SUPPLEMENTARY INFORMATION

New *N*-phenylpyrrolamide inhibitors of DNA gyrase with improved antibacterial activity

Andrej Emanuel Cotman, ^a Federica Fulgheri, ^{a,'} Martina Piga, ^a Peter Peršolja, ^a Davide Benedetto Tiz, ^a Žiga Skok, ^a Martina Durcik, ^a Maša Sterle, ^a Jaka Dernovšek, ^a Cristina D. Cruz, ^b Päivi Tammela, ^b Petra Éva Szili, ^c Lejla Daruka, ^c Csaba Pál, ^c Anamarija Zega, ^a Lucija Peterlin Mašič, ^a Janez Ilaš, ^a Tihomir Tomašič, ^a Danijel Kikelj, ^a Nace Zidar ^{*a}

^a University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
^b Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5E, Helsinki 00014, Finland
^c Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary

' Current address: Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P., Monserrato, 09042 Cagliari, Italy

* Corresponding author.

E-mail address: nace.zidar@ffa.uni-lj.si

Contents:

- 1. Minimum inhibitory concentrations of compounds 6-14
- 2. Inhibitory activities of 23b against DNA gyrase from A. baumannii and P. aeruginosa
- 3. Heatmap showing the antibacterial activities (MICs) of the tested compounds
- 4. Spontaneous frequency of resistance table
- 5. Minimum inhibitory concentrations of 23a and 23c adapted lines
- 6. Synthetic procedures and analytical data
- 7. ¹H, ¹³C NMR and DEPT spectra of the representative compounds
- 8. HRMS spectra of the representative compounds

1. Minimum inhibitory concentrations of compounds 6-14

Table 1S. Minimum inhibitory concentrations (MICs) of compounds 6-14 against selected grampositive and gram-negative bacteria.

		MIC (µg/mL) ^a						
Comp.	Structure	P. aerugino sa ATCC 27853	A. bauman nii (ATCC 19606)	K. pneumon iae (ATCC 700603)	E. coli ATCC 25922	S. aureus ATCC 29213	E. faecium (ATCC3 5667)	K. aerogene s (ATCC 13408)
6a		>32	>32	>32	>32	>32	>32	>32
8a		>32	>32	>32	>32	>32	>32	>32
8b	H H H H H H H H H H H H H H H H H H H	>32	>32	>32	>32	>32	>32	>32
8c		>32	>32	>32	>32	>32	>32	>32
9a		>32	>32	>32	>32	>32	>32	>32
9b		>32	>32	>32	>32	>32	>32	>32
9c	Br H H H H H H H H H H H H H H H H H H H	>32	>32	>32	>32	>32	>32	>32
10a		>32	>32	>32	>32	>32	>32	>32
10b		>32	>32	>32	>32	>32	>32	>32
10c		>32	>32	>32	>32	>32	>32	>32

^a Minimum inhibitory concentration.

2. Inhibitory activities of 23b against DNA gyrase from A. baumannii and P. aeruginosa

Table 2S. Inhibitory activities of compound 23b against DNA gyrase from *A. baumannii* and *P. aeruginosa*

	IC ₅₀ ^a						
Compound	A. baumannii	P. aeruginosa					
	gyrase	gyrase					
23b	15.3 nM	3.63 nM					
novobiocin	16.0 nM	22.8 nM					

^a Concentration of compound that inhibits the enzyme activity by 50%.

3. Heatmap showing the antibacterial activities (MICs) of the tested compounds

Figure 1S. Minimum inhibitory concentrations (MICs) of compounds 20i-39 against selected gram-positive and gram-negative bacteria. The heatmap shows the minimum inhibitory concentration values in μ g/mL measured by the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines. White tiles indicate missing experimental data, while grey tiles represent data points where the MIC values were outside the range of the experiments (>32 μ g/mL or >64 μ g/mL).

4. Spontaneous frequency of resistance table

Table 3S. Spontaneous frequency of resistance of **23a**, **23c** and novobiocin in *S. aureus* ATCC 29213 and *K. pneumoniae* ATCC 10031.

Spacies	Repli-	23a			23c			Novobiocin		
Speeks	cate	2×MIC	4×MIC	8×MIC	2×MIC	4×MIC	8×MIC	2×MIC	4×MIC	8×MIC
S. aureus ATCC 29213	1	3.61E-07	3.28E-07	2.21E-07	9.48E-08	6.19E-08	2.19E-09	1.00E-06	1.00E-06	1.00E-06
S. aureus ATCC 29213	2	2.39E-07	2.15E-07	1.62E-07	1.45E-07	8.29E-08	2.00E-10	1.00E-06	1.00E-06	1.00E-06
S. aureus ATCC 29213	3	3.71E-07	3.95E-07	3.05E-07	1.49E-07	1.17E-07	1.00E-12	1.00E-06	1.00E-06	1.00E-06
K. pneumoniae ATCC 10031	1	5.70E-10	1.27E-10	1.90E-10	3.31E-11	1.00E-12	1.00E-12	1.00E-06	8.48E-08	1.36E-07
K. pneumoniae ATCC 10031	2	5.34E-10	1.00E-12	9.71E-11	2.75E-10	1.00E-12	1.00E-12	1.00E-06	1.67E-08	3.85E-09
K. pneumoniae ATCC 10031	3	3.55E-09	1.00E-12	5.81E-11	1.09E-10	1.00E-12	1.00E-12	1.00E-06	7.65E-08	7.87E-08

Values of 1.00E-06 indicate that the plates contained an uncountable amount of colonies (i.e. the frequency of resistance is above the detection limit), while 1.00E-12 indicate that no colonies were observed under the experimental conditions (the frequency of resistance is below the detection limit).

5. Minimum inhibitory concentrations of 23a and 23c adapted lines

Species	Comp.	Replicate	MIC (µg/mL) ^a
		1	>64
	23a	2	>64
G ATCC 20212		3	>64
S. aureus AICC 29213		1	8
	23c	2	8
		3	8
		1	16
	23a	2	16
V : ATCC 10021		3	16
K. pneumoniae AICC 10031		1	16
	23c	2	16
		3	16

Table 4S. Minimum inhibitory concentrations of 23a and 23c adapted lines.

^a Minimum inhibitory concentration. Up to 10 independent colonies were collected from the frequency of resistance plates at the highest concentration at which the bacteria could still grow. The collected colonies were pooled and their MIC was measured as described in the experimental section.

6. Synthetic procedures and analytical data

General procedure A. Synthesis of *tert*-butyl 4-(5-(methoxycarbonyl)-2-nitrophenyl)piperazine-1-carboxylate (2a). To a suspension of methyl 3-fluoro-4-nitrobenzoate (1, 5.00 g, 25.0 mmol) and potassium carbonate (4.16 g, 30.0 mmol) in DMF (100 mL), piperazine N1-Boc protected (4.68 g, 25.0 mmol) was added. The mixture was heated at 70 °C for 15 h. The solvent was evaporated under reduced pressure. EtOAc (150 mL) and H₂O (75 mL) were added and the compound was extracted to the organic layer. The organic phase was washed with water (50 mL) and brine (2 × 50 mL), dried over Na₂SO₄, filtered and the solvent removed under reduced pressure to obtain **2a** as yellow solid. Yield 7.56 g (83%); yellow solid; mp 88 – 90 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.96 (d, 1H, *J* = 8.4 Hz, ArH), 7.80 (d, 1H, *J* = 1.6 Hz, ArH), 7.68 (dd, 1H, *J* = 8.4, 1.7 Hz, ArH), 3.90 (s, 3H, CH₃), 3.40 – 3.50 (m, 4H, 2 × CH₂), 2.98 – 3.08 (m, 4H, 2 × CH₂), 1.43 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 164.8, 153.8, 145.4, 144.9, 133.8, 125.9, 122.6, 122.3, 79.1, 52.8, 50.8, 42.8, 28.0 ppm.

Methyl (*S*)-3-(3-(*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-nitrobenzoate (2b). Synthesised according to *General procedure A* from 1 (1.00 g, 5.03 mmol), (3*S*)-Boc-3-aminopyrrolidine (0.938 g, 5.03 mmol) and K₂CO₃ (0.835 g, 6.04 mmol). Yield 84% (1.62 g); pale orange solid; mp 120 – 124 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.84 (d, 1H, *J* = 8.4 Hz, ArH), 7.51 (d, 1H, *J* = 1.7 Hz, ArH), 7.28 (dd, 1H, *J* = 8.4, 1.7 Hz, ArH), 7.24 (d, 1H, *J* = 6.4 Hz, NH), 4.07 – 4.14 (m, 1H, CH), 3.89 (s, 3H, CH₃), 3.39 – 3.45 (m, 1H, CH), 3.27 – 3.33 (m, 2H, 2 × CH), 2.87 – 2.92 (m, 1H, CH), 2.07 – 2.16 (m, 1H, CH), 1.88 – 1.95 (m, 1H, CH), 1.38 (s, 9H) ppm. IR (ATR): v 3120, 3066, 2964, 2361, 1727, 1598,

1520, 1486, 1421, 1357, 1281, 1225, 1155, 1111, 1079, 986, 905, 839, 798, 772, 737, 685, 592, 563 cm⁻¹. $[\alpha]_D^{25}$ 0,54 (*c* 0,287 DMF). MS (ESI) *m*/*z* = 388.2 ([M+Na]⁺).

Methyl (*R*)-3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-nitrobenzoate (2c). Synthesised according to *General procedure A* from 1 (1.07 g, 5.4 mmol), (3*R*)-3-aminopyrrolidine 3-Boc protected (1.00 g, 5.4 mmol) and K₂CO₃ (0.890 g, 6.4 mmol). The crude product was purified with flash column chromatography using ethyl acetate/petroleum ether (1:3) as mobile phase, to obtain 2c (1.64 g) as yellow solid. Yield 84% (1.64 g); yellow solid; mp 113 – 118 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.77 (d, 1H, J = 8.5 Hz Ar-H-5), 7.61 (d, J = 1.6 Hz, 1H, Ar-H-2), 7.40 (dd, 1H, J = 8.5, 1.6 Hz, Ar-H-6), 4.63 – 4.77 (m, 1H, CH/NH), 4.32 – 4.43 (m, 1H, CH/NH), 3.96 (s, 3H, CH₃), 3.47 – 3.53 (m, 2H, 2 × CH), 3.27 – 3.36 (m, 1H, CH), 3.11 – 3.15 (m, 1H, CH), 2.24 – 2.32 (m, 1H, CH), 1.97 – 2.07 (m, 1H, CH), 1.47 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.3, 155.2, 141.6, 138.4, 133.3, 126.7, 117.1, 115.4, 77.9, 55.3, 52.7, 49.9, 48.0, 30.2, 28.2 ppm. IR (ATR): v 3361, 2985, 2958, 1721, 1682, 1609, 1523, 1441, 1364, 1272, 1252, 1116, 1016, 866, 825, 798, 739, 642 cm⁻¹. [α]p²⁵ -4.2 (*c* 0.208, MeOH). MS (ESI) *m/z* = 388.04 ([M+Na]⁺).

3-(4-(*tert***-Butoxycarbonyl)piperazin-1-yl)-4-nitrobenzoic acid (3a).** To the solution of **2a** (200 mg, 0.55 mmol) in methanol (10 mL) 1 M NaOH (0.81 mL, 0.82 mmol) was added and the reaction mixture was stirred for 15 h at rt. 1 M HCl was added dropwise until pH 7 and solvent was removed under reduce pressure. To the crude residue were added 1 M HCl until pH 4, water (20 mL) and ethyl acetate (25 mL). The phases were separated and organic phase was washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, filtered and evaporated, to obtain 171 mg of product as orange crystals. Yield 171 mg (89%); orange crystals; mp 170 – 175 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.73 – 7.75 (m, 2H, ArH-2, ArH-5), 7.58 (dd, 1H, *J* = 6.2, 1.4 Hz, ArH-6), 3.41 – 3.47 (m, 4H, 2 × CH₂), 2.93 – 2.95 (m, 4H, 2 × CH₂), 1.42 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.6, 153.8, 153.6, 144.7, 144.4, 125.2, 123.0, 122.1, 79.1, 51.1, 42.8, 28.0 ppm. IR (ATR): v 2976, 2931, 1686, 1570, 1419, 1365, 1231, 1160, 1126, 966, 749 cm⁻¹. MS (ESI) *m/z* = 350.13 ([M-H]⁻).

(*S*)-3-(3-((*tert*-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-nitrobenzoic acid (3b). To the solution of **2b** (6.90 g, 18.9 mmol) in a mixture of methanol (200 mL) and tetrahydrofuran (40 mL) 1 M NaOH (28.4 mL, 28 mmol) was added and the reaction mixture was stirred for 15 h at rt. 1 M HCl was added dropwise until pH 7 and solvent was removed under reduce pressure. To the crude residue were added 1 M HCl until pH 4, water (100 mL) and ethyl acetate (100 mL). The phases were separated and organic phase was washed with water (50 mL) and brine (50 mL), dried over Na₂SO₄, filtered and evaporated, to obtain **3b** (6.61 g) as orange crystals. Yield 6.61 g (99%); orange crystals; mp 153 – 163 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.47 (br s, 1H, COOH), 7.81 (d, 1H, *J* = 8.5 Hz, ArH-5), 7.52 (d, 1H, *J* = 1.6 Hz, ArH-2), 7.23 – 7.28 (m, 2H, ArH-6, NH), 4.08 – 4.12 (m, 1H, CH), 3.27 – 3.44 (m, 3H, 3 × CH, overlapping with the signal for water), 2.86 – 2.90 (m, 1H, CH), 2.07 – 2.15 (m, 1H, CH), 1.87 – 1.95

(m, 1H, CH), 1.38 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.3, 155.2, 141.6, 138.3, 134.6, 126.5, 117.3, 115.7, 77.9, 55.3, 49.9, 47.9, 30.2, 28.1 ppm. IR (ATR): v 3340, 2976, 1724, 1682, 1611, 1541, 1504, 1254, 1160, 736 cm⁻¹. [α]_D²⁵ +12.8 (*c* 0.133, MeOH). MS (ESI) *m*/*z* = 374.03 ([M+Na]⁺).

(*R*)-3-(3-((*tert*-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-nitrobenzoic acid (3c). To the solution of 2c (1.49 g, 4.0 mmol) in a mixture of methanol (50 mL) and tetrahydrofuran (10 mL) 1 M NaOH (8.00 mL, 8.0 mmol) was added and the reaction mixture was stirred for 15 h at rt. 1 M HCl was added dropwise until pH 7 and solvent was removed under reduce pressure. To the crude residue were added 1 M HCl until pH 4, water (100 mL) and ethyl acetate (100 mL). The phases were separated and organic phase was washed with water (100 mL) and brine (100 mL), dried over Na₂SO₄, filtered and evaporated, to obtain 3c (1.35 g) as orange crystals. Yield 1.35 g (94%); orange crystals; mp 158 – 162 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.47 (br s, 1H, COOH), 7.81 (d, 1H, *J* = 8.5 Hz, Ar-H-5), 7.52 (d, 1H, *J* = 1.6 Hz, Ar-H-2), 7.23 – 7.28 (m, 2H, Ar-H-6, NH), 4.08 – 4.12 (m, 1H, CH), 3.27 – 3.44 (m, 3H, 3 × CH, overlapping with the signal for water), 2.86 – 2.90 (m, 1H, CH), 2.07 – 2.15 (m, 1H, CH), 1.87 – 1.95 (m, 1H, CH), 1.38 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.3, 155.2, 141.6, 138.3, 134.6, 126.5, 117.3, 115.7, 77.9, 55.3, 49.9, 47.9, 30.2, 28.2 ppm. IR (ATR): v 3331, 2976, 2935, 1687, 1610, 1572, 1504, 1443, 1336, 1263, 1161, 872, 829, 772, 739 cm⁻¹. [α]p²⁵ -11.7 (*c* 0.180, MeOH). MS (ESI) *m/z* = 374.01 ([M+Na]⁺).

4-(5-((2-methoxy-2-oxoethyl)carbamoyl)-2-nitrophenyl)piperazine-1-carboxylate *tert*-Butyl (4a). To the solution of 3a (0.900 g, 2.4 mmol) and TBTU (1.01 g, 3.1 mmol) in DMF (20 mL) NMM (0.53 mL, 4.8 mmol) was added and the solution was stirred for 30 min at rt. Glycine methyl ester hydrochloride (333 mg, 2.7 mmol) was added and reaction mixture was stirred at rt for 20 h. Solvent was removed under reduced pressure, the residue was dissolved in ethyl acetate (20 mL) and washed with water $(2 \times 20 \text{ mL})$, saturated solutions of NaHCO₃ $(2 \times 20 \text{ mL})$ and brine (20 mL), then organic phase was dried over Na₂SO₄, filtered and evaporated. The crude product was purified with flash column chromatography using ethyl acetate/petroleum ether 1:1 as mobile phase to obtain 4a as orange oil (0.852 g). Yield 0.852 g (84%); orange oil. ¹H NMR (400 MHz, DMSO-d₆): δ 9.22 (t, 1H, J = 5.8 Hz, NH), 7.94 (d, 1H, J = 8.5 Hz, ArH-5), 7.76 (d, 1H, J = 1.7 Hz, ArH-2), 7.59 (dd, 1H, J = 8.5, 1.7 Hz, ArH-6), 4.05 (d, 2H, J = 5.8 Hz, CH₂), 3.67 (s, 3H, CH₃), 3.43 – 3.48 (m, 4H, 2 × CH₂, overlapped with the signal of water), 3.00 - 3.03 (m, 4H, 2 × CH₂), 1.42 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.1, 165.0, 153.8, 144.9, 144.4, 137.8, 125.7, 121.1, 120.8, 79.1, 51.8, 51.0, 43.7, 41.3, 28.0 ppm. IR (ATR): v 3324, 2978, 1750, 1691, 1668, 1521, 1418, 1365, 1229, 1209, 1661, 1000, 834, 744 cm⁻¹. MS (ESI) $m/z = 445.01 ([M+Na]^+)$.

Methyl (S)-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-nitrobenzoyl)glycinate (4b). To the solution of 3b (3.00 g, 8.5 mmol) and TBTU (3.57 g, 11.1 mmol) in DMF (100 mL) NMM (2.82

mL, 25.6 mmol) was added and the solution was stirred for 30 min at rt. Glycine methyl ester hydrochloride (1.18 g, 9.4 mmol) was added and reaction mixture was stirred at rt for 20 h. Solvent was removed under reduced pressure, the residue was dissolved in ethyl acetate (50 mL) and washed with water (2 × 20 mL), saturated solutions of NaHCO₃ (2 × 20 mL) and brine (20 mL), then organic phase was dried over Na₂SO₄, filtered and evaporated. The crude product was recrystallized from ethyl acetate. The solvent of the mother liquor was evaporated and the residue was recrystallized from ethanol. The pure products were combined to obtain **4b** as yellow solid (2.98 g). Yield 2.98 g (84%); yellow solid, mp 133 – 138 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 9.17 (t, 1H, *J* = 5.8 Hz, NH), 7.82 (d, 1H, *J* = 8.5 Hz, ArH-5), 7.45 (d, 1H, *J* = 1.6 Hz, ArH-2), 7.26 (d, 1H, *J* = 6.0 Hz, NH), 7.20 (dd, 1H, *J* = 8.5, 1.6 Hz, ArH-6), 4.08 – 4.13 (m, 1H, CH), 4.04 (d, 2H, *J* = 5.8 Hz, CH₂), 3.67 (s, 3H, CH₃), 3.24 – 3.36 (m, 3H, 3 × CH, overlapping with the signal for water), 2.90 – 2.94 (m, 1H, CH), 2.06 – 2.15 (m, 1H, CH), 1.89 – 1.96 (m, 1H, CH), 1.38 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.2, 165.5, 155.2, 141.8, 137.5, 137.3, 126.5, 115.4, 114.1, 77.9, 55.5, 51.8, 49.9, 48.1, 41.3, 30.2, 28.2 ppm. IR (ATR): v 3343, 2983, 1748, 1675, 1648, 1572, 1529, 1509, 1492, 1310, 1165, 869, 831, 741 cm⁻¹. [α] $_{0}^{25}$ +5.3 (*c* 0.133, MeOH). MS (ESI) *m*/*z* = 445.00 ([M+Na]⁺).

