.p. 241–243 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.82 (dt, *J* = 8.6, 1.1 Hz, 1H), 8.18 (dtt, *J* = 8.8, 2.2, 1.1 Hz, 1H), 7.76 (ddd, *J* = 8.6, 6.8, 1.2 Hz, 1H), 7.55 (ddd, *J* = 8.9, 6.8, 1.3 Hz, 1H), 6.88 (d, *J* = 2.1 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 4.02 (s, 3H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 164.0, 161.3, 156.5, 150.8 (q, *J* = 33.4 Hz), 137.7, 134.1, 133.5, 128.2, 125.4 (q, *J* = 3.3 Hz), 124.0, 123.8, 122.0 (q, J = 276.9 Hz), 121.5, 121.0, 105.5, 102.3, 56.7, 56.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.9 (s); HRMS (ESI⁺) m/z calcd for C₁₉H₁₃F₃NO₃ [M+H]⁺: 360.08420, found 360.08434.

 H_3C CF_3 OMe

7,9-Dimethoxy-3-methyl-5-(trifluoromethyl)-11H-indeno[1,2c]isoquinolin-11-one (**4b**):

Prepared according to the general procedure. Yield: 42.5 mg red solid; 61%; m.p. 213–215 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.74 (d, *J* = 8.7 Hz, 1H), 7.94 (s, 1H), 7.62 (dd, *J* = 8.7, 1.7 Hz, 1H), 6.90 (d, *J* = 2.1 Hz, 1H), 6.60 (d, *J* = 2.1 Hz, 1H), 4.03 (s, 3H), 3.89 (s, 3H), 2.54 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.3, 163.9, 160.5, 156.4, 149.9 (q, *J* = 33.2 Hz),

138.6, 137.7, 136.0, 132.6, 124.4, 124.0 (q, J = 3.0 Hz), 123.6, 122.1 (q, J = 277.0 Hz), 121.8, 121.1, 105.5, 102.3, 56.7, 56.1, 22.5; ¹⁹F NMR (377 MHz, CDCl₃) δ –63.0 (d, J = 2.1 Hz); HRMS (EI) *m/z* calcd for C₂₀H₁₄F₃NO₃ [M]⁺: 373.0920, found 373.0913.

Prepared according to the general procedure. Yield: 14.2 mg red solid; 79%; m.p. 248–249 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.78 (d, *J* = 9.3 Hz, 1H), 7.46 (dd, *J* = 9.3, 2.4 Hz, 1H), 7.41–7.38 (m, 1H), 6.92 (d, *J* = 2.2 Hz, 1H), 6.63 (d, *J* = 2.2 Hz, 1H), 4.05 (s, 3H), 3.98 (s, 3H), 3.91 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 163.7, 159.1, 158.9, 156.3, 148.4

(q, J = 32.4 Hz), 137.6, 130.4, 127.6, 125.7, 125.3, 122.3 (q, J = 276.6 Hz), 122.1, 121.5, 105.7, 102.3 (q, J = 3.4 Hz), 102.2, 56.7, 56.1, 55.6; ¹⁹F NMR (377 MHz, CDCl₃) δ –63.7 (d, J = 2.1 Hz); HRMS (ESI⁺) m/z calcd for C₂₀H₁₅F₃NO₄ [M+H]⁺: 390.09477, found 390.09494.

2,4,7,9-Tetramethoxy-5-(trifluoromethyl)-11H-indeno[1,2-c]isoquinolin-11-one (**4d**):

Prepared according to the general procedure. Yield: 25.9 mg orange solid; 68%; m.p. 251–253 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 2.3 Hz, 1H), 6.89 (d, *J* = 2.1 Hz, 1H), 6.59 (d, *J* = 2.1 Hz, 1H), 6.49 (d, *J* = 2.3 Hz, 1H), 4.03 (s, 3H), 4.01 (s, 3H), 3.97 (s, 3H), 3.90 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 164.9, 164.0, 162.0, 157.7, 156.6,

149.1 (q, J = 35.0 Hz), 138.2, 138.2, 122.1 (q, J = 275.2 Hz), 121.2, 119.3, 114.7, 105.2, 102.2, 101.1, 93.8, 56.8, 56.08, 56.14, 56.03; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.6 (s); HRMS (ESI⁺) *m/z* calcd for C₂₁H₁₇F₃NO₅ [M+H]⁺: 420.10533, found 420.10540.