Methyl (R)-(3-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-nitrobenzoyl)glycinate (4c).To the solution of 3c (1.26 g, 3.6 mmol) and TBTU (1.50 g, 4.7 mmol) in DMF (30 mL) NMM (1.19 mL, 10.8 mmol) was added and the solution was stirred for 30 min at rt. Glycine methyl ester hydrochloride (496 mg, 4.0 mmol) was added and reaction mixture was stirred at rt for 20 h. Solvent was removed under reduced pressure, the residue was dissolved in ethyl acetate (50 mL) and washed with water (2 \times 20 mL), saturated solutions of NaHCO₃ (2×20 mL) and brine (20 mL), then organic phase was dried over Na₂SO₄, filtered and evaporated. The crude product was purified with flash column chromatography using ethyl acetate/petroleum ether (1:1) as mobile phase to obtain 4c as yellow solid (1.22 g). Yield 1.22 g (80%); yellow solid, mp 130 – 134 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 9.17 (t, 1H, J = 5.8 Hz, NH), 7.82 (d, 1H, J = 8.5 Hz, ArH-5), 7.45 (d, 1H, J = 1.6 Hz, ArH-2), 7.26 (d, 1H, ArH-2), 7.26 (d, 1H, ArH-2), 7.26 (d, 1H, ArH-2), 6.0 Hz, NH), 7.20 (dd, 1H, J = 8.5, 1.6 Hz, ArH-6), 4.08 – 4.13 (m, 1H, CH), 4.04 (d, 2H, J = 5.8 Hz, CH₂), 3.67 (s, 3H, CH₃), 3.24 - 3.36 (m, 3H, $3 \times$ CH, overlapping with the signal for water), 2.90 - 2.94(m, 1H, CH), 2.06 – 2.15 (m, 1H, CH), 1.89 – 1.96 (m, 1H, CH), 1.38 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.2, 165.5, 155.2, 141.8, 137.5, 137.3, 126.5, 115.4, 114.1, 77.9, 55.5, 51.8, 49.9, 48.1, 41.3, 30.2, 28.2 ppm. IR (ATR): v 3344, 2982, 2972, 1748, 1676, 1648, 1529, 1509, 1492, 1209, 1166, 831, 742 cm⁻¹. $[\alpha]_D^{25}$ -6.4 (*c* 0.220, MeOH). MS (ESI) m/z = 444.99 ($[M+Na]^+$).

tert-Butyl 4-(2-amino-5-((2-methoxy-2-oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (5a). The solution of 4a (2.51 g, 5.9 mmol) in methanol (90 mL) was stirred for 15 min under an argon atmosphere. Pd/C (0.500 g) was added, the solution was saturated with hydrogen and the reaction mixture was stirred for 4 h under hydrogen atmosphere. The catalyst was filtered off and the solvent was

evaporated. The crude product was purified with flash column chromatography using ethyl acetate/petroleum ether 2:1 as mobile phase, to obtain 2.08 g of **5a** as white crystals. Yield 2.08 g (90%); white crystals; mp 80 – 84 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.59 (t, 1H, *J* = 5.8 Hz, NH), 7.53 (d, 1H, *J* = 1.9 Hz, ArH-6), 7.48 (dd, 1H, *J* = 8.4, 1.9 Hz, ArH-4), 6.74 (d, 1H, *J* = 8.4 Hz, ArH-3), 4.58 – 6.07 (br s, 2H, NH₂), 3.99 (d, 2H, *J* = 5.8 Hz, CH₂), 3.69 (s, 3H, CH₃), 3.51 – 3.63 (m, 4H, 2 × CH₂, overlapped with the signal of water), 2.75 – 2.85 (m, 4H, 2 × CH₂), 1.49 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.8, 166.5, 153.9, 145.8, 136.7, 124.5, 121.0, 119.1, 113.1, 78.8, 51.6, 50.6, 43.2, 41.1, 28.1 ppm. IR (ATR): v 3479, 3367, 3308, 2935, 1743, 1693, 1610, 1504, 1415, 1365, 1248, 1205, 1163, 1119, 768 cm⁻¹. MS (ESI) *m/z* = 415.07 ([M+Na]⁺).

Methyl (*S*)-(4-amino-3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)benzoyl)glycinate (5b). The solution of 4b (2.41 g, 5.7 mmol) in methanol (90 mL) was stirred for 15 min under an argon atmosphere. Pd/C (483 mg) was added, the solution was saturated with hydrogen and the reaction mixture was stirred for 5 h under hydrogen atmosphere. The catalyst was filtered off and the solvent was evaporated. The crude product was purified with flash column chromatography using ethyl acetate/petroleum ether (2:1) as mobile phase, to obtain 5b (2.23 g) as grey crystals. Yield 2.23 g (99%); grey crystals; mp 78 – 81 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.52 (t, 1H, *J* = 5.8 Hz, NH), 7.39 (d, 1H, *J* = 1.9 Hz, ArH-2), 7.36 (dd, 1H, *J* = 8.3, 1.9 Hz, ArH-6), 7.22 (d, 1H, *J* = 7.9 Hz, NH), 6.64 (d, 1H, *J* = 8.3 Hz, ArH-5), 4.91 – 5.80 (br s, 2H, NH₂), 4.06 – 4.15 (m, 1H, CH), 3.93 (d, 1H, *J* = 5.8 Hz, CH₂), 3.63 (s, 3H, CH₃), 3.06 – 3.17 (m, 2H, 2 × CH), 2.77 – 2.85 (m, 2H, 2 × CH), 2.17 – 2.25 (m, 1H, CH), 1.65 – 1.73 (m, 1H, CH), 1.39 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.8, 166.6, 155.1, 145.7, 134.7, 123.3, 120.9, 117.5, 113.1, 77.6, 56.5, 51.6, 49.2, 48.7, 41.1, 31.3, 28.3 ppm. IR (ATR): v 3333, 2979, 1751, 1707, 1685, 1621, 1525, 1500, 1367, 1313, 1160, 1066, 973, 1119, 766 cm⁻¹. [α]p²⁵ -18.3 (*c* 0.131, MeOH). MS (ESI) *m/z* = 415.05 ([M+Na]⁺).

Methyl (*R*)-(4-amino-3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)benzoyl)glycinate (5c). The solution of 4c (1.20 g, 2.8 mmol) in methanol (40 mL) was stirred for 15 min under an argon atmosphere. Pd/C (239 mg) was added, the solution was saturated with hydrogen and the reaction mixture was stirred for 4 h under hydrogen atmosphere. The catalyst was filtered off and the solvent was evaporated. The crude product was purified with flash column chromatography using ethyl acetate/petroleum ether (3:1) as mobile phase, to obtain 5c (1.10 g) as pink crystals. Yield 1.10 g (99%); pink crystals; mp 77 – 80 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.52 (t, 1H, *J* = 5.8 Hz, NH), 7.39 (d, 1H, *J* = 1.9 Hz, ArH), 7.36 (dd, 1H, *J* = 8.3, 1.9 Hz, ArH-4), 7.22 (d, 1H, *J* = 7.9 Hz, NH), 6.64 (d, 1H, *J* = 8.3 Hz, ArH-3), 5.44 (br s, 2H, NH₂), 4.06 – 4.15 (m, 1H, CH), 3.93 (d, 1H, *J* = 5.8 Hz, CH₂), 3.63 (s, 3H, CH₃), 3.06 – 3.17 (m, 2H, 2 × CH), 2.77 – 2.85 (m, 2H, 2 × CH), 2.17 – 2.25 (m, 1H, CH), 1.65 – 1.73 (m, 1H, CH), 1.39 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.8, 166.6, 155.1, 145.7, 134.7, 123.3, 120.9, 117.5, 113.1, 77.6, 56.5, 51.6, 49.2, 48.7, 41.1, 31.3, 28.3 ppm. IR (ATR): v

3332, 2975, 1743, 1687, 1613, 1502, 1365, 1206, 1163, 1074, 974, 767 cm⁻¹. $[\alpha]_D^{25}$ +18.7 (*c* 0.167, MeOH). MS (ESI) *m*/*z* = 415.06 ([M+Na]⁺).

General procedure B. 4-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-((2-methoxy-2-oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (6a). To a solution of 3,4-dichloro-5methyl-1*H*-pyrrole-2-carboxylic acid (0.178 g, 0.92 mmol) in anhydrous dichloromethane (10 mL), oxalyl chloride (0.31 mL, 3.7 mmol) was added dropwise and the solution was stirred at rt for 15 h under argon atmosphere. The solvent was evaporated under reduced pressure. Fresh anhydrous dichloromethane (5 mL), 5a (0.300 g, 0.76 mmol) and pyridine (2 mL) were added and the reaction mixture was stirred under argon atmosphere at rt for 15 h. Solvent was removed under reduced pressure, the residue was dissolved in ethyl acetate (15 mL) and washed with H₂O (10 mL), HCl 1 M solution (15 mL) and brine $(2 \times 15 \text{ mL})$. During the extraction the product precipitated and was filtered off. The crude product was triturated with water and the undissolved solid was filtered off. The product was then triturated with diethyl ether and the undissolved solid was filtered off to give 6a as grey solid. Yield 246 mg (57%); grey solid; mp 194 – 197 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.43 (s, 1H, NH), 9.79 (s, 1H, NH), 8.93 (t, 1H, J = 5.7 Hz, NH), 8.48 (d, 1H, J = 8.4 Hz, ArH-3), 7.91 (d, 1H, J = 1.9 Hz, ArH-6), 7.75 (dd, 1H, J = 8.6, 1.9 Hz, ArH-4), 4.02 (d, 2H, J = 5.7 Hz, CH₂), 3.67 (s, 3H, CH₃), 3.50 – 3.57 (m, 4H, $2 \times CH_2$), 2.82 - 2.85 (m, 4H, $2 \times CH_2$), 2.24 (s, 3H, CH₃), 1.44 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.5, 165.6, 156.5, 153.7, 141.0, 136.7, 129.8, 128.4, 125.3, 121.0, 118.8, 118.6, 109.7, 108.6, 79.1, 52.1, 51.7, 41.2, 28.0, 10.8 ppm. One peak not seen. IR (ATR): v 3299, 2978, 1757, 1672, 1647, 1621, 1510, 1410, 1367, 1250, 1201, 1170, 1122, 947, 761 cm⁻¹. MS (ESI) m/z = 566([M-H]⁻). HRMS for C₂₅H₃₀Cl₂N₅O₆: calculated 566.1573, found 566.1572. HPLC: Agilent Eclipse Plus C18 column (5 μ m, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 14.083 min (96.1% at 280 nm).

Methyl (*S*)-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*pyrrole-2-carboxamido)benzoyl)glycinate (6b). Synthesised according to *General procedure B* from 5b (300 mg, 0.76 mmol), 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (178 mg, 0.92 mmol) and oxalyl chloride (0.31 mL, 3.7 mmol). The crude product was triturated with diethyl ether and the undissolved solid was filtered off to give 6b as beige solid (245 mg). Yield 245 mg (57%); beige solid; mp 206 – 209 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.38 (s, 1H, NH), 9.49 (s, 1H, NH), 8.94 (t, 1H, J= 5.6 Hz, NH), 8.27 (d, 1H, J= 8.5 Hz, ArH-5), 7.76 (d, 1H, J= 1.8 Hz, ArH-2), 7.63 (dd, 1H, J= 8.5, 1.8 Hz, ArH-6), 7.19 (d, 1H, J= 6.4 Hz, NH), 4.05 – 4.13 (m, 1H, CH), 4.01 (d, 2H, J= 5.6 Hz, CH₂), 3.29 – 3.33 (m, 1H, CH, overlapping with the signal for water), 3.14 – 3.20 (m, 1H, CH), 3.00 – 3.06 (m, 1H, CH), 2.89 – 2.94 (m, 1H, CH), 2.15 – 2.24 (m, 4H, CH, CH₃), 1.81 – 1.89 (m, 1H, CH), 1.39 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.5, 166.0, 156.6, 155.2, 139.8, 135.4, 129.5, 129.0, 123.1, 119.8, 119.2, 118.8, 110.1, 108.6, 77.8, 57.5, 51.7, 50.8, 49.8, 41.2, 31.3, 28.2, 10.8 ppm. IR (ATR): v 3369, 3347, 2985, 2849, 1719, 1671, 1635, 1519, 1251, 1174, 968, 761, 1170, 1122, 947, 761 cm⁻¹. $[\alpha]_D^{25}$ -15.7 (*c* 0.153, MeOH). MS (ESI) *m/z* = 566.0 ([M-H]⁻). HRMS for C₂₅H₃₀Cl₂N₅O₆: calculated 566.1573, found 566.1573. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 12.870 min (96.5% at 280 nm).

Methyl (R)-(3-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1Hpyrrole-2-carboxamido)benzoyl)glycinate (6c). Synthesised according to General procedure B from 5c (450 mg, 1.1 mmol), 3,4-dichloro-5-methyl-1H-pyrrole-2-carboxylic acid (0.266 g, 1.4 mmol) and oxalyl chloride (0.47 mL, 5.5 mmol). Yield 470 mg (72%); grey solid; mp 204 – 208 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.38 (s, 1H, NH), 9.49 (s, 1H, NH), 8.94 (t, 1H, *J* = 5.6 Hz, NH), 8.27 (d, 1H, *J* = 8.5 Hz, ArH-5), 7.76 (d, 1H, J = 1.8 Hz, ArH-2), 7.63 (dd, 1H, J = 8.5, 1.8 Hz, ArH-6), 7.19 (d, 1H, J = 6.4 Hz, NH), 4.05 - 4.13 (m, 1H, CH), 4.01 (d, 2H, J = 5.6 Hz, CH₂), 3.29 - 3.33 (m, 1H, CH, overlapping with the signal for water), 3.14 - 3.20 (m, 1H, CH), 3.00 - 3.06 (m, 1H, CH), 2.89 - 2.94 (m, 1H, CH), 2.15 – 2.24 (m, 4H, CH, CH₃), 1.81 – 1.89 (m, 1H, CH), 1.39 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.5, 166.0, 156.6, 155.2, 139.8, 135.4, 129.5, 129.0, 123.1, 119.8, 119.2, 118.8, 110.1, 108.6, 77.8, 57.5, 51.7, 50.8, 49.8, 41.2, 31.3, 28.2, 10.8 ppm. IR (ATR): v 3371, 3347, 3297, 2984, 1719, 1672, 1635, 1519, 1373, 1221, 1174, 761 cm⁻¹. $[\alpha]_D^{25}$ +14.2 (*c* 0.120, MeOH). MS (ESI) m/z = 566.0 ([M-H]⁻). HRMS for C₂₅H₃₀Cl₂N₅O₆: calculated 566.1573, found 566.1576. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 μ L; t_R: 12.870 min (95.5% at 280 nm).

tert-Butyl 4-(2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)-5-((2-methoxy-2-oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (7a). Synthesised according to *General procedure B* from 5a (0.600 g, 1.5 mmol), 4,5-dibromo-1*H*-pyrrole-2 carboxylic acid (493 mg, 1.8 mmol) and oxalyl chloride (0.629 mL, 7.3 mmol). The precipitate that was formed during the extraction was filtered off to obtain crude product 1. The two phases of the mother liquor were separated and organic phase was washed with water (20 mL), saturated solution of NaHCO₃ (2 × 20 mL) and brine (2 × 20 mL), dried over Na₂SO₄, filtered and the solvent evaporated to obtain crude product 2. The combined crude products were triturated with diethyl ether and the undissolved solid was filtered off and dried to give 7a (801 mg) as grey solid. Yield 801 mg (83%); grey solid; mp 140 – 143 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.08 (d, 1H, *J* = 2.7 Hz, NH), 9.19 (s, 1H, NH), 8.93 (t, 1H, *J* = 5.7 Hz, NH), 8.10 (d, 1H, *J* = 8.4 Hz, ArH-3), 7.75 (d, 1H, *J* = 1.9 Hz, ArH-6), 7.68 (dd, 1H, *J* = 8.4, 1.9 Hz, ArH-4), 7.17 (d, 1H, *J* = 2.7 Hz, ArH), 4.05 – 4.13 (m, 1H, CH), 4.01 (d, 2H, *J* = 5.7 Hz, CH₂), 3.67 (s, 3H, CH₃), 3.52 – 3.57 (m, 4H, 2 × CH₂), 2.81 – 2.83 (m, 4H, 2 × CH₂), 1.43 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz,

DMSO-d₆): δ 170.5, 165.9, 156.9, 153.8, 142.7, 135.1, 129.2, 127.5, 123.9, 121.1, 119.8, 113.5, 106.8, 98.7, 79.0, 51.7, 51.4, 41.2, 28.0 ppm. One peak not seen. IR (ATR): v 3201, 2950, 1755, 1736, 1645, 1549, 1516, 1430, 1250, 1204, 1168, 937, 759, 680 cm⁻¹. MS (ESI) m/z = 640.0 ([M-H]⁻). HRMS for C₂₄H₂₈Br₂N₅O₆: calculated 640.0406, found 640.0403.

(S)-(3-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1H-pyrrole-2-Methyl carboxamido)benzoyl)glycinate (7b). Synthesised according to General procedure B from 5b (0.600 g, 1.5 mmol), 4,5-dibromo-1H-pyrrole-2 carboxylic acid (493 mg, 1.8 mmol) and oxalyl chloride (0.629 mL, 7.3 mmol). The precipitate that was formed during the extraction was filtered off to obtain crude product 1. The two phases of the mother liquor were separated and organic phase was washed with water (20 mL), saturated solution of NaHCO₃ (2×20 mL) and brine (2×20 mL), dried over Na₂SO₄, filtered and the solvent evaporated to obtain crude product 2. The combined crude products were triturated with diethyl ether and the undissolved solid was filtered off and dried to give 7b (782 mg) as grey solid. Yield 797 mg (81%); brown solid; mp 213 – 217 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.89 (d, 1H, J = 2.7 Hz, NH), 9.53 (s, 1H, NH), 8.91 (t, 1H, J = 5.8 Hz, NH), 7.35 – 7.29 (m, 3H, 3 × ArH), 7.17 – 7.14 (m, 2H, NH, ArH), 4.07 – 3.99 (m, 3H, CH, CH₂), 3.66 (s, 3H, CH₃), 3.43 – 3.31 (m, 2H, 2 × CH), 3.27 – 3.21 (m, 1H, CH), 3.08 – 3.04 (m, 1H, CH), 2.11 – 2.03 (m, 1H, CH), 1.84 – 1.76 (m, 1H, CH), 1.36 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.5, 166.5, 157.6, 155.2, 144.4, 131.5, 128.4, 127.9, 127.8, 117.5, 114.5, 113.5, 105.8, 98.2, 77.8, 55.9, 51.7, 49.8, 48.3, 41.2, 30.5, 28.2 ppm. IR (ATR): v 3416, 3343, 3229, 2981, 1722, 1677, 1651, 1499, 1468, 1214, 1174, 1093, 760 cm⁻¹. $[\alpha]_D^{25}$ -26.5 (c 0.147, MeOH). MS (ESI) m/z = 640 ([M-H]⁻). HRMS for C₂₄H₂₈Br₂N₅O₆: calculated 640.0406, found 640.0414. HPLC: Agilent Eclipse Plus C18 column (5 μ m, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 10.593 min (95.1% at 280 nm).

Methyl (*R*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1*H*-pyrrole-2carboxamido)benzoyl)glycinate (7c). Synthesised according to *General procedure B* from 5c (0.500 g, 1.3 mmol), 4,5-dibromo-1*H*-pyrrole-2 carboxylic acid (411 mg, 1.5 mmol) and oxalyl chloride (0.52 mL, 6.1 mmol). The precipitate that was formed during the extraction was filtered off to obtain crude product 1. The two phases of the mother liquor were separated and organic phase was washed with water (20 mL), saturated solution of NaHCO₃ (2 × 20 mL) and brine (2 × 20 mL), dried over Na₂SO₄, filtered and the solvent evaporated to obtain crude product 2. The combined crude products were triturated with diethyl ether and the undissolved solid was filtered off and dried to give 7c (778 mg) as grey solid. Yield 778 mg (93%); brown solid; mp 203 – 208 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.89 (d, 1H, *J* = 2.7 Hz, NH), 9.53 (s, 1H, NH), 8.94 (t, 1H, *J* = 5.8 Hz, NH), 7.35 – 7.29 (m, 3H, 3 × ArH), 7.17 – 7.14 (m, 2H, NH, ArH), 4.06 – 3.99 (m, 3H, CH, CH₂), 3.66 (s, 3H, CH₃), 3.45 – 3.31 (m, 2H, 2 × CH), 3.27 – 3.21 (m, 1H, CH), 3.07 – 3.04 (m, 1H, CH), 2.10 – 2.03 (m, 1H, CH), 1.85 – 1.75 (m, 1H, CH), 1.36 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 170.5, 166.5, 157.6, 155.2, 144.5, 131.5, 128.4, 127.9, 127.8, 117.5, 114.5, 113.5, 105.8, 98.2, 77.8, 55.9, 51.7, 49.8, 48.3, 41.2, 30.5, 28.2 ppm. IR (ATR): v 3415, 3340, 3230, 2979, 2840, 1721, 1677, 1652, 1498, 1214, 1172, 1094, 972, 759 cm⁻¹. [α]_D²⁵ +25.0 (*c* 0.120, MeOH). MS (ESI) *m/z* = 640.0 ([M-H]⁻). HRMS for C₂₄H₂₈Br₂N₅O₆: calculated 640.0406, found 640.0403. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 10.593 min (95.4% at 280 nm).

(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-4-(3,4-dichloro-5-methyl-1H-pyrrole-2-

carboxamido)benzoyl)glycine (8a). To the solution of 6a (0.160 g, 0.28 mmol) in methanol (10 mL) 1 M NaOH (0.84 mL, 0.84 mmol) was added and the mixture was stirred at rt for 15 h. The mixture was neutralized with 1 M HCl and methanol was removed under reduced pressure. The pH was adjusted to 4 with 1 M HCl, ethyl acetate was added and the precipitate that formed was filtered off and dried to obtain 8a as grey solid. Yield 138 mg (89%); grey solid; mp > 300 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.63 (br s, 1H, COOH), 12.43 (s, 1H, NH), 9.79 (s, 1H, NH), 8.81 (t, 1H, J = 5.7 Hz, NH), 8.48 (d, 1H, J = 8.6 Hz, ArH-5), 7.91 (d, 1H, J = 1.9 Hz, ArH-2), 7.75 (dd, 1H, J = 8.6, 1.9 Hz, ArH-6), 3.93 (d, 2H, J = 5.7 Hz, CH₂), 3.58 - 3.50 (m, 4H, $2 \times$ CH₂), 2.85 - 2.82 (m, 4H, $2 \times$ CH₂), 2.24 (s, 3H, CH₃), 1.44 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 165.5, 156.5, 153.7, 140.9, 136.6, 129.8, 128.6, 125.3, 121.0, 118.8, 118.5, 109.7, 108.6, 79.1, 52.1, 41.1, 28.0, 10.8 ppm. One peak not seen. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 125.8, 121.5, 119.1, 52.6, 41.7, 28.5, 11.2 ppm. One peak not seen. DEPT 135 NMR (100 MHz, DMSO-d₆) δ 125.8, 121.5, 119.0, 52.6 (negative), 41.7 (negative), 28.5, 11.2 ppm. One peak not seen. IR (ATR): v 3369, 3287, 3108, 2973, 1748, 1632, 1505, 1481, 1409, 1366, 1253, 1170, 1138, 1083, 759, 621 cm⁻¹. MS (ESI) m/z = 552.0 ([M-H]⁻). HRMS for C₂₄H₂₈Cl₂N₅O₆: calculated 552.1417, found 552.1411. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6×150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 12.420 min (98.1% at 280 nm).

(S)-(3-(3-((*tert*-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2carboxamido)benzoyl)glycine (8b). To the solution of 6b (155 mg, 0.27 mmol) in a mixture of methanol (10 mL) and tetrahydrofuran (2 mL) 1 M NaOH (1.09 mL, 1.09 mmol) was added and the mixture was stirred at rt for 15 h. To the mixture 1M HCl was added to reach pH 7 and methanol was removed under reduced pressure. 1M HCl was added to the aqueous residue to reach pH 4 upon which ethyl acetate (15 mL) was added. The undissolved precipitate was filtered off and dried to give 8b (81 mg). Mother liquid was poured into a separating funnel and the two phases were separated. Organic phase was washed with brine (2×10 mL), dried with Na₂SO₄, filtered and evaporated. Diethyl ether was added to the residue, the obtained suspension was sonicated and the precipitate filtered off and dried (26 mg). The pure products were combined to obtain 8b (107 mg) as brown crystals. Yield 107 mg (71%); brown crystals; mp 210 – 215 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.57 (br s, 1H, COOH), 12.38 (s, 1H, NH), 9.50 (s, 1H, NH), 8.82 (t, 1H, *J* = 5.8 Hz, NH), 8.27 (d, 1H, *J* = 8.5 Hz, Ar-H-5), 7.76 (d, 1H, *J* = 1.8 Hz, Ar-H-2), 7.63 (dd, 1H, *J* = 8.5, 1.8 Hz, Ar-H-6), 7.19 (d, 1H, *J* = 6.5 Hz, NH), 4.07 – 4.14 (m, 1H, CH), 3.92 (d, 2H, *J* = 5.8 Hz, CH₂), 3.33 – 3.27 (m, 1H, CH, overlapping with the signal for water), 3.19 – 3.14 (m, 1H, CH), 3.06 – 3.00 (m, 1H, CH), 2.94 – 2.89 (m, 1H, CH), 2.24 – 2.15 (m, 4H, CH, CH₃), 1.89 – 1.81 (m, 1H, CH), 1.39 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 165.9, 156.6, 155.2, 139.8, 135.3, 129.5, 129.2, 123.1, 119.7, 119.2, 118.8, 110.1, 108.6, 77.8, 57.5, 50.9, 49.8, 41.2, 31.3, 28.2, 10.8 ppm. IR (ATR): v 3311, 3177, 2976, 1710, 1694, 1634, 1585, 1506, 1331, 1169, 860, 765 cm⁻¹. [α]p²⁵ -12.0 (*c* 0.125, MeOH). MS (ESI) *m*/*z* = 552.0 ([M-H]⁻). HRMS for C₂₄H₂₈Cl₂N₅O₆: calculated 552.1417, found 552.1412. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 11.366 min (97.0% at 280 nm).

(R)-(3-(3-((tert-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1H-pyrrole-2carboxamido)benzoyl)glycine (8c). To the solution of 6c (200 mg, 0.35 mmol) in a mixture of methanol (8 mL) and tetrahydrofuran (3 mL) 1 M NaOH (1.41 mL, 1.4 mmol) was added and the mixture was stirred at rt for 15 h. To the mixture water (10 mL) was added and the pH was adjusted to 4 with 1 M HCl upon which the obtained precipitate was filtered off and dried to obtain 8c (91 mg) as grey solid. Yield 91 mg (47%); grey solid; mp 210 – 214 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.57 (br s, 1H, COOH), 12.38 (s, 1H, NH), 9.50 (s, 1H, NH), 8.81 (t, 1H, J = 5.8 Hz, NH), 8.27 (d, 1H, J = 8.5 Hz, ArH-5), 7.76 (d, 1H, J = 1.8 Hz, ArH-2), 7.63 (dd, 1H, J = 8.5, 1.8 Hz, ArH-6), 7.19 (d, 1H, J = 6.5 Hz, NH), 4.07 - 4.14 (m, 1H, CH), 3.92 (d, 2H, J = 5.8 Hz, CH₂), 3.33 - 3.27 (m, 1H, CH, overlapping with the signal for water), 3.19 – 3.14 (m, 1H, CH), 3.06 – 3.00 (m, 1H, CH), 2.94 – 2.89 (m, 1H, CH), 2.24 -2.15 (m, 4H, CH, CH₃), 1.89 - 1.81 (m, 1H, CH), 1.39 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSOd₆): δ 171.4, 166.1, 156.6, 155.4, 139.9, 135.1, 129.6, 129.3, 122.9, 120.0, 119.0, 118.7, 110.2, 108.7, 78.0, 57.4, 50.7, 49.7, 41.5, 31.2, 28.1, 10.7 ppm. IR (ATR): v 3440, 3292, 2977, 2931, 2840, 1733, 1687, 1636, 1506, 1403, 1244, 1063, 1041, 764, 605 cm⁻¹. $[\alpha]_D^{25}$ +11.8 (*c* 0.187, MeOH). MS (ESI) *m/z* $= 552.1 ([M-H]^{-})$. HRMS for C₂₄H₂₈Cl₂N₅O₆: calculated 552.1417, found 552.1414. HPLC: Agilent Eclipse Plus C18 column (5 μ m, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 11.366 min (96.9% at 280 nm).

(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-4-(4,5-dibromo-1H-pyrrole-2-

carboxamido)benzoyl)glycine (9a). To the solution of **7a** (200 mg, 0.32 mmol) in methanol (10 mL) 1 M NaOH (1.24 mL, 1.2 mmol) was added and the mixture was stirred at rt for 15 h. The mixture was neutralized with 1 M HCl and methanol was removed under reduced pressure. Water (10 mL) was added, the pH was adjusted to 4 with 1 M HCl, ethyl acetate (20 mL) was added, and the organic phase was

washed with water (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and the solvent removed. To the residue diethyl ether was added, the obtained suspension was sonicated and the precipitate was filtered to obtain **9a** (115 mg) as grey solid. Yield 115 mg (59%); grey solid; mp > 300 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.08 (s, 1H, NH), 12.59 (br s, 1H, COOH), 9.20 (s, 1H, NH), 8.81 (t, 1H, J = 5.8 Hz, NH), 8.10 (d, 1H, J = 8.5 Hz, ArH-5), 7.76 (d, 1H, J = 1.9 Hz, ArH-2), 7.68 (dd, 1H, J = 8.5, 1.9 Hz, ArH-6), 7.17 (d, 1H, J = 2.8 Hz, ArH), 3.93 (d, 2H, J = 5.8 Hz, CH₂), 3.57 – 3.51 (m, 4H, 2 × CH₂), 2.83 – 2.81 (m, 4H, 2 × CH₂), 1.43 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 165.7, 156.9, 153.8, 142.6, 135.0, 129.4, 127.6, 123.9, 121.0, 119.8, 113.5, 106.8, 98.7, 79.0, 51.4, 41.2, 28.0 ppm. One peak not seen. IR (ATR): v 3101, 3053, 2972, 1745, 1630, 1505, 1406, 1368, 1172, 1140, 830, 756, 631 cm⁻¹. MS (ESI) m/z = 626.0 ([M-H]⁻). HRMS for C₂₃H₂₆Br₂N₅O₆: calculated 626.0250, found 626.0255. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 11.169 min (95.8% at 280 nm).

(S)-(3-((tert-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1H-pyrrole-2-

carboxamido)benzoyl)glycine (9b). To the solution of 7b (250 mg, 0.38 mmol) in methanol (10 mL) 1 M NaOH (1.52 mL, 1.52 mmol) was added and the mixture was stirred at rt for 15 h. The mixture was neutralized with 1 M HCl and methanol was removed under reduced pressure. The pH was adjusted to 4 with 1 M HCl, ethyl acetate was added, and the organic phase was washed with water (10 mL) and brine $(2 \times 10 \text{ mL})$, dried over Na₂SO₄, filtered and the solvent removed. To the residue diethyl ether was added, the obtained suspension was sonicated and the precipitate was filtered to obtain 9b (188 mg) as grey solid. Yield 188 mg (77%); grey solid; mp 219 – 223 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.89 (s, 1H, NH), 12.47 (br s, 1H, COOH), 9.52 (s, 1H, NH), 8.80 (t, 1H, J = 5.8 Hz, NH), 7.35 – 7.29 (m, 3H, $3 \times \text{ArH}$), 7.20 - 7.13 (m, 1H, ArH), 4.06 - 4.01 (m, 1H, CH), 3.91 (d, 2H, J = 5.8 Hz, CH₂), 3.43-3.31 (m, 2H, 2 × CH, overlapping with the signal for water), 3.27 - 3.21 (m, 1H, CH), 3.08 - 3.04 (m, 1H, CH), 2.11 – 2.03 (m, 1H, CH), 1.84 – 1.75 (m, 1H, CH), 1.37 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 166.3, 157.6, 155.2, 144.4, 131.7, 128.3, 127.8, 117.5, 114.5, 113.4, 105.7, 98.2, 77.8, 55.9, 49.8, 48.3, 41.2, 30.5, 28.2 ppm. IR (ATR): v 3376, 3276, 3104, 1735, 1692, 1666, 1628, 1509, 1399, 1383, 1236, 1153, 976, 767 cm⁻¹. $[\alpha]_D^{25}$ -37.3 (*c* 0.126, MeOH). MS (ESI) *m/z* = 626.0 ([M-H]⁻). HRMS for C₂₃H₂₆Br₂N₅O₆: calculated 626.0250, found 626.0239. HPLC: Agilent Eclipse Plus C18 column (5 μ m, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 9.325 min (98.6% at 280 nm).

(R)-(3-(3-((tert-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1H-pyrrole-2-

carboxamido)benzoyl)glycine (9c). To the solution of **7c** (300 mg, 0.47 mmol) in a mixture of methanol (10 mL) and tetrahydrofuran (1 mL) 1 M NaOH (1.86 mL, 1.8 mmol) was added and the mixture was stirred at rt for 15 h. The mixture was neutralized with 1 M HCl and methanol was removed under

reduced pressure. Water (10 mL) was added and the pH was adjusted to 4 with 1 M HCl. The precipitate was filtered off and dried to obtain **9c** (234 mg) as grey solid. Yield 234 mg (80%); grey solid; mp 218 – 223 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.89 (s, 1H, NH), 12.47 (br s, 1H, COOH), 9.52 (s, 1H, NH), 8.80 (t, 1H, J = 5.8 Hz, NH), 7.35 – 7.29 (m, 3H, 3 × ArH), 7.20 – 7.13 (m, 2H, NH, ArH), 4.06 – 4.01 (m, 1H, CH), 3.91 (d, 2H, J = 5.8 Hz, CH₂), 3.44 – 3.39 (m, 2H, 2 × CH, overlapping with the signal for water), 3.26 – 3.20 (m, 1H, CH), 3.07 – 3.04 (m, 1H, CH), 2.10 – 2.03 (m, 1H, CH), 1.84 – 1.75 (m, 1H, CH), 1.37 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 166.3, 157.6, 155.2, 147.9, 144.3, 131.7, 128.0, 117.5, 114.5, 113.5, 105.8, 98.2, 77.8, 55.9, 49.8, 48.3, 41.2, 30.5, 28.2 ppm. Signal for one aromatic carbon not seen. IR (ATR): v 3376, 3276, 3104, 1735, 1692, 1666, 1628, 1509, 1399, 1383, 1236, 1153, 976, 767 cm⁻¹. [a]_D²⁵ +35.3 (*c* 0.133, MeOH). MS (ESI) *m/z* = 626.0 ([M-H]⁻). HRMS for C₂₃H₂₆Br₂N₃O₆: calculated 626.0250, found 626.0252. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 9.325 min (95.1% at 280 nm).

4-(5-((Carboxymethyl)carbamoyl)-2-(3,4-dichloro-5-methyl-1H-pyrrole-2-

carboxamido)phenyl)piperazin-1-ium chloride (10a). Compound 8a (50 mg, 0.09 mmol) was suspended in 4 M HCl in 1,4-dioxane (5 mL) and THF (2 mL), and the mixture was stirred at rt for 1 h. The solvents were evaporated, to the solid residue diethyl ether was added, the obtained suspension was sonicated and the solid was filtered off to give 10a (39 mg) as grey solid. Yield 39 mg (89%); grey solid; mp 262 – 265 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.59 (br s, 1H, COOH), 12.49 (s, 1H, NH), 9.59 (s, 1H, NH), 9.23 (br s, 2H, NH_2^+), 8.96 (t, 1H, J = 5.7 Hz, NH), 8.45 (d, 1H, J = 8.6 Hz, ArH-3), 7.83 (d, 1H, J = 1.8 Hz, ArH-6), 7.79 (dd, 1H, J = 8.6, 1.8 Hz, ArH-4), 3.93 (d, 2H, J = 5.7 Hz, CH₂), 3.31 -3.24 (m, 4H, $2 \times CH_2$), 3.12 - 3.09 (m, 4H, $2 \times CH_2$), 2.24 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): § 171.4, 165.5, 156.6, 140.3, 136.4, 129.7, 128.9, 125.3, 120.7, 118.9, 118.8, 110.0, 108.6, 48.9, 43.4, 41.2, 10.8 ppm. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 125.7, 121.2, 119.4, 49.5, 44.0, 41.7, 11.2 ppm. DEPT 135 NMR (100 MHz, DMSO-d₆) & 125.7, 121.2, 119.4, 49.5 (negative), 44.0 (negative), 41.7 (negative), 11.2 ppm. IR (ATR): v 3402, 3307, 3240, 2834, 1734, 1645, 1588, 1504, 1412, 1211, 1040, 920, 763 cm⁻¹. MS (ESI) m/z = 452.0 ([M-H]⁻). HRMS for C₁₉H₂₀Cl₂N₅O₄: calculated 452.0892, found 452.0891. HPLC: Agilent Eclipse Plus C18 column (5 μ m, 4.6 × 150 mm); mobile phase: 20-40% of acetonitrile in phosphate buffer (pH = 6.8) in 16 min, 40% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 9.087 min (99.6% at 280 nm).

(S)-1-(5-((Carboxymethyl)carbamoyl)-2-(3,4-dichloro-5-methyl-1H-pyrrole-2-

carboxamido)phenyl)pyrrolidin-3-aminium chloride (10b). The solution of **8b** (40 mg, 0.072 mmol) in a mixture of 4 M HCl in 1,4-dioxane (1 mL) and THF (1 mL) was stirred at rt for 2 h. The solvent was removed, to the residue diethyl ether was added, the obtained suspension was sonicated and the undissolved solid was filtered off and dried to give **10b** (34 mg) as beige solid. Yield 24 mg (97%);

beige solid; mp 216 – 220 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.6 (s, 1H, NH), 9.47 (s, 1H, NH), 8.92 (t, 1H, J = 5.8 Hz, NH), 8.43 (s, 3H, NH₃⁺), 8.17 (d, 1H, J = 8.5 Hz, ArH-3), 7.79 (d, 1H, J = 1.8 Hz, ArH-6), 7.65 (dd, 1H, J = 8.5, 1.8 Hz, ArH-4), 3.92 (d, 2H, J = 5.8 Hz, CH₂), 3.71 – 3.66 (m, 1H, CH, overlapping with the signal for water), 3.52 – 3.47 (m, 1H, CH, overlapping with the signal for water), 3.52 – 3.47 (m, 1H, CH, overlapping with the signal for water), 3.42 – 3.36 (m, 1H, CH), 3.12 – 3.08 (m, 1H, CH), 3.00 – 2.95 (m, 1H, CH), 2.34 – 2.24 (m, 4H, CH, CH₃), 2.06 – 1.96 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 165.8, 156.7, 139.3, 134.8, 129.5, 129.1, 122.9, 121.0, 119.2, 118.7, 111.2, 108.7, 55.1, 49.0, 41.2, 29.6, 10.8 ppm. IR (ATR): v 3365, 3263, 2937, 1729, 1640, 1509, 1507, 1410, 1317, 1259, 1222, 1041, 762 cm⁻¹. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 175.7, 173.2, 123.4, 121.4, 119.8, 55.6, 50.8, 49.5, 41.7, 30.1, 11.2 ppm. DEPT 135 NMR (100 MHz, DMSO-d₆) δ 123.4, 121.4, 119.8, 55.6 (negative), 50.8, 49.5 (negative), 41.7, 30.1 (negative), 11.2 (negative) ppm. [α]_D²⁵ -11.9 (*c* 0.117, MeOH). MS (ESI) *m/z* = 452.0 ([M-H]⁻). HRMS for C₁₉H₂₀Cl₂N₅O₄: calculated 452.0892, found 452.0881. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 20-40% of acetonitrile in phosphate buffer (pH = 6.8) in 16 min, 40% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 9.252 min (99.3% at 280 nm).