7,9-Dimethoxy-3-nitro-5-(trifluoromethyl)-11H-indeno[1,2-c]isoquinolin-11-one (**4e**): Prepared according to the general procedure. Yield: 32.3 mg purple solid; 66%; m.p. 252–254 °C; ¹H NMR (401 MHz, CDCl₃) δ 9.13 (s, 1H), 9.00 (d, *J* = 9.5 Hz, 1H), 8.52 (d, *J* = 7.7 Hz, 1H), 6.97 (s, 1H), 6.65 (s, 1H), 4.06 (s, 3H), 3.93 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.0, 165.2, 164.2, 157.4, 153.3 (q, *J* = 34.1 Hz), 146.3, 137.8, 135.9, 126.6, 125.8, 122.5 (q, *J* = 3.8, 3.0 Hz, 2C), 121.4 (q, *J* = 276.4 Hz), 120.6, 120.5, 105.6, 103.0, 56.7, 56.3; ¹⁹F NMR (377 MHz, CDCl₃) δ –62.8 (s); HRMS (ESI⁺) *m*/*z* calcd for C₁₉H₁₂F₃N₂O₅ [M+H]⁺: 405.06928, found 405.06948.

9,11-Dimethoxy-7-(trifluoromethyl)-13H-benzo[f]indeno[1,2-c]isoquinolin-13-one (**4f**):

Prepared according to the general procedure. Yield: 27.5 mg red solid; 56%; m.p. 232–234 °C; ¹H NMR (401 MHz, CDCl₃) δ 9.89–9.86 (m, 1H), 8.01 (dq, J = 9.4, 2.2 Hz, 1H), 7.90–7.87 (m, 1H), 7.82–7.74 (m, 3H), 6.99 (d, J = 2.1 Hz, 1H), 6.66 (d, J = 2.1 Hz, 1H), 4.07 (s, 3H), 3.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 164.2, 163.4, 156.8, 149.5 (d, J = 32.3 Hz), 138.0,

137.6, 134.6, 131.1, 131.1, 130.2, 128.3, 128.0, 127.4, 125.0, 124.2, 123.8, 121.4, 121.1 (q, J = 3.6 Hz), 105.9, 101.9, 56.7, 56.1; ¹⁹F NMR (377 MHz, CDCl₃) δ –62.2 (d, J = 2.1 Hz); HRMS (EI) m/z calcd for C₂₃H₁₄F₃NO₃ [M]⁺: 409.0920, found 409.0912.

Synthesis of 6,6-difluoro-1,3-oxazines 5

General procedure:

Under air atmosphere, a 10 mL microwave glass tube was charged with the corresponding triazole **1** (0.118–0.256 mmol in 1.18–2.56 mL DCE). The mixture was heated under microwave irradiation (300 W) to 165 °C for 5 min. The crude reaction mixture was filtered via a paper, washed with Et_2O , evaporated and purified by column chromatography (cyclohexane/EtOAc).

Characterization of 6,6-difluoro-1,3-oxazines 5

6,6-Difluoro-4-(4-methoxyphenyl)-5-phenyl-2-(trifluoromethyl)-6H-1,3oxazine (**5**a):

Prepared according to the general procedure. Yield: 43.0 mg; 74%; colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.29 (m, 7H), 6.74–6.70 (m, 2H), 3.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 143.0 (q, *J* = 42.5 Hz), 142.0 (t, *J* = 4.9 Hz), 131.5, 130.8, 130.6, 129.3, 129.1, 126.3,

120.9 (t, J = 254.2 Hz), 117.6 (q, J = 275.5 Hz), 115.9 (t, J = 29.0 Hz), 113.7, 55.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –42.4 (s, 2F), –73.2 (s, 3F); HRMS (ESI⁺) *m*/*z* calcd for C₁₈H₁₃F₅NO₂ [M+H]⁺: 370.08610, found 370.08642.

6,6-Difluoro-4-(furan-2-yl)-5-phenyl-2-(trifluoromethyl)-6H-1,3-oxazine (5b):

Prepared according to the general procedure. Yield: 17.2 mg; 44%; colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.42 (m, 3H), 7.40–7.36 (m, 2H), 7.27–7.26 (m, 1H), 6.66 (dd, *J* = 3.5, 1.0 Hz, 1H), 6.37 (dd, *J* = 3.5, 1.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 145.3, 143.8 (q, *J* = 42.7 Hz), 133.1 (t, *J* = 5.0 Hz), 130.4, 129.9, 129.5, 128.7, 120.5, 116.1 (q, *J* = 275.9 Hz), 115.9, 113.2, 111.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –43.3 (s, 2F), –73.4 (s, 3F); HRMS (EI) *m/z* calcd for C₁₅H₈F₅NO₂ [M]⁺: 329.0470, found 329.0469.