(R)-1-(5-((Carboxymethyl)carbamoyl)-2-(3,4-dichloro-5-methyl-1H-pyrrole-2-

carboxamido)phenyl)pyrrolidin-3-aminium chloride (10c). Solution of 8c (35 mg, 0.063 mmol) in 4 M HCl in 1,4-dioxane (5 mL) was stirred at rt for 2 h. The solvent was removed, to the residue diethyl ether was added, the obtained suspension was sonicated and the undissolved solid was filtered off and dried to give 10c (22 mg) as grey solid. Yield 22 mg (71%); grey solid; mp 217 - 221 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.6 (s, 1H, NH), 9.47 (s, 1H, NH), 8.92 (t, 1H, J = 5.8 Hz, NH), 8.43 (s, 3H, NH₃⁺), 8.17 (d, 1H, J = 8.5 Hz, ArH-3), 7.79 (d, 1H, J = 1.8 Hz, ArH-6), 7.65 (dd, 1H, J = 8.5, 1.8 Hz, ArH-4), 3.92 (d, 2H, J = 5.8 Hz, CH₂), 3.71 - 3.66 (m, 1H, CH, overlapping with the signal for water), 3.52 - 3.523.47 (m, 1H, CH, overlapping with the signal for water), 3.42 – 3.36 (m, 1H, CH), 3.12 – 3.08 (m, 1H, CH), 3.00 – 2.95 (m, 1H, CH), 2.34 – 2.24 (m, 4H, CH, CH₃), 2.06 – 1.96 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 165.8, 156.7, 139.3, 134.8, 129.5, 129.1, 122.9, 121.0, 119.2, 118.7, 111.2, 108.7, 55.1, 49.0, 41.2, 29.6, 10.8 ppm. IR (ATR): v 3348, 3235, 3017, 2922, 1733, 1636, 1602, 1509, 1410, 1317, 1042, 764, 607 cm⁻¹. $[\alpha]_D^{25}$ +11.0 (*c* 0.100, MeOH). MS (ESI) m/z = 452.1 ([M-H]⁻). HRMS for C₁₉H₂₀Cl₂N₅O₄: calculated 452.0892, found 452.0898. HPLC: Agilent Eclipse Plus C18 column (5 μ m, 4.6 × 150 mm); mobile phase: 20-40% of acetonitrile in phosphate buffer (pH = 6.8) in 16 min, 40% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 9.252 min (99.4%) at 280 nm).

4-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1H-pyrrole-2-

carboxamido)phenyl)piperazin-1-ium chloride (11a). Compound **9a** (50 mg, 0.079 mmol) was dissolved in 4 M HCl in 1,4-dioxane (4 mL) and THF (1 mL), and the solution was stirred at rt for 2 h. The solvents were evaporated, to the solid residue diethyl ether was added, the obtained suspension was

sonicated and the solid was filtered off to give **11a** (45 mg) as beige solid. Yield 45 mg (100%); beige solid; mp 225 – 228 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.19 (d, 1H, J = 2.8 Hz, NH), 12.52 (br s, 1H, COOH), 9.24 (br s, 2H, NH₂⁺), 9.19 (s, 1H, NH), 8.95 (t, 1H, J = 5.8 Hz, NH), 8.06 (d, 1H, J = 9.0 Hz, ArH-3), 7.72 – 7.69 (m, 2H, ArH-4,6), 7.29 (d, 1H, J = 2.8 Hz, ArH), 3.93 (d, 2H, J = 5.8 Hz, CH₂), 3.36 – 3.27 (m, 4H, 2 × CH₂), 3.10 – 3.08 (m, 4H, 2 × CH₂) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 165.7, 156.9, 142.2, 134.9, 129.7, 127.5, 123.9, 121.9, 119.5, 114.0, 106.7, 98.6, 48.2, 43.0, 41.2 ppm. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 124.4, 122.5, 120.1, 114.5, 48.7, 43.6, 41.7 ppm. DEPT 135 NMR (100 MHz, DMSO-d₆) δ 124.4, 122.4, 120.1, 114.5, 48.7 (negative), 43.6 (negative), 41.7 (negative) ppm. IR (ATR): v 3326, 3199, 2798, 2719, 1730, 1655, 1507, 1406, 1305, 1178, 950, 746 cm⁻¹. MS (ESI) *m*/*z* = 526.0 ([M-H]⁻). HRMS for C₁₈H₁₈Br₂N₅O₄: calculated 525.9726, found 525.9727. HPLC: Agilent Eclipse Plus C18 column (5 μm, 4.6 × 150 mm); mobile phase: 20-40% of acetonitrile in phosphate buffer (pH = 6.8) in 16 min, 40% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 μL; t_R: 6.884 min (98.4% at 280 nm).

(S)-1-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1H-pyrrole-2-

carboxamido)phenyl)pyrrolidin-3-aminium chloride (11b). Suspension of **9b** (70 mg, 0.11 mmol) in 4 M HCl in 1,4-dioxane (5 mL) was stirred at rt for 2 h. The precipitate was filtered off and washed with diethyl ether and dried to obtain **11b** (48 mg) as grey solid. Yield 48 mg (76%); grey solid; mp 209 – 212 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.01 (d, 1H, J = 2.4 Hz, NH), 12.38 (br s, 1H, COOH), 9.61 (s, 1H, NH), 8.84 (t, 1H, J = 5.8 Hz, NH), 8.22 (s, 3H, NH₃⁺), 7.50 – 7.52 (m, 1H, ArH), 7.41 – 7.43 (m, 2H, 2 × ArH), 7.36 (d, 1H, J = 2.4 Hz, ArH), 3.91 (d, 2H, J = 5.8 Hz, CH₂), 3.88 (s, 1H, CH, overlapping with the signal for water), 3.49 – 3.53 (m, 2H, 2 × CH), 3.20 – 3.23 (m, 1H, CH), 3.01 – 3.07 (m, 1H, CH), 2.20 – 2.29 (m, 1H, CH), 1.94 – 2.04 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.4, 166.2, 157.4, 142.6, 131.1, 129.7, 127.8, 127.0, 119.0, 115.9, 114.4, 105.8, 98.4, 53.6, 49.4, 47.7, 41.2, 29.1 ppm. IR (ATR): v 3374, 3188, 2943, 1725, 1630, 1507, 1411, 1389, 1328, 1221, 1180, 974, 868, 755 cm⁻¹. [α]_D²⁵ -11.1 (*c* 0.189, MeOH). MS (ESI) *m/z* = 526.0 ([M-H]⁻). HRMS for C₁₈H₁₈Br₂N₅O4: calculated 525.9726, found 525.9726. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 20-40% of acetonitrile in phosphate buffer (pH = 6.8) in 16 min, 40% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 5.908 min (95.2% at 280 nm).

(R)-1-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1H-pyrrole-2-

carboxamido)phenyl)pyrrolidin-3-aminium chloride (11c). Solution of 9c (70 mg, 0.11 mmol) in a mixture of 1,4-dioxane (10 mL) and 4 M HCl in 1,4-dioxane (5 mL) was stirred at rt for 2 h. The solvent was removed under reduced pressure, to the residue diethyl ether was added, the obtained suspension was sonicated, the precipitate was filtered off, washed with diethyl ether and dried to obtain 11c (62 mg) as grey solid. Yield 62 mg (98%); grey solid; mp 209 – 214 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.01 (d, 1H, *J* = 2.4 Hz, NH), 12.38 (br s, 1H, COOH), 9.61 (s, 1H, NH), 8.84 (t, 1H, *J* = 5.8 Hz, NH), 8.22

(s, 3H, NH₃⁺), 7.50 – 7.52 (m, 1H, ArH), 7.41 – 7.43 (m, 2H, 2 × ArH), 7.36 (d, 1H, J = 2.4 Hz, ArH), 3.74 – 3.94 (m, 3H, CH, CH₂ overlapping with the signal for water), 3.49 – 3.53 (m, 2H, 2 × CH), 3.20 – 3.23 (m, 1H, CH), 3.01 – 3.07 (m, 1H, CH), 2.20 – 2.29 (m, 1H, CH), 1.94 – 2.04 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 171.7, 167.6, 157.9, 143.0, 131.1, 129.2, 127.3, 127.2, 119.0, 115.8, 114.0, 106.4, 98.8, 53.4, 49.4, 47.9, 41.2, 28.9 ppm. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 127.3, 119.6, 116.5, 114.8, 54.2, 49.9, 48.3, 41.7, 29.6 ppm. DEPT 135 NMR (100 MHz, DMSO-d₆) δ 127.3, 119.6, 116.5, 114.8, 54.2 (negative), 49.9, 48.3 (negative), 41.7 (negative), 29.6 (negative) ppm. IR (ATR): v 3418, 3313, 2954, 2875, 1725, 1632, 1506, 1411, 1388, 1211, 1180, 974, 757 cm⁻¹. [α]p²⁵ +10.8 (*c* 0.120, MeOH). MS (ESI) *m/z* = 526.0 ([M-H]⁻). HRMS for C₁₈H₁₈Br₂N₅O₄: calculated 525.9726, found 525.9727. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 20-40% of acetonitrile in phosphate buffer (pH = 6.8) in 16 min, 40% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 5.908 min (95.1% at 280 nm).

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-((2-hydrazineyl-2oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (12). To the solution of compound 6c (0.589 g, 1.0 mmol) in a mixture of methanol (10 mL) and THF (10 mL) hydrazine hydrate solution (80%, 0.50 mL, 10.2 mmol) was added and the mixture was stirred under reflux for 20 h. The solvent was removed under reduced pressure, to the residue ethanol was added and the obtained suspension was sonicated, the undissolved solid was filtered off and dried to obtain 12 (430 mg) as white solid. Yield 430 mg (76%); white solid; mp 156 – 160 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.43 (s, 1H, NH), 9.79 (s, 1H, NH), 9.23 (br s, 1H, NH), 8.71 (t, 1H, *J* = 5.8 Hz, NH), 8.46 (d, 1H, *J* = 8.6 Hz, ArH-3), 7.92 (d, 1H, *J* = 1.8 Hz, ArH-6), 7.75 (dd, 1H, J = 8.6, 1.8 Hz, ArH-4), 4.67 (br s, 2H, NH₂), 3.84 (d, 2H, J = 5.8 Hz, CH₂), 3.49 – 3.57 (m, 4H, 2 × CH₂), 2.82 – 2.85 (m, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃), 1.44 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 168.4, 165.6, 156.5, 153.7, 140.8, 136.4, 129.8, 128.9, 125.4, 121.2, 118.8, 118.4, 109.7, 108.6, 79.1, 52.1, 41.3, 28.0, 10.8 ppm. Signal for one aliphatic carbon not seen. IR (ATR): v 3263, 1690, 1641, 1509, 1410, 1262, 1245, 1168, 1132, 1040, 713 cm⁻¹. MS (ESI) m/z = 566.0([M-H]⁻). HRMS for C₂₄H₃₀Cl₂N₇O₅: calculated 566.1685, found 566.1682. HPLC: Agilent Eclipse Plus C18 column (5 μ m, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 10.065 min (96.3% at 280 nm).

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(((5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)methyl)carbamoyl)phenyl)piperazine-1-carboxylate (13). The solution of 12 (392 mg, 0.69 mmol) and CDI (224 mg, 1.38 mmol) in a mixture of 1,4-dioxane (15 mL) and DMF (5 mL) was stirred at 101°C for 20 h. The solvent was removed and the residue was purified with flash column chromatography using dichloromethane/methanol (10:1) as the eluent, to obtain 13 (70 mg) as white solid. Yield 70 mg (17%); white solid; mp 147 – 151 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.43

(s, 1H, NH), 12.29 (s, 1H, NH), 9.79 (s, 1H, NH), 9.03 (t, 1H, J = 5.8 Hz, NH), 8.47 (d, 1H, J = 8.6 Hz, ArH-3), 7.90 (d, 1H, J = 1.9 Hz, ArH-6), 7.76 (dd, 1H, J = 8.6, 1.9 Hz, ArH-4), 4.39 (d, 2H, J = 5.6 Hz, CH₂), 3.45 (4H, 2 × CH₂, overlapping with the signal for water), 2.81 – 2.85 (m, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃), 1.43 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.5, 156.5, 154.9, 154.5, 153.7, 141.0, 136.8, 129.9, 128.1, 125.4, 121.0, 118.8, 118.6, 109.8, 108.6, 79.1, 52.0, 30.8, 28.0, 10.7 ppm. Signal for one aliphatic carbon not seen. IR (ATR): v 3262, 2979, 2935, 1776, 1644, 1506, 1411, 1247, 1165, 1130, 1091, 1041, 762 cm⁻¹. MS (ESI) m/z = 592.0 ([M-H]⁻). HRMS for C₂₅H₂₈Cl₂N₇O₆: calculated 592.1478, found 592.1474. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 30-90% of acetonitrile in TFA (0.1%) in 16 min, 90% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 12.838 min (97.1% at 280 nm).

4-(2-(3,4-Dichloro-5-methyl-1H-pyrrole-2-carboxamido)-5-(((5-oxo-4,5-dihydro-1,3,4-

oxadiazol-2-yl)methyl)carbamoyl)phenyl)piperazin-1-ium chloride (14). The solution of **13** (65 mg, 0.12 mmol) in a mixture of 1,4-dioxane (10 mL) and 4 M HCl in 1,4-dioxane (6 mL) was stirred for 2 h at rt. The precipitate was filtered off and dried to obtain **14** (46 mg) as grey solid. Yield 46 mg (79%); grey solid; mp 258 – 262 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.46 (s, 1H, NH), 12.34 (s, 1H, NH), 9.60 (s, 1H, NH), 9.18 (t, 1H, *J* = 5.6 Hz, NH), 9.02 (br s, 2H, NH2⁺), 8.46 (d, 1H, *J* = 8.6 Hz, ArH-3), 7.84 (d, 1H, *J* = 1.9 Hz, ArH-6), 7.78 (dd, 1H, *J* = 8.6, 1.8 Hz, ArH-4), 4.39 (d, 2H, *J* = 5.6 Hz, CH2), 3.24 – 3.31 (m, 4H, 2 × CH2), 3.06 – 3.12 (m, 4H, 2 × CH2), 2.24 (s, 3H, CH3) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.7, 156.6, 154.9, 154.4, 140.3, 136.6, 129.9, 128.3, 125.4, 120.9, 118.9, 118.8, 110.0, 108.7, 48.8, 43.5, 35.1, 10.7 ppm. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 125.9, 121.3, 119.4, 49.3 (negative), 35.6 (negative) ppm. IR (ATR): v 3245, 2956, 2797, 1773, 1639, 1507, 1460, 1309, 1258, 922, 842, 730 cm⁻¹. MS (ESI) *m/z* = 492.1 ([M-H]⁻). HRMS for C₂₀H₂₀Cl₂N₇O₄: calculated 492.0954, found 492.0959. HPLC: Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm); mobile phase: 20-40% of acetonitrile in phosphate buffer (pH = 6.8) in 16 min, 40% acetonitrile to 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 13.668 min (96.7% at 280 nm).

Methyl (*S***)-3-(3-((tert-butoxycarbonyl)amino)piperidin-1-yl)-4-nitrobenzoate (15c).** Synthesised according to *General procedure A* from **1** (1.07 g, 5.39 mmol), (3*S*)-3-aminopiperidine 3-Boc protected (1.00 g, 5.35 mmol) and K₂CO₃ (0.894 g, 6.47 mmol). Yield 87% (1.78 g); orange solid; mp 120 – 124 °C. ¹H NMR (400 MHz, CDC13): δ 7.83 (d, 1H, *J* = 1.5 Hz, Ar-H-2), 7.77 (d, 1H, *J* = 8.4 Hz, Ar-H-5), 7.71 (dd, 1H, *J* = 8.4, 1.5 Hz, ArH-6), 5.05 – 5.15 (m, 1H, NH), 3.97 (s, 3H, CH₃), 3.88 – 3.97 (m, 1H, CH), 3.26 – 3.30 (m, 1H, CH), 2.92 – 3.12 (m, 3H, CH, CH₂), 1.84 – 1.93 (m, 1H, CH), 1.64 – 1.80 (m, 3H, CH, CH₂), 1.48 (s, 9H, tBu) ppm. IR (ATR): v 3444, 3122, 3067, 2966, 1727, 1616, 1598, 1521, 1487, 1438, 1421, 1358, 1282, 1227, 1188, 1156, 1111, 1080, 987, 917, 905, 851, 840, 799, 772, 738, 686 cm⁻¹.

tert-Butyl 4-((5-(methoxycarbonyl)-2-nitrophenyl)amino)piperidine-1-carboxylate (15d). Synthesised according to *General procedure A* from 1 (400 mg, 2.01 mmol), *tert*-butyl 4aminopiperidine-1-carboxylate (483 mg, 2.41 mmol) and K₂CO₃ (555 mg, 4.02 mmol). The crude product was purified with flash column chromatography using ethyl acetate/hexane (1:6) as eluent, to obtain **15d** (212 mg) as red solid. Yield 28% (212 mg); red solid; mp 94 – 97 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.19 (d, 1H, *J* = 8.8 Hz, ArH), 7.89 (d, 1H, *J* = 7.9 Hz, NH), 7.60 (d, 1H, *J* = 1.7 Hz, ArH), 7.17 (dd, 1H, *J* = 1.7, 8.8 Hz, ArH), 3.83 – 3.99 (m, 6H, CH, CH₂, CH₃), 3.03 (s, 2H, CH₂), 1.90 – 1.99 (m, 2H, CH₂), 1.43 – 1.55 (m, 2H, CH₂), 1.42 (s, 9H, tBu) ppm. IR (ATR): v 2846, 2039, 1985, 1764, 1723, 1684, 1438, 1340, 1211, 1146, 1091, 1044, 1007, 952, 890, 765, 740, 695, 645 cm⁻¹. MS (ESI) *m/z* = 401.9 ([M+Na]⁺).

Methyl 3-morpholino-4-nitrobenzoate (15e). Synthesised according to *General procedure A* from **1** (3.30 g, 16.6 mmol), morpholine (1.45 mL, 16.6 mmol) and K₂CO₃ (2.75 g, 19.9 mmol). Yield 94% (4.15 g); orange solid; mp 72 – 78 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.94 (d, 1H, *J* = 8.4 Hz, ArH), 7.78 (d, 1H, *J* = 1.7 Hz, ArH), 7.66 (dd, 1H, *J* = 8.4, 1.7 Hz, ArH), 3.89 (s, 3H, CH₃), 3.67 – 3.72 (m, 4H, 2 × CH₂), 3.00 – 3.06 (m, 4H, 2 × CH₂) ppm.

Methyl 3-(2-methylmorpholino)-4-nitrobenzoate (15f). Synthesised according to *General procedure A* from **1** (1.77 g, 8.90 mmol), 2-methylmorpholine (0.90 mL, 8.90 mmol) and K₂CO₃ (1.48 g, 10.7 mmol). Yield 93% (2.32 g); orange solid; mp 62 – 65 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.94 (d, 1H, J = 8.4 Hz, ArH), 7.77 (s, 1H, ArH), 7.65 (d, 1H, J = 8.4 Hz, ArH), 3.90 (s, 3H, CH₃), 3.81 – 3.88 (m, 1H, CH), 3.55 – 3.67 (m, 2H, 2 × CH), 3.07 – 3.13 (m, 1H, CH), 2.99 – 3.05 (m, 1H, CH), 2.89 – 2.96 (m, 1H, CH), 2.62 – 2.68 (m, 1H, CH), 1.11 (d, 3H, J = 6.2 Hz, CH₃) ppm.

Methyl 3-(2,6-dimethylmorpholino)-4-nitrobenzoate (15g). Synthesised according to *General procedure A* from **1** (2.00 g, 10.0 mmol), 2,6-dimethylmorpholine (1.24 mL, 10.0 mmol) and K₂CO₃ (1.66 g, 12.1 mmol). Yield 99% (2.91 g); orange solid; mp 72 – 77 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.95 (d, 1H, *J* = 8.5 Hz, ArH), 7.77 (d, 1H, *J* = 1.8 Hz, ArH), 7.64 (dd, 1H, *J* = 8.3, 1.7 Hz, ArH), 3.90 (s, 3H, CH₃), 3.62 – 3.75 (m, 2H, 2 × CH), 3.07 – 3.11 (m, 2H, 2 × CH), 2.54 – 2.62 (m, 2H, 2 × CH), 1.11 (d, 6H, *J* = 6.2 Hz, 2 × CH₃) ppm.

Methyl 4-nitro-3-(4-phenylpiperazin-1-yl)benzoate (15h). Synthesised according to *General procedure A* from **1** (500 mg, 2.51 mmol), 1-phenylpiperazine (460 μ L, 2.92 mmol) and potassium carbonate (0.694 g, 5.02 mmol). Yield: 76% (650 mg); orange solid; mp 86 – 88 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.96 (d, 1H, *J* = 8.4 Hz, ArH), 7.82 (d, 1H, *J* = 1.7 Hz, ArH), 7.66 (dd, 1H, *J* = 1.7, 8.4 Hz, ArH), 7.29 – 7.20 (m, 2H, 2 × ArH), 7.00 – 6.94 (m, 2H, 2 × ArH), 6.86 – 6.78 (m, 1H, ArH), 3.90 (s, 3H, CH₃), 3.22 – 3.30 (m, 4H, 2 × CH₂), 3.17 – 3.22 (m, 4H, 2 × CH₂) ppm. IR (ATR): **v** 2998, 2950, 2842, 1723, 1673, 1600, 1577, 1511, 1438, 1384, 1345, 1303, 1271, 1242, 1226, 1191, 1154, 1118, 1084, 1043, 1005, 951, 914, 891, 858, 828, 762, 691, 644 cm⁻¹. MS (ESI) *m/z* = 342.0 ([M+H]⁺).

Methyl 3-(3-(((*tert***-butoxycarbonyl)amino)methyl)piperidin-1-yl)-4-nitrobenzoate (15i). Synthesised according to** *General procedure A* **from 1** (1.50 g, 7.53 mmol), 3-(Bocaminomethyl)piperidine (1.61 g, 7.53 mmol) and potassium carbonate (1.46 g, 10.54 mmol). The crude product was triturated with diethyl ether, the undissolved solid was filtered off and dried to afford **15i** (2.10 g) as orange solid. Yield 71% (2.10 g); orange solid; mp 88 – 89 °C. ¹H NMR (400 MHz, CDCI3): δ 7.81 (d, 1H, *J* = 1.5 Hz, Ar-H-2), 7.75 (d, 1H, *J* = 8.4 Hz, Ar-H-5), 7.64 (dd, 1H, *J* = 8.4, 1.5 Hz, Ar-H-6), 4.68 (t, 1H, *J* = 5.3 Hz, NHBoc), 3.18 – 3.27 (m, 2H, 2 × CH), 3.05 – 3.14 (m, 2H, 2 × CH), 2.83 – 2.89 (m, 1H, CH), 2.63 – 2.68 (m, 1H, CH), 1.88 – 2.00 (m, 1H, CH), 1.67 – 1.87 (m, 3H, 3 × CH), 1.46 (s, 9H, tBu), 1.16 – 1.28 (m, 1H, CH), 3.96 (s, 3H, COOCH₃) ppm. ¹³C NMR (100 MHz, CDCI3): δ 165.6 (COOMe), 156.15, 146.39, 145.51, 134.16, 125.70, 122.79, 121.99, 79.31 (CCH₃), 55.82, 52.78, 52.70, 46.64, 37.08, 28.39 (3 × CH₃), 27.85, 24.58 ppm. IR (ATR): v 3394, 2937, 1724, 1679, 1605, 1513, 1434, 1338, 1366, 1342, 1271, 1237, 1222, 1130, 1109, 1003, 980, 882, 837, 745, 627 cm⁻¹. MS (ESI) *m/z* = 394.0 ([M+H]⁺).

tert-Butyl 4-(2-amino-5-(methoxycarbonyl)phenyl)piperazine-1-carboxylate (16a). To the solution of compound 2a (5.44 g, 16.0 mmol) in a mixture of methanol (200 mL) and tetrahydrofuran (90 mL) under an argon atmosphere Pd-C (1.00 g) was added, the mixture was saturated with hydrogen and stirred under a hydrogen atmosphere at rt for 4 h. The catalyst was filtered off and the solvent was removed under reduced pressure to afford 16a (4.87 g) as white solid. Yield 90% (4.87 g); white solid; mp 135 – 137 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.49 (dd, 1H, *J* = 8.4, 1.9 Hz, ArH), 7.44 (d, 1H, *J* = 1.9 Hz, ArH), 6.70 (d, 1H, *J* = 8.4 Hz, ArH), 5.73 (br s, 2H, NH₂), 3.74 (s, 3H, CH₃), 3.44 – 3.59 (m, 4H, 2 × CH₂), 2.68 – 2.84 (m, 4H, 2 × CH₂), 1.43 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.3, 153.9, 147.6, 136.7, 126.8, 120.6, 116.4, 113.1, 78.8, 51.2, 50.4, 43.2, 28.0 ppm. IR (ATR): v 3412, 3319, 2977, 2811, 1685, 1614, 1579, 1510, 1477, 1440, 1417, 1362, 1323, 1302, 1261, 1248, 1218, 1157, 1133, 1107, 1066, 1052, 1039, 993, 945, 930, 908, 870, 843, 829, 811, 769, 649, 624 cm⁻¹. MS (ESI) m/z = 336.2 ([M+H]⁺). HRMS for C₁₇H₂₆O₃N₄: calculated 336.1923, found 336.1924.

Methyl (*S*)-4-amino-3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)benzoate (16b). To the solution of compound 2b (1.62 g, 4.43 mmol) in a mixture of methanol (65 mL) and tetrahydrofuran (15 mL) under an argon atmosphere Pd-C (500 mg) was added, the mixture was saturated with hydrogen and stirred under a hydrogen atmosphere at rt for 4 h. The catalyst was filtered off and the solvent was removed under reduced pressure. The crude product was purified with flash column chromatography (ethyl acetate/petroleum ether = 1:3 to 1:1) to afford 16b (1.78 g) as pink solid. Yield 87% (1.78 g); pink solid; mp 105 – 107 °C. ¹H NMR (400 MHz, CDCl3): δ 7.49 (m, 2H, 2 × ArH), 7.37 (d, 1H, *J* = 7.9 Hz, NHBoc), 6.64 (d, 1H, *J* = 8.2 Hz, ArH), 5.69 (s, 2H, NH₂), 4.07 – 4.15 (m, 1H, CH), 3.73 (s, 3H, CH₃), 3.04 – 3.13 (m, 2H, 2 × CH), 2.78 – 2.82 (m, 2H, 2 × CH), 2.15 – 2.27 (m, 1H, CH), 1.63 – 1.70 (m, 1H, CH), 1.39 (s, 9H, tBu) ppm. IR (ATR): v 3413, 3360, 3330, 2975, 2844, 2361, 1684, 1667, 1616, 1583,

1527, 1512, 1441, 1391, 1367, 1314, 1291, 1269, 1243, 1169, 1107, 1043, 1021, 1008, 958, 894, 857, 826, 808, 767, 745, 697, 654, 630, 548 cm⁻¹. $[\alpha]_D^{25}$ 0.073 (*c* 0.418, DMF). MS (ESI) m/z = 336.3 ([M+H]⁺).

Methyl (5)-4-amino-3-(3-((*tert***-butoxycarbonyl)amino)piperidin-1-yl)benzoate (16c).** To the solution of compound **15c** (1.78 g, 4.69 mmol) in a mixture of methanol (65 mL) and tetrahydrofuran (25 mL) under an argon atmosphere Pd-C (500 mg) was added, the mixture was saturated with hydrogen and stirred under a hydrogen atmosphere at rt for 4 h. The catalyst was filtered off and the solvent was removed under reduced pressure to afford **16c** (1.56 g) as white solid. Yield 88% (1.56 g); white solid; mp 112 – 114 °C. ¹H NMR (400 MHz, CDC13): δ 7.47 (dd, *J* = 8.3, 1.9 Hz, Ar-H-6), 7.42 (d, *J* = 1.9 Hz, Ar-H-2), 6.93 – 7.05 (m, 1H, NH), 6.68 (d, *J* = 8.3 Hz, Ar-H-5), 5.71 (br s, 2H, NH₂), 3.74 (s, 3H, CH₃), 3.60 – 3.69 (m, 1H, CH), 2.96 – 3.00 (m, 1H, CH), 2.70 – 2.81 (m, 1H, CH), 2.36 – 2.50 (m, 1H, CH₂), 1.71 – 1.87 (m, 1H, CH₂), 1.57 – 1.75 (m, 1H, CH), 1.39 (s, 9H, tBu), 1.27 – 1.37 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.3, 154.9, 147.9, 137.4, 126.6, 120.7, 116.3, 113.0, 77.6, 56.3, 51.4, 51.2, 47.0, 29.7, 28.2 ppm. IR (ATR): v 3440, 3403, 3363, 2935, 2850, 2361, 2048, 1979, 1698, 1681, 1674, 1651, 1584, 1522, 1510, 1439, 1389, 1366, 1302, 1279, 1260, 1243, 1222, 1165, 1104, 1053, 1032, 1005, 945, 910, 899, 868, 827, 807, 768, 745, 698, 648, 635, 622 cm⁻¹. MS (ESI) m/z = 350.2 ([M+H]⁺). HRMS for C₁₈H₂₈N₃O₄: calculated 350.2080, found 350.2072.

tert-Butyl 4-((2-amino-5-(methoxycarbonyl)phenyl)amino)piperidine-1-carboxylate (16d). Compound 15d (200 mg, 0.527 mmol) was dissolved in methanol (50 mL) and flushed with argon. Pd/C (10%, 20 mg) was added and the reaction mixture was then stirred at rt under hydrogen atmosphere for 1 h. The catalyst was filtered off and the solvent removed *in vacuo*. Yield 100% (184 mg); light brown solid; mp: 140 – 143 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.14 (dd, *J* = 1.9, 8.1 Hz, ArH), 7.05 (d, *J* = 1.9 Hz, ArH), 6.55 (d, *J* = 8.1 Hz, ArH), 5.45 (s, 2H, NH₂), 4.40 (d, 1H, *J* = 7.6 Hz, NH), 3.89 (d, 2H, *J* = 13.0 Hz, CH₂), 3.72 (s, 3H, CH₃), 3.39 – 3.51 (m, 1H, CH), 2.95 (s, 2H, CH₂), 1.85 – 1.97 (m, 2H, CH₂), 1.41 (s, 9H, tBu), 1.20 – 1.34 (m, 2H, CH₂) ppm. IR (ATR): v 3366, 3266, 2932, 1765, 1688, 1662, 1588, 1522, 1497, 1472, 1415, 1364, 1206, 1173, 1145, 1091, 1041, 944, 826, 854, 767, 708, 629 cm⁻¹. MS (ESI) *m/z* = 372.0 ([M+Na]⁺).

Methyl 4-amino-3-morpholinobenzoate (16e). To the solution of compound 15e (4.00 g, 15.0 mmol) in a mixture of methanol (190 mL) and tetrahydrofuran (80 mL) under an argon atmosphere Pd-C (400 mg) was added, the mixture was saturated with hydrogen and stirred under a hydrogen atmosphere at rt for 3 h. The catalyst was filtered off and the solvent was removed under reduced pressure to obtain 16e (3.51 g) as white solid. Yield 99% (3.51 g); white solid; mp 122 – 124 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.48 (dd, *J* = 8.2, 1.9 Hz, ArH), 7.45 (d, *J* = 2.0 Hz, ArH), 6.70 (d, *J* = 8.3 Hz, ArH), 5.68 (s, 2H, NH₂), 3.75 – 3.81 (m, 7H, 2 × CH₂, CH₃), 2.74 – 2.82 (m, 4H, 2 × CH₂) ppm.

Methyl 4-amino-3-(2-methylmorpholino)benzoate (16f). To the solution of compound **15f** (2.10 g, 7.49 mmol) in a mixture of methanol (90 mL) and tetrahydrofuran (40 mL) under an argon atmosphere Pd-C (210 mg) was added, the mixture was saturated with hydrogen and stirred under a hydrogen atmosphere at rt for 5 h. The catalyst was filtered off and the solvent was removed under reduced pressure to obtain **16f** (1.80 g) as white solid. Yield 96% (1.80 g); white solid; mp 111 – 114 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.46 – 7.52 (m, 1H, ArH), 7.44 (s, 1H, ArH), 6.70 (d, *J* = 8.3 Hz, ArH), 5.68 (s, 2H, NH₂), 3.80 – 3.87 (m, 1H, CH), 3.74 (s, 5H, 2 × CH, CH₃), 2.84 – 2.94 (m, 2H, 2 × CH), 2.57 (td, *J* = 11.3, 3.3 Hz, CH), 2.32 (t, *J* = 10.5 Hz, CH), 1.10 (d, *J* = 6.2 Hz, CH₃) ppm.

Methyl 4-amino-3-(2,6-dimethylmorpholino)benzoate (16g). To the solution of compound **15g** (2.50 g, 8.49 mmol) in a mixture of methanol (90 mL) and tetrahydrofuran (40 mL) under an argon atmosphere Pd-C (250 mg) was added, the mixture was saturated with hydrogen and stirred under a hydrogen atmosphere at rt for 3 h. The catalyst was filtered off and the solvent was removed under reduced pressure and the crude product was recrystallized from EtOAc to obtain **16g** (0.628 g) as white solid. Yield 28% (0.628 g); white solid; mp 137 – 142 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.47 (dd, 1H, *J* = 8.3, 1.9 Hz, ArH), 7.42 (d, 1H, *J* = 1.9 Hz, ArH), 6.69 (d, 1H, *J* = 8.3 Hz, ArH), 5.66 (s, 2H, NH₂), 3.77 – 3.85 (m, 2H, 2 × CH), 3.74 (s, 3H, CH₃), 2.89 – 2.95 (m, 2H, 2 × CH), 2.17 – 2.27 (m, 2H, 2 × CH), 1.10 (d, 6H, *J* = 6.2 Hz, 2 × CH₃) ppm.

Methyl 4-amino-3-(4-phenylpiperazin-1-yl)benzoate (16h). Compound **15h** (0.600 g, 1.93 mmol) was dissolved in methanol and tetrahydrofuran (3:1, 80 mL) and flushed with argon. Pd/C (10%, 60 mg) was added and the reaction mixture was then stirred at rt under hydrogen atmosphere for 3 h. The catalyst was filtered off and the solvent removed *in vacuo*. The crude product was suspended in diethyl ether, sonicated, filtered off and dried. Yield 59% (320 mg); grey solid; mp 124 – 129 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.47 – 7.52 (m, 2H, 2 × ArH), 7.19 – 7.29 (m, 2H, 2 × ArH), 6.95 – 7.03 (m, 2H, 2 × ArH), 6.76 – 6.85 (m, 1H, ArH), 6.73 (d, 1H, *J* = 8.8 Hz, ArH), 5.69 (s, 2H, NH₂), 3.75 (s, 3H, CH₃), 3.32 (4H, overlapped with the signal for water, 2 × CH₂), 2.95 (t, 4H, *J* = 4.9 Hz, 2 × CH₂) ppm. IR (ATR): **v** 3424, 3335, 2954, 2820, 1689, 1600, 1510, 1493, 1439, 1375, 1320, 1283, 1183, 1139, 1105, 1048, 986, 945, 909, 831, 692, 648 cm⁻¹. MS (ESI) *m/z* = 312.0 ([M+H]⁺).

Methyl 4-amino-3-(3-(((*tert*-butoxycarbonyl)amino)methyl)piperidin-1-yl)benzoate (16i). To the solution of compound 15i (2.10 g, 5.34 mmol) in methanol (150 mL) under an argon atmosphere Pd-C (210 mg) was added, the mixture was saturated with hydrogen and stirred under a hydrogen atmosphere at rt for 4 h. The catalyst was filtered off and the solvent was removed under reduced pressure. The crude product was purified with flash column chromatography using ethyl acetate/petroleum ether (1/2) as an eluent to give 16i (1.60 g) as pink solid. Yield 82% (1.60 g); pink solid; mp 119 – 121 °C. ¹H NMR (400 MHz, CDCl3): δ 7.67 (d, 1H, *J* = 1.9 Hz, Ar-H-2), 7.64 (dd, 1H, *J* = 8.4, 1.9 Hz, Ar-H-6), 6.68 (d, 1H, *J* = 8.4 Hz, Ar-H-5), 4.66 (t, 1H, *J* = 5.9 Hz, NHBoc), 4.41 (s, 2H, NH₂), 3.85 (s, 3H, COOCH₃), 3.19 –

2.95 (m, 4H, CH), 2.66 – 2.51 (m, 1H, CH), 2.50 – 2.33 (m, 1H, CH), 1.95 – 1.73 (m, 3H, CH), 1.72 – 1.59 (m, 1H, CH), 1.43 (s, 9H, tBu), 1.23 – 1.04 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 167.4 (COOMe), 156.1, 146.5, 139.1, 127.2, 122.0, 119.4, 113.6, 79.2 (CCH₃), 55.8, 52.5, 51.6, 44.1, 37.6, 28.4 (3 × CH₃), 28.2, 25.5 ppm. IR (ATR): v 3425, 3398, 3309, 2977, 2931, 2850, 1700, 1622, 1514, 1436, 1392, 1365, 1291, 1260, 1216, 1165, 1108, 1003, 884, 832, 765, 697, 635 cm⁻¹. MS (ESI) m/z = 364.22 ([M+H]⁺).

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-

(methoxycarbonyl)phenyl)piperazine-1-carboxylate (17a). Synthesised according to *General procedure B* from 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (0.850 g, 4.38 mmol) and 16a (1.62 g, 4.82 mmol). During the extraction the product precipitated and was filtered off. The crude product was sequentially triturated with methanol and tetrahydrofuran, and the undissolved solid was filtered off and dried, to obtain 17a (0.589 g) as white solid. Yield 25% (0.589 g); white solid; mp 132 – 136 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.45 (s, 1H, NH), 9.79 (s, 1H, NH), 8.51 (d, 1H, *J* = 8.6 Hz, ArH), 7.78 – 7.89 (m, 2H, 2 × ArH), 3.84 (s, 3H, CH₃), 3.52 (br s, 4H, 2 × CH₂), 2.78 – 2.87 (m, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃), 1.44 (s, 9H, tBu) ppm. IR (ATR): v 3252, 2975, 2892, 2364, 1722, 1686, 1639, 1593, 1524, 1488, 1455, 1410, 1378, 1365, 1332, 1273, 1258, 1245, 1218, 1194, 1164, 1131, 1116, 1098, 1079, 1041, 998, 980, 939, 894, 860, 844, 818, 748, 740, 711, 664, 650, 632, 622, 611 cm⁻¹. MS (ESI) m/z = 511.2 ([M+H]⁺). HRMS for C₂₃H₂₉N₄O₅Cl₂: calculated 511.1515, found 511.1524. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 µm, 4.6 × 150 mm): *t*_r 16.803 min (98.3% at 280 nm).

Methyl (*S*)-3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoate (17b). Synthesised according to *General procedure B* from 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (0.446 g, 2.30 mmol) and 16b (0.700 g, 2.09 mmol). The crude product obtained after the extraction was triturated with methanol, and the undissolved solid was filtered off and dried, to obtain 17b (391 mg) as brown solid. Yield 60% (0.965 g); white solid; mp 113 – 116 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.41 (s, 1H, NH), 9.60 (s, 1H, NH), 8.36 (d, 1H, *J* = 8.5 Hz, ArH), 7.81 (d, 1H, *J* = 2.0 Hz, ArH), 7.74 (dd, 1H, *J* = 8.5, 2.0 Hz, ArH), 7.19 (d, 1H, *J* = 6.7 Hz, NHBoc), 4.07 – 4.15 (m, 1H, CH), 3.29 – 3.34 (m, 1H, CH), 3.12 – 3.19 (m, 1H, CH), 3.01 – 3.07 (m, 1H, CH), 2.88 – 2.92 (m, 1H, CH), 2.24 (s, 3H, CH₃), 2.14 – 2.23 (m, 1H, CH), 1.78 – 1.89 (m, 1H, CH), 1.40 (s, 9H, tBu), 3.85 (s, 3H, CH₃) ppm. IR (ATR): v 3301, 2973, 2361, 2340, 1716, 1684, 1646, 1591, 1519, 1489, 1439, 1409, 1365, 1324, 1302, 1254, 1179, 1129, 1100, 1060, 1042, 1017, 954, 883, 838, 761, 737, 650, 628, 606, 562, 527 cm⁻¹. [a]p²⁵ 0,953 (*c* 0,270, DMF). MS (ESI) m/z = 511.2 ([M+H]⁺).