6,6-Difluoro-4-(4-methoxyphenyl)-5-(p-tolyl)-2-(trifluoromethyl)-6H-1,3oxazine (**5c**):

Prepared according to the general procedure. Yield: 59.7 mg; 61%; colorless oil. ¹H NMR (401 MHz, CDCl₃) δ 7.35–7.30 (m, 2H), 7.21 (d, *J* = 8.3 Hz, 2H), 7.16 (d, *J* = 8.4, 2H), 6.75–6.72 (m, 2H), 3.77 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 142.8 (q, *J* = 42.5 Hz), 141.7 (t, *J*

= 5.0 Hz), 139.3, 131.4, 130.4, 129.8, 127.8, 126.6, 121.0 (t, *J* = 254.0 Hz), 116.3 (q, *J* = 275.5 Hz), 115.9 (t, *J* = 28.8 Hz), 113.7, 55.4, 21.5; ¹⁹F NMR (377 MHz, CDCl₃) δ –42.5 (s, 2F), –73.2 (s, 3F); HRMS (EI) *m/z* calcd for C₁₉H₁₄F₅NO₂ [M]⁺: 383.0939, found 383.0945.

5-(2-Bromophenyl)-6,6-difluoro-4-(4-methoxyphenyl)-2-(trifluoromethyl)-6H-1,3-oxazine (**5d**):

Prepared according to the general procedure. Yield: 30.0 mg; 56%; colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.59 (m, 1H), 7.49 (dtd, *J* = 7.7, 2.0, 0.4 Hz, 1H), 7.42 (td, *J* = 7.6, 1.3 Hz, 1H), 7.36–7.32 (m, 2H), 7.29 (ddd, *J* = 8.1, 7.3, 1.7 Hz, 1H), 6.77–6.69 (m, 2H), 3.77 (s, 3H); ¹³C NMR

(101 MHz, CDCl₃) δ 161.0, 144.0 (t, *J* = 42.6 Hz), 143.4 (q, *J* = 4.2 Hz), 133.7, 132.8, 131.6, 131.0, 130.7, 127.8, 126.2, 125.3, 120.6 (t, *J* = 254.2 Hz), 116.2 (q, *J* = 275.8 Hz), 113.9 (dd, *J* = 29.4 Hz), 113.8, 55.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –38.6 (d, *J* = 178.5 Hz, 1F), –49.4 (d, *J* = 178.5 Hz, 1F), –73.2 (s, 3F); HRMS (EI) *m/z* calcd for C₁₈H₁₁F₅BrNO₂ [M]⁺: 446.9888, found 446.9894.

Synthesis of 1,3-oxazin-6-ones 6

General procedure:

Under air atmosphere, a 10 mL microwave glass tube was charged with the corresponding triazole **1** (0.072–0.249 mmol in 0.72–2.49 mL DCE) and CuF_2 (1.1 equiv., pre-dried on vacuum at 90°C for 2 h). The mixture was heated under microwave irradiation (300 W) to 165 °C for 20 min. The crude reaction mixture was filtered via a paper, washed with Et₂O, evaporated with Celite and purified by column chromatography (cyclohexane/EtOAc).

Characterization of 1,3-oxazin-6-ones 6

4-(4-Methoxyphenyl)-5-phenyl-2-(trifluoromethyl)-6H-1,3-oxazin-6-one (6a):

Prepared according to the general procedure. Yield: 58.9 mg; 85%; orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.37 (m, 5H), 7.33–7.29 (m, 2H), 6.76–6.72 (m, 2H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 157.9, 156.0, 150.4 (q, *J* = 42.2 Hz), 132.5, 131.9, 130.2, 129.2, 129.1, 126.4,

119.8, 116.0 (q, J = 276.6 Hz), 113.9, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –73.1 (s); HRMS (ESI⁺) m/z calcd for C₁₈H₁₃F₅NO₂ [M+H]⁺: 370.08610, found 370.08642.