Methyl (S)-3-(3-((*tert*-butoxycarbonyl)amino)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*pyrrole-2-carboxamido)benzoate (17c). Synthesised according to *General procedure B* from 3,4dichloro-5-methyl-1H-pyrrole-2-carboxylic acid (0.590 g, 3.07 mmol) and 16c (1.00 g, 2.98 mmol). During the extraction part of the product precipitated and was filtered off. The crude product was sequentially triturated with diethyl ether and methanol, and the undissolved solid was filtered off and dried, to obtain 17c (0.965 g) as white solid. Yield 64% (0.965 g); white solid; mp 188 – 191 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.45 (s, 1H, NH), 9.83 (s, 1H, NH), 8.51 (d, 1H, *J* = 8.9 Hz, ArH), 7.81 -7.83 (m, 2H, 2 × ArH), 6.88 (d, 1H, J = 7.2 Hz, NH), 3.85 (s, 3H, CH₃), 3.54 -3.66 (m, 1H, CH), 2.91 - 3.01 (m, 1H, CH), 2.78 - 2.88 (m, 1H, CH), 2.53 - 2.62 (m, 2H, CH₂), 2.25 (s, 3H, CH₃), 1.76 - 1.94 (m, 1H, CH₂), 1.60 – 1.73 (m, 1H, CH), 1.35 (s, 9H, tBu), 1.22 – 1.30 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.6, 156.6, 154.8, 141.6, 138.3, 130.0, 127.1, 124.4, 122.6, 118.7, 110.0, 108.7, 77.7, 57.5, 53.0, 52.0, 47.5, 29.4, 28.2, 24.4, 10.8 ppm. Signal for one aromatic carbon not seen. IR (ATR): v 3328, 3103, 2958, 2363, 2204, 2049, 1990, 1719, 1687, 1639, 1590, 1521, 1490, 1436, 1408, 1365, 1354, 1319, 1288, 1263, 1231, 1197, 1176, 1160, 1122, 1105, 1083, 1069, 1054, 1039, 1026, 997, 938, 927, 863, 836, 812, 762, 773, 733, 669, 650, 624, 609 cm⁻¹. $[\alpha]^{20}_{D} = +0.30^{\circ}$ (c 0.375, THF). MS (ESI) m/z = 525.2 ([M+H]⁺). HRMS for C₂₄H₃₁N₄O₅Cl₂: calculated 525.1672, found 525.1681. HPLC (0-16 min, 30-90% ACN in 0.1% TFA, 16-20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 μ m, 4,6 × 150 mm): t_r 16.404 min (98.7% at 280 nm).

tert-Butyl 4-((2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-

(methoxycarbonyl)phenyl)amino)piperidine-1-carboxylate (17d). To a suspension of 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (113 mg, 0.584 mmol) in anhydrous dichloromethane (10 mL), oxalyl chloride (209 μ L, 2.43 mmol) was added dropwise and the reaction mixture was stirred at rt under argon atmosphere overnight. The solvent was evaporated under reduced pressure, **16d** (170 mg, 0.487 mmol), anhydrous pyridine (2 mL) and anhydrous dichloromethane (10 mL) were added and the reaction mixture was stirred at rt under argon atmosphere overnight. The solvent was removed *in vacuo*, to the residue ethyl acetate and water were added and the formed precipitate was filtered off and dried. Yield 63% (160 mg); white solid; mp 210 – 212 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.30 (s, 1H, NH), 8.94 (s, 1H, NH), 7.84 (d, 1H, *J* = 8.2 Hz, ArH), 7.32 – 7.47 (m, 2H, 2 × ArH), 5.11 (d, 1H, *J* = 6.9 Hz, NH), 3.87 (s, 1H, CH), 3.83 (s, 3H, CH₃), 3.38 – 3.48 (m, 2H, CH₂), 2.97 (s, 2H, CH₂), 2.24 (s, 3H, CH₃), 1.80 – 1.94 (m, 2H, CH₂), 1.40 (s, 9H, tBu), 1.23 – 1.37 (m, 2H, CH₂) ppm. IR (ATR): **v** 3324, 3244, 2945, 1685, 1641, 1556, 1533, 1495, 1425, 1291, 1260, 1215, 1171, 1138, 1110, 1045, 979, 950, 912, 814, 763, 733, 705, 670, 613 cm⁻¹. MS (ESI) *m/z* = 522.9 ([M-H]⁻).

Methyl 4-(3,4-dichloro-5-methyl-1*H***-pyrrole-2-carboxamido)-3-morpholinobenzoate (17e).** To the 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (0.65 g, 3.38 mmol) SOCl₂ (8.28 mL, 114.15 mmol) was added and the mixture was stirred at 75 °C for 1 h under argon atmosphere. The solvent was was removed *in vacuo*, then toluene (50 mL) and **16e** (0.66 g, 2.81 mmol) were added. The reaction mixture was stirred for 15 h at 130 °C under argon atmosphere. The solvent was evaporated under

reduced pressure, the crude residue was suspended in EtOAc and filtered off to obtain a brown solid. The solid was suspended again in MeOH, filtered off and dried to obtain **17e** as a light-brown solid. Yield 70% (0.811 g); light-brown solid; mp 274 – 280 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.45 (s, 1H, NH), 9.82 (s, 1H, NH), 8.52 (d, 1H, J = 8.6 Hz, ArH), 7.87 – 7.93 (m, 1H, ArH), 7.80 – 7.87 (m, 1H, ArH), 3.85 (s, 3H, CH₃), 3.79 (t, 4H, J = 4.4 Hz, 2 × CH₂), 2.87 (t, 4H, J = 4.5 Hz, 2 × CH₂), 2.25 (s, 3H, CH₃) ppm.

Methyl 4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-3-(2-methylmorpholino)benzoate (17f). Synthesised according to *General procedure B* from 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (0.82 g, 4.20 mmol) and 16f (0.700 g, 2.80 mmol). The suspension formed in the reaction mixture was filtered off and the solvent of the filtrate was evaporated under reduced pressure. The crude product was suspended in EtOAc (6 mL) and water (6 mL), filtered off and washed with EtOAc to obtain 17f (227 mg) as a pale-brown solid. Yield 19% (227 mg); white solid; mp 232 – 235 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.45 (s, 1H, NH), 9.83 (s, 1H, NH), 8.53 (d, 1H, *J* = 8.6 Hz, ArH), 7.80 – 7.89 (m, 2H, 2 × ArH), 3.90 (d, 1H, *J* = 11.3 Hz, CH), 3.85 (s, 3H, CH₃), 3.68 – 3.80 (m, 2H, 2 × CH), 2.89 (d, 1H, *J* = 11.1 Hz, CH), 2.76 – 2.85 (m, 2H, 2 × CH), 2.52 – 2.58 (m, 1H, CH), 2.24 (s, 3H, CH₃), 1.12 (d, 3H, *J* = 6.1 Hz, CH₃) ppm.

Methyl 4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-3-(2,6dimethylmorpholino)benzoate (17g). Synthesised according to *General procedure B* from 3,4dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (220 mg, 1.13 mmol) and 16g (200 mg, 0.760 mmol). The suspension formed in the reaction mixture was filtered off, washed with dichloromethane and dried to obtain 17g (288 mg) as a white solid. Yield 86% (288 mg); white solid; mp 277 – 279 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.46 (s, 1H, NH), 9.84 (s, 1H, NH), 8.54 (d, 1H, *J* = 8.5 Hz, ArH), 7.85 (d, 1H, *J* = 2.0 Hz, ArH), 7.83 (dd, 1H, *J* = 8.6, 2.0 Hz, ArH), 3.85 (s, 3H, CH₃), 3.78 – 3.84 (m, 2H, 2 × CH), 2.85 – 2.89 (m, 2H, 2 × CH), 2.42 – 2.47 (m, 2H, 2 × CH), 2.24 (s, 3H, CH₃), 1.12 (d, 6H, *J* = 6.3 Hz, 2 × CH₃) ppm.

Methyl 4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-3-(4-phenylpiperazin-1yl)benzoate (17h). To a suspension of 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (224 mg, 1.16 mmol) in anhydrous dichloromethane (15 mL), oxalyl chloride (413 μ L, 4.82 mmol) was added dropwise and the reaction mixture was stirred at rt under argon atmosphere overnight. The solvent was evaporated under reduced pressure, **16h** (300 mg, 0.963 mmol), anhydrous pyridine (2 mL) and anhydrous dichloromethane (15 mL) were added and the reaction mixture was stirred at rt under argon atmosphere for 15 h. The solvent was removed *in vacuo*, to the residue ethyl acetate and water were added and the formed precipitate was filtered off, washed with methanol and dried. Yield 32% (150 mg); light grey solid; mp 218 – 221 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.48 (s, 1H, NH), 9.88 (s, 1H, NH), 8.54 (d, 1H, *J* = 8.6 Hz, ArH), 7.92 (d, 1H, *J* = 2.0 Hz, ArH), 7.85 (dd, 1H, *J* = 2.0, 8.6 Hz, ArH), 7.30 – 7.23 (m, 2H, 2 × ArH), 7.05 – 6.99 (m, 2H, 2 × ArH), 6.84 (t, 1H, J = 7.2 Hz, ArH), 3.86 (s, 3H, CH₃), 3.40 (4H, overlapped with the signal for water, 2 × CH₂), 3.04 (t, 4H, J = 4.9 Hz, 2 × CH₂), 2.24 (s, 3H, CH₃) ppm. IR (ATR): **v** 3804, 3679, 3633, 3307, 2181, 2106, 2046, 2010, 1951, 1860, 1689, 1629, 1560, 1511, 1434, 1188, 1101, 1055, 990, 945, 882, 841, 771, 731, 668 cm⁻¹.

Methyl 3-(3-(((tert-butoxycarbonyl)amino)methyl)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1Hpyrrole-2-carboxamido)benzoate (17i). Synthesised according to General procedure B from 3,4dichloro-5-methyl-1H-pyrrole-2-carboxylic acid (695 mg, 3.58 mmol) and 16i (1.24 g, 3.41 mmol). The solid was purified with flash column chromatography using dichloromethane/methanol (50/1) as an eluent to give 17i (0.450 g) as white solid. Yield 24% (0.450 g); white solid; mp 192 – 194 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.47 (s, 1H, NH), 9.91 (s, 1H, NH), 8.56 (d, 1H, *J* = 8.4 Hz, Ar-H-5), 7.91 (d, 1H, J = 1.9 Hz, Ar-H-2), 7.85 (dd, 1H, J = 8.4, 1.9 Hz, Ar-H-6), 6.93 (t, 1H, J = 5.7 Hz, NHBoc), 3.89 (s, 3H, COOCH₃), 2.87 – 3.02 (m, 3H, 3 × CH), 2.76 – 2.85 (m, 1H, CH), 2.64 – 2.69 (m, 1H, CH), 2.39 – 2.45 (m, 1H, CH), 2.28 (s, 3H, CH₃), 1.87 – 1.99 (m, 1H, CH), 1.77 – 1.86 (m, 2H, 2 × CH), 1.62 - 1.75 (m, 1H, CH), 1.36 (s, 9H, tBu), 1.05 - 1.13 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.7 (COOMe), 156.6, 155.6, 142.4, 138.3, 130.0, 126.9, 124.3, 122.4, 118.7, 118.4, 110.0, 109.8, 108.7, 77.4 (CCH₃), 57.1, 53.3, 52.0, 43.6, 37.3, 28.1, 27.6, 25.4, 10.7 ppm. IR (ATR): v 3381, 3292, 2933, 1696, 1648, 1592, 1518, 1491, 1437, 1414, 1365, 1260, 1169, 1109, 1007, 973, 944, 891, 760, 687 cm⁻¹. MS (ESI) m/z = 539.18 ([M+H]⁺). HRMS for C₂₅H₃₃Cl₂N₄O₅: calculated 539.1815, found 539.1823. HPLC: Agilent Zorbax 80Å Extend-C18 (3.5 μm, 4.6 × 150 mm); mobile phase: 5% acetonitrile in 0.1% TFA to 8 min, 5-95% of acetonitrile from 8 to 15 min, 95% acetonitrile from 15 to 16 min, 95-5% of acetonitrile from 16 to 18 min, 5% of acetonitrile from 18 to 21 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 15.577 min (99.6% at 254 nm).

3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-4-(3,4-dichloro-5-methyl-1H-pyrrole-2-

carboxamido)benzoic acid (18a). To a solution of compound **17a** (201 mg, 0.391 mmol) in a mixture of methanol (10 mL) and tetrahydrofuran (7 mL) 1 M NaOH (1.56 mL, 1.56 mmol) was added and the mixture was stirred at rt for 15 h. The solvent was removed under reduced pressure, to the residue water (10 mL) was added and the mixture was acidified to pH 4 with 1 M HCl. The water phase was extracted with ethyl acetate (20 mL), the organic phase was washed with brine (10 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was triturated with diethyl ether and the undissolved solid was filtered off and dried to obtain **18a** as pale pink solid (70 mg). Yield 35% (70 mg); pale pink solid; mp 260 – 262 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.87 (s, 1H, COOH), 12.45 (s, 1H, NH), 9.78 (s, 1H, NH), 8.49 (d, 1H, *J* = 8.6 Hz, ArH), 7.77 – 7.88 (m, 2H, 2 × ArH), 3.42 – 3.63 (m, 4H, 2 × CH₂), 2.75 – 2.91 (m, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃), 1.44 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.7, 156.6, 153.8, 141.1, 137.8, 129.9, 127.3, 125.7, 122.6, 118.7, 118.7, 109.8, 108.6, 79.1, 51.9, 28.0, 10.8 ppm. One peak not seen. IR (ATR): v 3261, 2980, 2363, 1713,

1644, 1609, 1594, 1523, 1489, 1456, 1429, 1410, 1376, 1366, 1338, 1280, 1248, 1211, 1199, 1169, 1137, 1105, 1088, 1042, 1005, 956, 897, 865, 833, 800, 765, 724, 700, 646, 629, 619, 609 cm⁻¹. MS (ESI) m/z = 495.1 ([M-H]⁻). HRMS for C₂₂H₂₅N₄O₅Cl₂: calculated 495.1202, found 495.1206. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 μ m, 4.6 × 150 mm): *t*_r 14.030 min (96.3% at 280 nm).

(S)-3-(3-((tert-Butoxycarbonyl)amino)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1H-pyrrole-2-

carboxamido)benzoic acid (18c). To a solution of compound 17c (203 mg, 0.391 mmol) in a mixture of methanol (5 mL) and tetrahydrofuran (4 mL) 1 M NaOH (3.13 mL, 3.13 mmol) was added and the mixture was stirred at rt for 15 h. The solvent was removed under reduced pressure, to the residue water (10 mL) was added and the mixture was acidified to pH 4 with 1 M HCl. The water phase was extracted with ethyl acetate (20 mL), the organic phase was washed with brine (10 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure to obtain 18c (101 mg) as pale-yellow solid. Yield 50% (101 mg); pale yellow solid; mp 231 – 233 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.89 (br s, 1H, COOH), 12.46 (s, 1H, NH), 9.83 (s, 1H, NH), 8.49 (d, 1H, J = 8.5 Hz, ArH-5), 7.75 – 7.91 (m, 2H, 2 × ArH), 6.80 – 6.99 (m, 1H, NHBoc), 3.55 – 3.67 (m, 1H, CH), 2.91 – 3.03 (m, 1H, CH), 2.78 – 2.88 (m, 1H, CH), 2.53 – 2.62 (m, 2H, CH₂), 2.25 (s, 3H, CH₃), 1.75 – 1.96 (m, 2H, CH₂), 1.60 – 1.74 (m, 1H, CH), 1.36 (s, 9H, tBu), 1.23 – 1.30 (m, 1H, CH) ppm. IR (ATR): v 3326, 2959, 2362, 2163, 2032, 2001, 1969, 1717, 1686, 1639, 1588, 1519, 1490, 1437, 1405, 1365, 1318, 1289, 1262, 1173, 1122, 1107, $1082, 1068, 1038, 1026, 997, 960, 928, 877, 864, 839, 805, 765, 731, 676, 648, 625, 608 \text{ cm}^{-1}$. $[\alpha]^{20}_{D} =$ + 0.44° (c 0.297, THF). MS (ESI) m/z = 511.2 ([M+H]⁺). HRMS for C₂₃H₂₉N₄O₅Cl₂: calculated 511.1515, found 511.1512. HPLC (0-16 min, 30-90% ACN in 0.1% TFA, 16-20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 μ m, 4.6 × 150 mm): t_r 13.706min (97.7% at 280 nm).

3-((1-(*tert*-Butoxycarbonyl)piperidin-4-yl)amino)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2carboxamido)benzoic acid (18d). To a solution of 17d (40 mg, 0.076 mmol) in methanol, 1 M NaOH (0.761 mL, 0.761 mmol) was added and the reaction mixture was stirred at 60 °C for 15 h. The solvent was evaporated *in vacuo* and the residue was neutralised with 1 M HCl to pH 7. The precipitate that formed was filtered off and dried to obtain 18d (30 mg) as light brown solid. Yield 77% (30 mg); light brown solid. ¹H NMR (400 MHz, DMSO-d₆): δ 12.60 (br s, 1H, COOH), 12.30 (s, 1H, NH), 8.93 (s, 1H, NH), 7.80 (d, 1H, *J* = 8.3 Hz, ArH), 7.33 – 7.43 (m, 2H, 2 × ArH), 5.07 (d, 1H, *J* = 6.9 Hz, NH), 3.86 (d, 2H, *J* = 13.6 Hz, CH₂), 3.48 (d, 1H, *J* = 9.7 Hz, CH), 2.97 (s, 2H, CH₂), 2.24 (s, 3H, CH₃), 1.88 (d, 2H, *J* = 12.7 Hz, CH₂), 1.40 (s, 9H, tBu), 1.25 – 1.38 (m, 2H, CH₂) ppm.

4-(3,4-Dichloro-5-methyl-1*H***-pyrrole-2-carboxamido)-3-(4-phenylpiperazin-1-yl)benzoic** acid (18h). To a solution of 17h (30 mg, 0.062 mmol) in methanol, 1 M NaOH (0.616 mL, 0.616 mmol) was added and the reaction mixture was stirred at 60 °C for 15 h. The solvent was evaporated *in vacuo* and the residue was neutralised with 1 M HCl to pH 7. The precipitate that formed was filtered off to afford

17h (28.8 mg) as light brown solid. Yield 99% (28.8 mg); light brown solid; mp >300 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.90 (s, 1H, COOH), 12.47 (s, 1H, NH), 9.87 (s, 1H, NH), 8.51 (d, 1H, *J* = 8.8 Hz, ArH), 7.91 (s, 1H, ArH), 7.84 (s, 1H, ArH), 7.27 (s, 2H, 2 × ArH), 7.03 (s, 2H, 2 × ArH), 6.84 (s, 1H, ArH), 3.33 (4H, overlapped with the signal for water, 2 × CH₂), 3.04 (s, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃) ppm. IR (ATR): v 3257, 3176, 3132, 3073, 2961, 2883, 2825, 1749, 1680, 1632, 1586, 1557, 1518, 1492, 1438, 1409, 1375, 1289, 1271, 1254, 1234, 1154, 1134, 1091, 1044, 966, 922, 883, 767 cm⁻¹. HRMS (ESI⁺) *m/z* for C₂₃H₂₃Cl₂N₄O₃ ([M+H]⁺): calculated 473.1142, found 473.1138. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Extend-C18 column: 3.5 μ m, 4.6 × 150 mm): *t*_r 15.437 min (95.50 % at 254 nm).