4-(4-Methoxyphenyl)-5-(p-tolyl)-2-(trifluoromethyl)-6H-1,3-oxazin-6-one (**6b**):

Prepared according to the general procedure. Yield: 73.0 mg; 81%; orange oil. ¹H NMR (401 MHz, CDCl₃) δ 7.48–7.44 (m, 2H), 7.21 (s, 4H), 6.79–6.75 (m, 2H), 3.82 (s, 3H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.9, 158.0, 155.7, 150.2 (q, *J* = 42.3 Hz), 139.3, 132.5, 130.1, 129.9, 128.9,

126.6, 119.9, 116.0 (q, J = 276.6 Hz), 113.9, 55.5, 21.6; ¹⁹F NMR (377 MHz, CDCl₃) δ –72.6 (s); HRMS (EI) m/z calcd for C₁₉H₁₄F₃NO₃ [M]⁺: 361.0920, found 361.0925.

5-(2-Bromophenyl)-4-(4-methoxyphenyl)-2-(trifluoromethyl)-6H-1,3oxazin-6-one (**6c**):

Prepared according to the general procedure. Yield: 35.2 mg; 58%; pale orange oil. ¹H NMR (401 MHz, CDCl₃) δ 7.72 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.49–
CF₃ 7.45 (m, 2H), 7.40–7.30 (m, 2H), 7.21 (dd, *J* = 7.4, 2.0 Hz, 1H), 6.81–6.77 (m, 2H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 156.7, 156.6,

151.0 (q, J = 42.2 Hz), 133.7, 133.6, 132.0, 131.6, 130.9, 128.4, 126.1, 124.7, 119.3, 116.0 (q, J = 276.6 Hz), 114.1, 55.5; ¹⁹F NMR (377 MHz, CDCl₃) δ –73.0 (s); HRMS (EI) *m*/*z* calcd for C₁₈H₁₁F₃BrNO₃ [M]⁺: 424.9869, found 424.9867.

(E)-5-Phenyl-4-styryl-2-(trifluoromethyl)-6H-1,3-oxazin-6-one (6d):

MeO

Prepared according to the general procedure. Yield: 10.3 mg; 42%, yellow solid. m.p. 146–148 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 15.5 Hz, 1H), 7.57– 7.51 (m, 3H), 7.50–7.44 (m, 4H), 7.40–7.36 (m, 3H), 6.94 (d, *J* = 15.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 153.7, 150.4 (q, *J* = 42.4 Hz), 142.6, 135.2, 130.6, 130.5, 130.5, 129.6, 129.1, 128.9, 128.5, 121.3, 120.1, 116.0 (q, *J* = 276.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –73.1 (s); HRMS (ESI⁺) *m/z* calcd for

 $C_{19}H_{13}F_{3}NO_{2}$ [M+H]⁺: 344.08929, found 344.08957.

4-(Furan-2-yl)-5-phenyl-2-(trifluoromethyl)-6H-1,3-oxazin-6-one (6e):

Prepared according to the general procedure. Yield: 26.2 mg; 67%; colorless oil. ¹H NMR (401 MHz, CDCl₃) δ 7.49–7.45 (m, 3H), 7.39 (dd, *J* = 1.8, 0.9 Hz, 1H), 7.36–7.33 (m, 2H), 6.89 (dd, *J* = 3.6, 0.9 Hz, 1H), 6.45 (dd, *J* = 3.7, 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 151.4 (q, *J* = 42.3 Hz), 149.0, 147.5, 145.4, 131.2, 129.8, 129.4, 128.8, 120.2, 116.8, 115.9 (q, *J* = 276.9 Hz), 112.9; ¹⁹F NMR

 $(377 \text{ MHz}, \text{CDCI}_3) \delta - 73.2 \text{ (s)}; \text{HRMS (EI)} m/z \text{ calcd for } C_{15}H_8F_3NO_3 \text{ [M]}^+: 307.0451, \text{ found } 307.0452.$

MeO OMe OPre MeO O Pre MeO O (do N CF₃ (s,

5-(3,5-Dimethoxyphenyl)-4-(furan-2-yl)-2-(trifluoromethyl)-6H-1,3-oxazin-6one (**6f**):

Prepared according to the general procedure. Yield: 28.9 mg; 40%; pale yellow oil. ¹H NMR (401 MHz, CDCl₃) δ 7.47 (dd, *J* = 1.8, 0.8 Hz, 1H), 6.87 (dd, *J* = 3.6, 0.8 Hz, 1H), 6.56 (t, *J* = 2.3 Hz, 1H), 6.47–6.46 (m, 3H), 3.79 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 157.1, 151.3 (q, *J* = 42.5 Hz), 148.5, 147.5, 145.5, 132.9, 120.3, 116.6, 115.8 (q, *J* = 276.6 Hz), 112.9,

107.3, 101.5, 55.5; ¹⁹F NMR (377 MHz, CDCl₃) δ –73.2 (s); HRMS (EI) *m*/z calcd for C₁₇H₁₂F₃NO₅ [M]⁺: 367.0662, found 367.0664.

5-Phenyl-4-(thiophen-2-yl)-2-(trifluoromethyl)-6H-1,3-oxazin-6-one (6g):

Prepared according to the general procedure. Yield: 14.1 mg; 41%; red solid. m.p. 133–135 °C; ¹H NMR (401 MHz, CDCl₃) δ 7.56–7.52 (m, 3H), 7.50 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.38–7.34 (m, 2H), 7.29 (dd, *J* = 3.9, 1.2 Hz, 1H), 6.97 (dd, *J* = 5.1, 4.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 150.6 (q, *J* = 42.5 Hz), 150.3, 138.1, 134.2, 134.1, 131.1, 130.0, 129.8, 129.7, 128.3, 117.1, 115.8 (q, *J* = 276.9 Hz); ¹⁹F

NMR (377 MHz, CDCl₃) δ –73.2 (s, 3F); HRMS (EI) *m*/z calcd for C₁₅H₈F₃NO₂S [M]⁺: 323.0222, found 323.0220.

5-(3,5-Dimethoxyphenyl)-4-(thiophen-2-yl)-2-(trifluoromethyl)-6H-1,3oxazin-6-one (**6h**):

Prepared according to the general procedure. Yield: 42.5 mg; 53%; orange solid. m.p. 242–243 °C; ¹H NMR (401 MHz, CDCl₃) δ 7.54 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.40 (dd, *J* = 3.9, 1.2 Hz, 1H), 7.00 (dd, *J* = 5.0, 3.9 Hz, 1H), 6.61 (t, *J* = 2.3 Hz, 1H), 6.48 (d, *J* = 2.2 Hz, 2H), 3.80 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 157.2, 150.7 (g, *J* = 42.5 Hz), 150.4, 137.9, 134.6,

134.5, 132.9, 128.5, 117.0, 115.9 (q, *J* = 276.6 Hz), 107.2, 102.2, 55.7; ¹⁹F NMR (377 MHz, CDCl₃) δ –73.2 (s); HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₃F₃NO₄S [M+H]⁺: 384.05119, found 384.05114.

O₂N O O O O CF₃ 4-(4-Methoxyphenyl)-5-(4-nitrophenyl)-2-(trifluoromethyl)-6H-1,3-oxazin-6one (**6i**):

Under air atmosphere, s 10 mL microwave glass tube was charged with the corresponding triazole **1** (0.226 mmol in 2.26 mL DCE) and CuF_2 (0.249 mmol). The mixture was heated under microwave irradiation (300 W) to 190 °C for 120 min. The crude reaction mixture was filtered via a paper,

washed with Et₂O, evaporated with Celite and purified by column chromatography (cyclohexane/EtOAc). Yield: 38.3 mg; 47%; yellow solid. m.p. 147–149 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.22 (d, *J* = 8.7 Hz, 2H), 7.52 (d, *J* = 8.7 Hz, 2H), 7.38 (d, *J* = 8.9 Hz, 2H), 6.78 (d, *J* = 8.9 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 157.6, 157.0, 151.1 (q, *J* = 42.5 Hz), 148.0, 139.0, 132.7, 131.7, 125.4, 124.2, 117.5, 115.9 (q, *J* = 276.9 Hz), 114.3, 55.6; ¹⁹F NMR (377 MHz, CDCl₃) δ –73.1 (s); HRMS (ESI⁺) *m/z* calcd for C₁₈H₁₂F₃N₂O₅ [M+H]⁺: 393.06928, found 393.06941.

References

¹ SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2015.

² Altomare, A.; Cascarano, G.; Giacovazzo G.; Guagliardi A.; Burla M. C.; Polidori, G.; Camalli, M. *J. Appl. Cryst.* 1994, **27**, 435.

³ Palatinus L., Chapuis G. J. Appl. Cryst. 2007, 40, 786-790.