3-(3-(((tert-Butoxycarbonyl)amino)methyl)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1H-

pyrrole-2-carboxamido)benzoic acid (18i). To a solution of compound 17i (180 mg, 0.33 mmol) in a mixture of methanol (10 mL) and tetrahydrofuran (10 mL) 1 M NaOH (1.32 mL, 1.32 mmol) was added and the mixture was stirred at rt for 15 h. The solvent was removed under reduced pressure, EtOAc (10 mL) and 1 M HCl (10 mL) were added to the residue. The phases were separated, the organic phase was washed with brine (2 \times 10 mL), dried over Na₂SO₄, filtered and the solvent removed under reduced pressure to afford **18i** (160 mg) as white solid. Yield 92% (160 mg); white solid; mp 221 - 224 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.86 (br s, 1H, COOH), 12.44 (s, 1H, NH), 9.86 (s, 1H, NHAr), 8.49 (d, 1H, J = 8.4 Hz, Ar-H-5), 7.86 (d, 1H, J = 1.8 Hz, Ar-H-2), 7.78 (dd, 1H, J = 8.4, 1.8 Hz, Ar-H-6), 6.90 (t, 1H, J = 5.8 Hz, NHBoc), 2.81 - 2.98 (m, 3H, $3 \times CH$), 2.69 - 2.80 (m, 1H, CH), 2.59 - 2.69 (m, 1H, CH), 2.35 – 2.40 (m, 1H, CH), 2.24 (s, 3H, CH₃), 1.83 – 1.93 (m, 1H, CH), 1.72 – 1.82 (m, 2H, 2 × CH), 1.59 – 1.71 (m, 1H, CH), 1.31 (s, 9H, tBu), 0.99 – 1.09 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.9, 156.6, 155.6, 142.3, 137.8, 129.9, 126.9, 125.7, 122.6, 118.7, 118.3, 109.9, 108.6, 77.4, 57.2, 53.3, 43.6, 37.3, 28.1, 27.6, 25.4, 10.7 ppm. IR (ATR): v 3271, 2959, 2808, 1709, 1675, 1641, 1603, 1519, 1487, 1435, 1300, 1254, 1166, 1091, 728, 594 cm⁻¹. MS (ESI) m/z = 525.17 ([M+H]⁺). HRMS for C₂₄H₃₁Cl₂N₄O₅: calculated 525.1666, found 525.1662. HPLC: Agilent Zorbax 80Å Extend-C18 (3.5 µm, 4.6 × 150 mm); mobile phase: 5% acetonitrile in 0.1% TFA to 8 min, 5-95% of acetonitrile from 8 to 15 min, 95% acetonitrile from 15 to 16 min, 95-5% of acetonitrile from 16 to 18 min, 5% of acetonitrile from 18 to 21 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 13.587 min (99.4% at 254 nm).

4-(2-(3,4-Dichloro-5-methyl-1H-pyrrole-2-carboxamido)-5-

(methoxycarbonyl)phenyl)piperazin-1-ium chloride (19a). Compound 17a (102 mg, 0.200 mmol) was dissolved in 1 M HCl solution in acetic acid (5 mL) and the mixture was stirred at rt for 5 h. The solvent was removed under reduced pressure, the solid residue was sequentially triturated with diethyl ether and water, and the undissolved solid was filtered off and dried to obtain 19a (71 mg) as white solid. Yield 35% (71 mg); white solid; mp 244 – 248 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.51 (s, 1H,

NH), 9.67 (s, 1H, NH), 9.07 (s, 2H, NH₂⁺), 8.53 (d, 1H, J = 8.6 Hz, ArH), 7.87 (dd, 1H, J = 8.6, 1.9 Hz, ArH), 7.82 (d, 1H, J = 1.9 Hz, ArH), 3.86 (s, 3H, COOCH₃), 3.22 – 3.31 (m, 4H, 2 × CH₂), 3.05 – 3.14 (m, 4H, 2 × CH₂), 2.25 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.5, 156.7, 140.4, 138.2, 130.0, 127.6, 124.5, 122.3, 119.1, 118.7, 110.2, 108.7, 52.1, 48.7, 43.5, 10.8 ppm. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 128.1, 122.7, 119.6, 52.6, 49.3, 43.9, 11.2 ppm. DEPT 135 NMR (100 MHz, DMSO-d₆) δ 128.1, 122.7, 119.6, 52.6, 49.3 (negative), 43.9 (negative), 11.2 ppm. IR (ATR): v 3357, 3291, 3162, 3124, 2954, 2853, 2773, 2720, 2607, 2451, 2363, 1767, 1710, 1632, 1615, 1592, 1573, 1525, 1491, 1446, 1405, 1375, 1355, 1324, 1313, 1284, 1272, 1254, 1225, 1192, 1132, 1120, 1104, 1091, 1043, 1017, 1001, 983, 962, 947, 894, 859, 817, 761, 730, 711, 655, 639, 615 cm⁻¹. MS (ESI) m/z = 411.1 ([M-H]⁻). HRMS for C₁₈H₂₁N₄O₃Cl₂: calculated 411.0991, found 411.0998. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 µm, 4.6 × 150 mm): *t*₇ 6.367 min (100% at 280 nm).

(S)-1-(2-(3,4-dichloro-5-methyl-1H-pyrrole-2-carboxamido)-5-

(methoxycarbonyl)phenyl)piperidin-3-aminium chloride (19c). Compound 17c (102 mg, 0.209 mmol) was dissolved in 1 M HCl solution in acetic acid (5 mL) and the mixture was stirred at rt for 15 h. The solvent was removed under reduced pressure, the solid residue was triturated with diethyl ether, and the undissolved solid was filtered off and dried to obtain 19c (79 mg) as brown solid. Yield 74% (79 mg); brown solid; mp 201 – 203 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.55 (s, 1H, NH), 9.64 (s, 1H, NH), 8.47 (d, *J* = 8.5 Hz, ArH), 8.16 (br s, 3H, NH₃⁺), 7.79 – 7.90 (m, 2H, 2 × ArH), 3.86 (s, 3H, CH₃), 3.26 – 3.36 (m, 1H, CH), 3.14 – 3.23 (m, 1H, CH), 2.86 – 2.94 (m, 1H, CH), 2.65 – 2.79 (m, 2H, CH₂), 2.25 (s, 3H, CH₃), 2.05 – 2.16 (m, 1H, CH), 1.85 – 1.92 (m, 1H, CH), 1.63 – 1.79 (m, 1H, CH), 1.43 – 1.58 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.6, 156.6, 141.3, 137.8, 129.9, 127.0, 124.5, 122.1, 119.3, 118.6, 110.3, 108.7, 54.7, 52.3, 52.1, 47.5, 27.5, 23.6, 10.7 ppm. IR (ATR): v 2949, 2153, 2013, 1987, 1970, 1712, 1636, 1589, 1515, 1489, 1438, 1414, 1376, 1318, 1287, 1257, 1204, 1105, 1041, 994, 941, 873, 844, 765, 731, 657, 608 cm⁻¹. [α]²⁰_D = – 0.72° (c 0.337, THF). MS (ESI) m/z = 425.1 ([M+H]⁺). HRMS for C₁₉H₂₃N₄O₃Cl₂: calculated 425.1147, found 425.1145. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 µm, 4.6 × 150 mm): *t*₇ 7.370 min (98.9% at 280 nm).

(1-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-

(methoxycarbonyl)phenyl)piperidin-3-yl)methanaminium chloride (19i). Compound 17i (100 mg, 0.851 mmol) was dissolved in 4 M HCl solution in dioxane (10 mL) and the mixture was stirred for 4 h. After the completion of the reaction the solvent was removed under reduced pressure and the obtained solid was washed with diethyl ether (2 × 5 mL) to give 19i (70 mg) as beige solid. Yield 79% (70 mg); beige solid; mp 194 – 198 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.53 (s, 1H, NH), 9.93 (s, 1H, NH), 8.58 (d, 1H, *J* = 8.4 Hz, Ar-H-3), 8.02 (br s, 3H, NH₃⁺), 7.94 (d, 1H, *J* = 1.8 Hz Ar-H-6), 7.89 (dd, 1H, J = 1.8

J = 8.4, 1.8 Hz, Ar-H-4), 3.91 (s, 3H, COOCH₃), 3.08 – 3.14 (m, 1H, CH), 2.89 – 2.98 (m, 1H, CH), 2.76 – 2.87 (m, 2H, 2 × CH), 2.58 – 2.68 (m, 2H, 2 × CH), 2.30 (s, 3H, CH₃), 2.07 – 2.19 (m, 1H, CH), 1.90 – 2.00 (m, 1H, CH), 1.80 – 1.89 (m, 1H, CH), 1.68 – 1.79 (m, 1H, CH), 1.16 – 1.25 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.7, 156.6, 142.1, 138.4, 130.1, 127.1, 124.3, 122.7, 118.7, 118.5, 110.0, 108.7, 55.5, 53.5, 52.1, 41.8, 34.9, 27.1, 25.0, 10.8 ppm. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 127.6, 123.2, 119.0, 56.1, 54.0, 52.5, 42.3, 35.4, 27.6, 25.5, 11.3 ppm. DEPT 135 NMR (100 MHz, DMSO-d₆) δ 127.6, 123.2, 119.0, 56.1 (negative), 54.0 (negative), 52.5, 42.3 (negative), 35.4, 27.6 (negative), 25.5 (negative), 11.3 ppm. IR (ATR): v 2948, 1717, 1640, 1590, 1517, 1488, 1414, 1289, 1257, 1199, 1121, 1036, 1007, 764 cm⁻¹. MS (ESI) m/z = 439.13 ([M+H]⁺). HRMS for C₂₀H₂₅Cl₂N₄O₃: calculated 439.1293, found 439.1298. HPLC: Agilent Zorbax 80Å Extend-C18 (3.5 µm, 4.6 × 150 mm); mobile phase: 5% acetonitrile in 0.1% TFA to 8 min, 5-95% of acetonitrile from 8 to 15 min, 95% acetonitrile from 15 to 16 min, 95-5% of acetonitrile from 16 to 18 min, 5% of acetonitrile from 18 to 21 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 9.373 min (95.6% at 254 nm).

4-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H***-pyrrole-2-carboxamido)phenyl)piperazin-1-ium** chloride (20a). Compound **18a** (50 mg, 0.100 mmol) was dissolved in a mixture of 1 M HCl solution in acetic acid (5 mL), tetrahydrofuran (2 mL) and dichloromethane (4 mL) and the mixture was stirred at rt for 5 h. The solvent was removed under reduced pressure, the solid residue was sequentially triturated with diethyl ether and water, and the undissolved solid was filtered off and dried to obtain **20a** (16 mg) as pale pink solid. Yield 32% (16 mg); pale pink solid; mp 258 – 261 °C. ¹H NMR (400 MHz, DMSOd₆): δ 12.50 (s, 1H, NH), 9.68 (s, 1H, NH), 8.50 (d, 1H, *J* = 8.4 Hz, ArH), 7.76 – 7.92 (m, 2H, 2 × ArH), 3.22 – 3.29 (m, 4H, 2 × CH₂), 3.03-3.11 (m, 4H, 2 × CH₂), 2.25 (s, 3H, CH₃) ppm. Signal for NH₂⁺ is overlapping with the signal for water. Signal for COOH proton not seen. ¹³C NMR (100 MHz, DMSOd₆): δ 183.4, 178.3, 166.7, 156.6, 140.4, 137.8, 129.9, 127.7, 122.4, 118.8, 110.1, 108.7, 49.0, 43.6, 10.8 ppm. IR (ATR): v 3293, 3005, 2822, 2470, 2363, 1684, 1651, 1588, 1529, 1488, 1457, 1406, 1374, 1316, 1285, 1229, 1192, 1142, 1120, 1089, 1047, 963, 923, 885, 849, 787, 771, 726, 704, 647, 634, 606 cm⁻¹. MS (ESI) m/z = 395.1 ([M-H]⁻). HRMS for C₁₇H₁₇N₄O₃Cl₂: calculated 395.0678, found 395.0670. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 µm, 4.6 × 150 mm): t_r 4.769 min (98.1% at 280 nm).

(*S*)-1-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperidin-3aminium chloride (20c). Compound 18c (70 mg, 0.14 mmol) was dissolved in 1 M HCl solution in acetic acid (5 mL) and the mixture was stirred at rt for 15 h. The solvent was removed under reduced pressure, the solid residue was triturated with diethyl ether, and the undissolved solid was filtered off and dried to obtain 20c (64 mg) as pale-yellow solid. Yield 91% (64 mg); pale yellow solid; mp 240 – 244 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.54 (br s, 1H, NH), 9.63 (s, 1H, NH), 8.45 (d, *J* = 9.1 Hz, ArH), 7.77 – 7.85 (m, 2H, 2 × ArH), 3.28 – 3.33 (m, 1H, CH), 3.14 – 3.21 (m, 1H, CH), 2.85 – 2.93 (m, 1H, CH), 2.64 – 2.78 (m, 2H, CH₂), 2.25 (s, 3H, CH₃), 2.04 – 2.14 (m, 1H, CH), 1.84 – 1.92 (m, 1H, CH), 1.63 – 1.76 (m, 1H, CH), 1.44 – 1.58 (m, 1H, CH) ppm. Signals for COOH and NH₃⁺ protons not seen. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.7, 156.6, 141.2, 137.4, 129.8, 127.1, 125.8, 122.2, 119.2, 118.7, 110.3, 108.7, 54.8, 52.3, 47.6, 27.5, 23.6, 10.7 ppm. IR (ATR): v 2926, 2154, 2050, 1992, 1682, 1634, 1589, 1518, 1490, 1406, 1322, 1249, 1201, 1125, 1107, 1090, 1043, 1017, 960, 942, 836, 766, 743, 728, 649, 608 cm⁻¹. [α]²⁰_D = – 0.55° (c 0.264, THF). MS (ESI) m/z = 411.1 ([M+H]⁺). HRMS for C₁₈H₂₁N₄O₃Cl₂: calculated 411.0991, found 411.1002. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 µm, 4.6 × 150 mm): *t*_r 5.947 min (99.7% at 280 nm).

4-((5-Carboxy-2-(3,4-dichloro-5-methyl-1*H***-pyrrole-2-carboxamido)phenyl)amino)piperidin-1ium chloride (20d). To a suspension of 18d (30 mg, 0.059 mmol) in 1,4-dioxane (1 mL), 4 M HCl in 1,4-dioxane (4 mL) was added and the reaction mixture was stirred at rt for 4 h. The precipitate that formed was filtered off, washed with diethyl ether and dried. Yield 94% (24.7 mg); pale yellow solid; mp 260 – 265 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.52 (s, 2H, NH, COOH), 9.14 (s, 1H, NH), 8.79 (s, 1H, NH), 8.65 (s, 1H, NH), 7.83 (d, 1H,** *J* **= 8.1 Hz, ArH), 7.35 – 7.44 (m, 2H, 2 × ArH), 3.64 (1H, overlapped with the signal for water, CH), 3.25 – 3.35 (m, 3H, CH, CH₂), 3.05 (q, 2H,** *J* **= 10.6, 11.3 Hz, CH₂), 2.25 (s, 3H, CH₃), 2.05 (d, 2H,** *J* **= 13.9 Hz, CH₂), 1.60 – 1.75 (m, 2H, CH₂) ppm. Signal for one NH proton not seen. IR (ATR): v 3117, 2955, 2786, 2323, 1722, 1657, 1620, 1581, 1519, 1500, 1471, 1402, 1371, 1335, 1311, 1282, 1218, 1179, 1135, 1117, 1090, 1076, 1055, 1031, 992, 965, 933, 901, 872, 846, 803, 763, 748, 725, 638, 606 cm⁻¹. HRMS (ESI⁺)** *m/z* **for C₁₈H₂₁Cl₂N₄O₃ ([M+H]⁺): calculated 411.0985, found 411.0980. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Extend-C18 column: 3.5 μm, 4.6 × 150 mm):** *t***_r 12.480 min (95.11% at 254 nm).**

(1-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperidin-3-

yl)methanaminium chloride (20i). Compound 18i (59 mg, 0.11 mmol) was dissolved in 4 M HCl solution in 1,4-dioxane (8 mL). The mixture was stirred for 12 h. The solvent was removed under reduced pressure and the solid was washed with diethyl ether (2 × 5 mL) to obtain 20i (49 mg) as white solid. Yield 96% (49 mg); white solid; mp 234 – 238 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.48 (s, 1H, NH), 9.87 (s, 1H, NH), 8.50 (d, 1H, J = 8.4 Hz, Ar-H-3), 7.97 (br s, 3H, NH₃⁺), 7.88 (d, 1H, J = 1.8 Hz, Ar-H-6), 7.81 (dd, 1H, J = 8.4, 1.8 Hz, Ar-H-4), 3.03 – 3.10 (m, 1H, CH), 2.83 – 2.92 (m, 1H, CH), 2.71 – 2.80 (m, 2H, 2 × CH), 2.54 – 2.63 (m, 3H, J = 9.0 Hz, 3 × CH), 2.25 (s, 3H, CH₃), 2.02 – 2.13 (m, 1H, CH), 1.85 – 1.95 (m, 1H, CH), 1.75 – 1.83 (m, 1H, CH), 1.63 – 1.73 (m, 1H, CH), 1.09 – 1.19 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 166.7, 156.6, 141.9, 137.9, 129.9, 127.1, 125.6, 122.8, 118.7, 118.4, 110.0, 108.6, 55.6, 53.6, 41.8, 34.8, 27.2, 25.0, 10.8 ppm. IR (ATR): v 3446, 3070, 2888, 1722, 1635, 1605, 1521, 1422, 1378, 1219, 1201, 1140, 1041, 837, 814, 752, 730, 660, 546 cm⁻¹.

MS (ESI) m/z = 425.11 ([M+H]⁺). HRMS for C₁₉H₂₃Cl₂N₄O₃: calculated 425.1142, found 425.1137. HPLC: Agilent Zorbax 80Å Extend-C18 (3.5 µm, 4.6 × 150 mm); mobile phase: 5% acetonitrile in 0.1% TFA to 8 min, 5-95% of acetonitrile from 8 to 15 min, 95% acetonitrile from 15 to 16 min, 95-5% of acetonitrile from 16 to 18 min, 5% of acetonitrile from 18 to 21 min; flow rate 1.0 mL/min; injection volume: 10 µL; t_R: 8.557 min (99.2% at 254 nm).