⁴ Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K., Watkin, D. J. J. Appl. Cryst. 2003, 36, 1487.

Copies of NMR spectra

Figure S4. ¹H NMR spectrum of 1a (401 MHz; CDCl₃)

Figure S5. ¹³C NMR spectrum of **1a** (101 MHz; CDCl₃)

Figure S6. ¹⁹F NMR spectrum of **1a** (377 MHz; CDCl₃)

Figure S9. ¹⁹F NMR spectrum of 1b (377 MHz; CDCl₃)

Figure S11. ¹³C NMR spectrum of 1c (101 MHz; CDCl₃)

Figure S12. ¹⁹F NMR spectrum of 1c (377 MHz; CDCl₃)

Figure S14. ¹³C NMR spectrum of 1d (101 MHz; CDCl₃)

Figure S15. ¹⁹F NMR spectrum of 1d (377 MHz; CDCl₃)

Figure S17. ¹³C NMR spectrum of 1e (101 MHz; CDCl₃)

Figure S18. ¹⁹F NMR spectrum of 1e (377 MHz; CDCl₃)

Figure S19. ¹H NMR spectrum of 1f (401 MHz; CDCl₃)

Figure S20. ¹³C NMR spectrum of 1f (101 MHz; CDCl₃)

Figure S23. ¹³C NMR spectrum of **1g** (101 MHz; CDCl₃)

Figure S25. ¹H NMR spectrum of 1h (401 MHz; CDCl₃)

Figure S26. ¹³C NMR spectrum of **1h** (101 MHz; CDCl₃)

Figure S27. ¹⁹F NMR spectrum of 1h (377 MHz; CDCl₃)

Figure 29. ¹³C NMR spectrum of 1i (101 MHz; CDCl₃)

Figure S31. ¹H NMR spectrum of 1j (401 MHz; CDCl₃)

Figure S33. ¹⁹F NMR spectrum of 1j (377 MHz; CDCl₃)

Figure S35. ¹³C NMR spectrum of 1k (101 MHz; CDCl₃)

Figure S38. ¹³C NMR spectrum of 1I (101 MHz; CDCl₃)

Figure S41. ¹³C NMR spectrum of 1m (101 MHz; CDCl₃)

Figure S42. ¹⁹F NMR spectrum of 1m (377 MHz; CDCl₃)

Figure S44. ¹³C NMR spectrum of 1n (101 MHz; CDCl₃)

Figure S45. ¹⁹F NMR spectrum of 1n (377 MHz; CDCl₃)

Figure S47. ¹³C NMR spectrum of **1o** (101 MHz; CDCl₃)

Figure S50. ¹³C NMR spectrum of **1p** (101 MHz; CDCl₃)

Figure S52. ¹H NMR spectrum of 1q (401 MHz; CDCl₃)

Figure S53. ¹³C NMR spectrum of **1q** (101 MHz; CDCl₃)

Figure S54. ¹⁹F NMR spectrum of **1q** (377 MHz; CDCl₃)

Figure S55. ¹H NMR spectrum of **1r** (401 MHz; CDCl₃)

Figure S56. ¹³C NMR spectrum of 1r (101 MHz; CDCl₃)

Figure S58. ¹H NMR spectrum of **1s** (401 MHz; CDCl₃)

Figure S59. ¹³C NMR spectrum of **1s** (101 MHz; CDCl₃)

Figure S60. ¹⁹F NMR spectrum of **1s** (377 MHz; CDCl₃)

Figure S61. ¹H NMR spectrum of 1t (401 MHz; CDCl₃)

Figure S62. ¹³C NMR spectrum of 1t (101 MHz; CDCl₃)

Figure S65. ¹³C NMR spectrum of 2a (101 MHz; CDCl₃)

Figure S66. ¹⁹F NMR spectrum of 2a (377 MHz; CDCl₃)

Figure S68. ¹³C NMR spectrum of 2b (101 MHz; CDCl₃)

Figure S69. ¹⁹F NMR spectrum of **2b** (377 MHz; CDCl₃)

Figure S70. ¹H NMR spectrum of 2c (401 MHz; CDCl₃)

Figure S71. ¹³C NMR spectrum of 2c (101 MHz; CDCl₃)

Figure S72. ¹⁹F NMR spectrum of 2c (377 MHz; CDCl₃)

Figure S74. ¹³C NMR spectrum of 2d (101 MHz; CDCl₃)

Figure S75. ¹⁹F NMR spectrum of 2d (377 MHz; CDCl₃)

Figure S77. ¹³C NMR spectrum of **3a** (101 MHz; CDCl₃)

Figure S78. ¹⁹F NMR spectrum of 3a (377 MHz; CDCl₃)

Figure S79. ¹H NMR spectrum of 3b (401 MHz; CDCl₃)

Figure S80. ¹³C NMR spectrum of 3b (126 MHz; CDCl₃)

Figure S81. ¹⁹F NMR spectrum of 3b (377 MHz; CDCl₃)

Figure S82. ¹H NMR spectrum of 4a (401 MHz; CDCl₃)

Figure S83. ¹³C NMR spectrum of 4a (101 MHz; CDCl₃)

Figure S84. ¹⁹F NMR spectrum of 4a (377 MHz; CDCl₃)

Figure S86. ¹³C NMR spectrum of 4b (126 MHz; CDCl₃)

Figure S87. ¹⁹F NMR spectrum of 4b (377 MHz; CDCl₃)

Figure S90. ¹⁹F NMR spectrum of 4c (377 MHz; CDCl₃)

Figure S92. ¹³C NMR spectrum of 4d (126 MHz; CDCl₃)

Figure S93. ¹⁹F NMR spectrum of 4d (377 MHz; CDCl₃)

Figure S94. ¹H NMR spectrum of 4e (401 MHz; CDCl₃)

Figure S96. ¹⁹F NMR spectrum of 4e (377 MHz; CDCl₃)

Figure S98. ¹³C NMR spectrum of 4f (101 MHz; CDCl₃)

Figure S99. ¹⁹F NMR spectrum of 4f (377 MHz; CDCl₃)

Figure S100. ¹H NMR spectrum of 5a (401 MHz; CDCl₃)

Figure S101. ¹³C NMR spectrum of 5a (101 MHz; CDCl₃)

Figure S102. ¹⁹F NMR spectrum of 5a (377 MHz; CDCl₃)

Figure S104. ¹³C NMR spectrum of 5b (101 MHz; CDCl₃)

Figure S105. ¹⁹F NMR spectrum of 5b (377 MHz; CDCl₃)

Figure S108. ¹⁹F NMR spectrum of 5c (377 MHz; CDCl₃)

Figure S109. ¹H NMR spectrum of 5d (401 MHz; CDCl₃)

Figure S110. ¹³C NMR spectrum of 5d (101 MHz; CDCl₃)

Figure S111. ¹⁹F NMR spectrum of 5d (377 MHz; CDCl₃)

Figure S112. ¹H NMR spectrum of 6a (401 MHz; CDCl₃)

Figure S113. ¹³C NMR spectrum of 6a (101 MHz; CDCl₃)

Figure S114. ¹⁹F NMR spectrum of 6a (377 MHz; CDCl₃)

Figure S116. ¹³C NMR spectrum of 6b (101 MHz; CDCl₃)

Figure S117. ¹⁹F NMR spectrum of 6b (377 MHz; CDCl₃)

Figure S119. ¹³C NMR spectrum of 6c (101 MHz; CDCl₃)

Figure S120. ¹⁹F NMR spectrum of 6c (377 MHz; CDCl₃)

Figure S122. ¹³C NMR spectrum of 6d (101 MHz; CDCl₃)

Figure S123. ¹⁹F NMR spectrum of 6d (377 MHz; CDCl₃)

Figure S124. ¹H NMR spectrum of 6e (401 MHz; CDCl₃)

Figure S125. ¹³C NMR spectrum of 6e (101 MHz; CDCl₃)

Figure S126. ¹⁹F NMR spectrum of 6e (377 MHz; CDCl₃)

Figure S127. ¹H NMR spectrum of 6f (401 MHz; CDCl₃)

Figure S129. ¹⁹F NMR spectrum of 6f (377 MHz; CDCl₃)

Figure S131. ¹³C NMR spectrum of 6g (101 MHz; CDCl₃)

Figure S132. ¹⁹F NMR spectrum of 6g (377 MHz; CDCl₃)

Figure S135. ¹⁹F NMR spectrum of 6h (377 MHz; CDCl₃)

Figure S137. ¹³C NMR spectrum of 6i (101 MHz; CDCl₃)

Figure S138. ¹⁹F NMR spectrum of 6i (377 MHz; CDCl₃)