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(hydrazinecarbonyl)phenyl)piperazine-1-carboxylate (21a). To the solution of 17a (0.71 g, 1.38 mmol) in a mixture of MeOH (20 mL) and THF (10 mL) in a high-pressure tube hydrazine hydrate (64%, 4.71 mL, 96.8 mmol) was added. The tube was sealed and reaction mixture was stirred at 120 °C for 15 h. The tube was cooled down to rt and the precipitate was filtered off and dried, to obtain 21a (0.579 g) as white solid. Yield 82% (0.579 g); white solid; mp 277 – 280 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.42 (s, 1H, NH), 9.74 (s, 1H, NH), 9.71 (s, 1H, NH), 8.43 (d, 1H, *J* = 8.6 Hz, ArH), 7.84 (s, 1H, ArH), 7.70 (d, 1H, *J* = 8.6 Hz, ArH), 4.47 (s, 2H, NH₂), 3.47 – 3.57 (m, 4H, 2 × CH₂), 2.77 – 2.85 (m, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃), 1.44 (s, 9H, tBu) ppm.

tert-Butyl (*S*)-(1-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(hydrazinecarbonyl)phenyl)pyrrolidin-3-yl)carbamate (21b). To a solution of 17b (540 mg, 1.06 mmol) in a mixture of MeOH (11 mL) and THF (8 mL) in a high-pressure tube hydrazine hydrate (64%, 5.14 mL, 0.106 mol) was added. The tube was sealed and reaction mixture was stirred at 120 °C for 15 h. The tube was cooled down to rt, the solvent was removed under reduced pressure and the solid residue was triturated with methanol, the undissolved solid was filtered off and dried, to obtain 21b (390 mg) as white solid. Yield 72% (390 mg); white solid; mp 224 – 228 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.37 (s, 1H, NH), 9.72 (s, 1H, NH), 9.47 (s, 1H, NH), 8.22 (d, 1H, *J* = 8.5 Hz, ArH), 7.71 (d, 1H, *J* = 2.0 Hz, ArH), 7.56 (dd, 1H, *J* = 8.5, 2.0 Hz, ArH), 7.17 (d, 1H, *J* = 6.6 Hz, NHBoc), 4.46 (s, 2H, NH₂), 4.05 – 4.14 (m, 1H, CH), 3.27 – 3.33 (m, 1H, CH), 3.12 – 3.19 (m, 1H, CH), 2.99 – 3.05 (m, 1H, CH), 2.80 – 2.92 (m, 1H, CH), 2.23 (s, 3H, CH₃), 2.14 – 2.21 (m, 1H, CH), 1.80 – 1.88 (m, 1H, CH), 1.39 (s, 9H, tBu) ppm. IR (ATR): v 3342, 3307, 2980, 2847, 2361, 1721, 1681, 1643, 1620, 1602, 1512, 1491, 1416, 1366, 1329, 1276, 1215, 1172, 1118, 1086, 1036, 1004, 958, 897, 833, 761, 730, 656, 624, 609, 571 cm⁻¹. [a]_D²⁵ – 0.314 (c 0.373, DMF). MS (ESI) m/z = 511.3 ([M+H]⁺).

tert-Butyl (*S*)-(1-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(hydrazinecarbonyl)phenyl)piperidin-3-yl)carbamate (21c). To a solution of 17c (295 mg, 0.561 mmol) in a mixture of MeOH (6 mL) and THF (5 mL) in a high-pressure tube hydrazine hydrate (64%, 2.72 mL, 56.1 mmol) was added. The tube was sealed and reaction mixture was stirred at 120 °C for 15 h. The tube was cooled down to rt, the solvent was removed under reduced pressure and the solid residue was triturated with methanol, the undissolved solid was filtered off and dried, to obtain 21c (295 mg) as yellow solid. Yield 66% (295 mg); yellow solid; mp 224 – 228 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 9.75 (s, 2H, 2 × NH), 8.42 (d, J = 8.6 Hz, 1H, ArH), 7.79 (d, J = 2.0 Hz, 1H, ArH), 7.68 (dd, J = 8.6, 2.0 Hz, 1H, ArH), 6.91 (d, J = 7.5 Hz, 1H, NHBoc), 4.47 (s, 2H, NH₂), 3.57 – 3.68 (m, 1H, CH), 2.90 – 2.99 (m, 1H, CH), 2.76 – 2.84 (m, 1H, CH), 2.55 – 2.64 (m, 1H, CH), 2.24 (s, 3H, CH₃), 1.74 – 1.94 (m, 2H, CH₂), 1.59 – 1.73 (m, 1H, CH), 1.36 (s, 9H, tBu), 1.20 – 1.29 (m, 1H, CH) ppm. Signals for one CH and one NH proton not seen. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.2, 156.6, 154.8, 141.4, 136.2, 129.7, 128.2, 124.4, 120.7, 118.9, 118.4, 109.7, 108.5, 77.7, 57.7, 53.0, 47.6, 29.4, 28.2, 24.5, 10.8 ppm. IR (ATR): v 3309, 3198, 2968, 1708, 1641, 1509, 1415, 1367, 1307, 1236, 1163, 1040, 946, 838, 766, 637, 612 cm⁻¹. [α]²⁰_D = – 0.70° (c 0.321, THF). MS (ESI) m/z = 523.2 ([M-H]⁻). HRMS for C₂₃H₂₉N₆O₄Cl₂: calculated 523.1627, found 523.1627. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 µm, 4.6 × 150 mm): *t*_r 7.883 min (95.8% at 254 nm).

tert-Butyl 4-((2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-

(hydrazinecarbonyl)phenyl)amino)piperidine-1-carboxylate (21d). To a suspension of 17d (110 mg, 0.209 mmol) in a mixture of methanol and THF (2:1, 15 mL), hydrazine monohydrate (419 μ L, 8.37 mmol) was added and the reaction mixture was stirred in a pressure tube at 120 °C for 48 h. The precipitate that was formed was filtered off and dried. Yield 64% (70 mg); white solid; mp 247 – 250 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.25 (s, 1H, NH), 9.69 (s, 1H, NH), 8.80 (s, 1H, NH), 7.63 (d, J = 8.3 Hz, 1H, ArH), 7.27 (d, J = 1.9 Hz, 1H, ArH), 7.20 (dd, J = 1.9, 8.3 Hz, ArH), 5.02 (d, 1H, J = 7.2 Hz, NH), 4.45 (s, 2H, NH₂), 3.89 (d, 2H, J = 13.4 Hz, CH₂), 2.96 (s, 2H, CH₂), 2.42 (s, 1H, CH), 2.23 (s, 3H, CH₃), 1.84 – 1.96 (m, 2H, CH₂), 1.40 (s, 9H, tBu), 1.32 (t, 2H, J = 11.7 Hz, CH₂) ppm. IR (ATR): v 3324, 2200, 2184, 1978, 1871, 1682, 1635, 1561, 1513, 1462, 1431, 1364, 1307, 1274, 1213, 1130, 1099, 1056, 989, 945, 887, 841, 773, 729, 670, 651 cm⁻¹.

3,4-Dichloro-N-(4-(hydrazinecarbonyl)-2-morpholinophenyl)-5-methyl-1H-pyrrole-2-

carboxamide (21e). To the solution of **17e** (0.70 g, 1.70 mmol) in a mixture of MeOH (15 mL) and THF (10 mL) in a high-pressure tube hydrazine hydrate (64%, 5.77 mL, 119 mmol) was added. The tube was sealed and the reaction mixture was stirred at 120 °C for 15 h. The tube was cooled to rt and the precipitate was filtered off and dried. The crude product was triturated with methanol, the undissolved solid was filtered off and dried, to obtain **21e** (0.519 g) as an off-white solid. Yield 74% (0.519 g); off-white solid; mp 281 – 283 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.42 (s, 1H, NH), 9.76 (s, 1H, NH), 9.74 (s, 1H, NH), 8.44 (d, *J* = 8.5 Hz, 1H, ArH), 7.85 (d, *J* = 1.9 Hz, 1H, ArH), 7.69 (dd, *J* = 8.5, 1.9 Hz, ArH), 4.47 (s, 2H, NH₂), 3.77 – 3.82 (m, 4H, 2 × CH₂), 2.84 – 2.89 (m, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃) ppm.

3,4-Dichloro-*N*-(**4**-(hydrazinecarbonyl)-2-(**2**-methylmorpholino)phenyl)-**5**-methyl-1*H*-pyrrole-**2-carboxamide (21f).** To the solution of **17f** (420 mg, 0.985 mmol) in a mixture of MeOH (15 mL) and THF (10 mL) in a high-pressure tube hydrazine hydrate (64%, 3.34 mL, 68.6 mmol) was added. The tube was sealed and the reaction mixture was stirred at 120 °C for 15 h. The tube was cooled to rt and the precipitate was filtered off and dried, to obtain **21f** (311 mg) as a white solid. Yield 74% (311 mg); white solid; mp 282 – 284 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.42 (s, 1H, NH), 9.76 (s, 1H, NH), 9.74 (s, 1H, NH), 8.44 (d, *J* = 8.6 Hz, 1H, ArH), 7.84 (s, 1H, ArH), 7.69 (d, *J* = 8.6 Hz, 1H, ArH), 4.47 (s, 2H, NH₂), 3.98 – 3.87 (m, 1H, CH), 3.79 – 3.69 (m, 2H, 2 × CH), 2.92 – 2.74 (m, 3H, 3 × CH), 2.60 – 2.53 (m, 1H, CH), 2.24 (s, 3H, CH₃), 1.12 (d, *J* = 6.1 Hz, 3H, CH₃) ppm.

3,4-Dichloro-N-(4-(hydrazinecarbonyl)-2-morpholinophenyl)-5-methyl-1H-pyrrole-2-

carboxamide (21g). To the solution of **17g** (329 mg, 0.747 mmol) in a mixture of MeOH (10 mL) and THF (7 mL) in a high-pressure tube hydrazine hydrate (64%, 2.54 mL, 52.3 mmol) was added. The tube was sealed and the reaction mixture was stirred at 120 °C for 15 h. The tube was cooled to rt and the precipitate was filtered off and dried, to obtain **21g** (244 mg) as a white solid. Yield 70% (244 mg); white solid; mp > 300 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.37 (s, 1H, NH), 9.78 (s, 1H, NH), 9.73 (s, 1H, NH), 8.46 (d, *J* = 8.6 Hz, 1H, ArH), 7.83 (d, *J* = 2.0 Hz, 1H, ArH), 7.69 (dd, *J* = 8.7, 1.9 Hz, 1H, ArH), 4.47 (s, 2H, NH₂), 3.85 – 3.77 (m, 2H, 2 × CH), 2.86 – 2.82 (m, 2H, 2 × CH), 2.48 – 2.44 (m, 2H, 2 × CH), 2.24 (s, 3H, CH₃), 1.12 (d, *J* = 6.2 Hz, 6H, 2 × CH₃) ppm.

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperazine-1-carboxylate (22a). To a solution of compound 21a (0.500 g, 0.980 mmol) in a mixture of DMF (30 mL) and 1,4-dioxane (15 mL) 1,1'-carbonyldiimidazole (0.640 g, 3.93 mmol) was added and the reaction mixture was stirred at 101 °C for 15 h. The solvent was removed under reduce pressure, the crude product was sequentially triturated with acetonitrile, water and THF, the undissolved solid was filtered off and dried. The crude product was crystallized from DMF and dried to obtain 22a (226 mg) as a white solid. Yield 43% (226 mg); white solid; mp 260 – 263 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.50 (s, 1H, NH), 12.45 (s, 1H, NH), 9.73 (s, 1H, NH), 8.53 (d, *J* = 8.6 Hz, 1H, ArH), 7.69 (s, 1H, ArH), 7.64 (d, *J* = 8.5 Hz, 1H, ArH), 3.52 (s, 4H, 2 × CH₂), 2.88 – 2.80 (m, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃), 1.44 (s, 9H, tBu) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 157.0, 154.9, 154.2, 154.0, 153.9, 142.3, 136.9, 130.4, 123.5, 120.1, 119.5, 119.2, 109.1, 79.6, 52.2, 44.3, 28.5, 11.2 ppm. Peaks of two aromatic carbons overlapping. HRMS for C₂₃H₂₇O₅N₆Cl₂ ([M+H]⁺): calculated 537.14099, found 537.14145. HPLC (0–10 min, 10–90% ACN in 0.1% TFA, 10–11 min, 90% ACN in 0.1% TFA, Waters Acquity UPLC HSS C18 column: 1.8 µm, 2.1 × 50 mm): *t*_r 6.560 min (97.45% at 254 nm, 96.79% at 280 nm).

tert-Butyl (*S*)-(1-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)pyrrolidin-3-yl)carbamate (22b). To a solution of compound 21b (100 mg, 0.192 mmol) in a mixture of DMF (2.5 mL) and 1,4-dioxane (5 mL) 1,1'-carbonyldiimidazole (94 mg, 0.576 mmol) was added and the reaction mixture was stirred at 101 °C for 15 h. The solvent was removed under reduce pressure, the crude product was sequentially triturated with acetonitrile and methanol, the undissolved solid was filtered off and dried to obtain 22b (24 mg) as pale-yellow solid.
Yield 23% (24 mg); pale yellow solid; mp 260 – 263 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.40 (br s, 2H, 2 × NH), 9.50 (s, 1H, NH), 8.32 (d, *J* = 8.6 Hz, 1H, ArH), 7.60 (s, 1H, ArH), 7.53 (d, *J* = 8.6 Hz, 1H, ArH), 7.20 (d, 1H, NHBoc), 4.15 – 4.07 (m, 1H, CH), 3.33 – 3.24 (m, 1H, CH), 3.24 – 3.17 (m, 1H, CH), 3.12 – 3.04 (m, 1H, CH), 2.96 – 2.91 (m, 1H, CH), 2.25 (s, 3H, CH₃), 2.22 – 2.16 (m, 1H, CH), 1.90 – 1.80 (m, 1H, CH), 1.40 (s, 9H, tBu) ppm. IR (ATR): v 3342, 2980, 2850, 2361, 1721, 1681, 1643, 1620, 1602, 1512, 1491, 1416, 1366, 1329, 1275, 1216, 1171, 1118, 1086, 1037, 1003, 958, 897, 833, 761, 731, 657, 625, 608, 571 cm⁻¹. [α]²⁰_D = 0.035 (*c* 0.255, DMF). HRMS for C₂₃H₂₇Cl₂N₆O₅: calculated 537.1414, found 537.1416.

tert-Butyl (S)-(1-(2-(3,4-dichloro-5-methyl-1H-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperidin-3-yl)carbamate (22c). To a solution of compound 21c (240 mg, 0.449 mmol) in a mixture of DMF (5 mL) and 1,4-dioxane (10 mL) 1,1'-carbonyldiimidazole (219 mg, 1.35 mmol) was added and the reaction mixture was stirred at 101 °C for 15 h. The solvent was removed under reduce pressure, the crude product was triturated with a mixture of acetonitrile and methanol (20 mL, 1:1), the undissolved solid was filtered off and dried to obtain 22c (202 mg) as brown solid. Yield 84% (202 mg); brown solid; mp 260 – 263 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.55 (s, 1H, NH), 12.44 (s, 1H, NH), 9.76 (s, 1H, NH), 8.53 (d, J = 8.6 Hz, 1H, ArH), 7.62 – 7.64 (m, 2H, 2 × ArH), 6.89 (d, J = 7.5 Hz, 1H, NHBoc), 3.54 - 3.70 (m, 1H, CH), 2.91 - 3.05 (m, 1H, CH), 2.77 - 2.91(m, 1H, CH), 2.54 – 2.70 (m, 2H, CH₂), 2.24 (s, 3H, CH₃), 1.75 – 1.99 (m, 2H, CH₂), 1.58 – 1.74 (m, 1H, CH), 1.36 (s, 9H, tBu), 1.17 – 1.27 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 156.6, 154.8, 154.4, 153.5, 142.2, 136.5, 129.9, 122.8, 119.4, 118.9, 118.7, 118.7, 108.6, 109.9, 77.7, 57.4, 52.9, 47.6, 29.3, 28.2, 24.4, 10.8 ppm. IR (ATR): v 3317, 2963, 2360, 1778, 1687, 1634, 1582, 1514, 1491, 1403, 1362, 1326, 1251, 1170, 1125, 1072, 1034, 945, 913, 827, 747 cm⁻¹. $[\alpha]^{20}_{D} = -0.73^{\circ}$ (c 0.318, THF). MS (ESI) m/z = 549.1 ([M-H]⁻). HRMS for C₂₄H₂₇N₆O₅Cl₂: calculated 549.1420, found 549.1436. HPLC (0-16 min, 30-90% ACN in 0.1% TFA, 16-20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 μ m, 4.6 × 150 mm): t_r 11.960 min (95.1% at 280 nm).

tert-Butyl 4-((2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)amino)piperidine-1-carboxylate (22d). To a suspension of 21d (60 mg, 0.114 mmol) in a mixture of 1,4-dioxane and DMF (2:1, 15 mL), 1,1'-carbonyldiimidazole (55.6 mg, 0.343 mmol) was added and the reaction mixture was stirred 101 °C for 24 h. The solvent was evaporated *in vacuo*, the residue was suspended in acetonitrile, sonicated, filtered off and dried. Yield 56% (35 mg); yellow solid; mp 168 – 171 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.49 (s, 1H, NH), 12.26 (s, 1H, NH), 8.84 (s, 1H, NH), 7.74 – 7.78 (m, 1H, ArH), 7.14 – 7.19 (m, 2H, 2 × ArH), 5.19 (d, 1H, *J* = 7.1 Hz, NH), 3.79 – 3.92 (m, 2H, CH₂), 3.53 (s, 1H, CH), 2.93 (m, 2H, CH₂), 2.23 (s, 3H, CH₃), 1.89 (d, 2H, *J* = 9.7 Hz, CH₂), 1.40 (s, 9H, tBu), 1.25 – 1.37 (m, 2H, CH₂) ppm. IR (ATR): v 3347, 3328, 3265, 3122, 2974, 2931, 2852, 1767, 1660, 1590, 1533, 1496, 1478, 1417, 1366, 1322, 1241, 1212, 1175, 1143, 1093,

1074, 1043, 939, 860, 823, 734 cm⁻¹. HRMS for $C_{24}H_{29}Cl_2N_6O_5$: calculated 551.15710, found 551.15704.

3,4-Dichloro-5-methyl-*N*-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*pyrrole-2-carboxamide (22e). To a solution of compound 21e (400 mg, 0.970 mmol) in a mixture of DMF (20 mL) and 1,4-dioxane (20 mL) 1,1'-carbonyldiimidazole (310 mg, 1.94 mmol) was added and the reaction mixture was stirred at 101 °C for 15 h. The solvent was removed under reduce pressure, the crude product was sequentially triturated with acetonitrile, water and MeOH, and the undissolved solid was filtered off and dried. The crude product was crystallized from DMF and dried to obtain 22e (42.9 mg) as a white solid. Yield 11% (42.9 mg); white solid; mp 304 – 305 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.54 (s, 1H, NH), 12.44 (s, 1H, NH), 9.75 (s, 1H, NH), 8.54 (d, 1H, *J* = 8.6 Hz, ArH), 7.70 (d, 1H, *J* = 2.0 Hz, ArH), 7.64 (dd, 1H, *J* = 8.5, 1.9 Hz, ArH), 3.72 – 3.84 (m, 4H, 2 × CH₂), 2.84 – 2.95 (m, 4H, 2 × CH₂), 2.24 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 157.0, 154.9, 153.9, 142.4, 137.0, 130.4, 123.4, 120.1, 119.6, 119.2, 118.9, 109.1, 110.3, 67.0, 52.6, 11.2 ppm. HRMS for C₁₈H₁₈O₄N₃Cl₂ ([M+H]⁺): calculated 438.07237, found 438.07304. HPLC (0–10 min, 10–90% ACN in 0.1% TFA, Waters Acquity UPLC HSS C18 column: 1.8 µm, 2.1 × 50 mm): t_r 5.333 min (97.38% at 254 nm, 97.45% at 280 nm).

3,4-Dichloro-5-methyl-N-(2-(2-methylmorpholino)-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2vl)phenvl)-1*H*-pyrrole-2-carboxamide (22f). To a solution of compound 21f (310 mg, 0.703 mmol) in a mixture of DMF (20 mL) and 1,4-dioxane (10 mL) 1,1'-carbonyldiimidazole (456 mg, 2.81 mmol) was added and the reaction mixture was stirred at 101 °C for 15 h. The solvent was removed under reduce pressure, the solid residue was sequentially triturated with acetonitrile, water and THF, and the undissolved solid was filtered off and dried. The crude product was crystallized from DMF and dried to obtain **22f** (169 mg) as a white solid. Yield 53% (169 mg); white solid; mp 302 – 303 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.56 (s, 1H, NH), 12.44 (s, 1H, NH), 9.75 (s, 1H, NH), 8.55 (d, 1H, *J* = 8.6 Hz, ArH), 7.68 (d, 1H, J = 2.0 Hz, ArH), 7.64 (dd, 1H, J = 8.6, 2.0 Hz, ArH), 3.88 – 3.93 (m, 1H, CH), 3.69 - 3.81 (m, 2H, 2 × CH), 2.78 - 2.94 (m, 3H, 3 × CH), 2.55 - 2.61 (m, 1H, CH), 2.24 (s, 3H, CH₃), 1.12 (d, 3H, J = 6.2 Hz, CH₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 157.0, 154.9, 153.9, 142.2, 137.1, 130.4, 123.4, 120.0, 119.5, 119.2, 119.0, 109.1, 110.3, 72.1, 66.7, 58.6, 52.1, 19.3, 11.2 ppm. DEPT 45 NMR (100 MHz, DMSO-d₆) δ 123.4, 120.0, 119.0, 72.2, 66.7, 58.6, 52.1, 19.3, 11.2 ppm. DEPT 135 NMR (100 MHz, DMSO-d₆) δ 123.4, 120.0, 119.0, 72.2, 66.7 (negative), 58.6 (negative), 52.1 (negative), 19.3, 11.2 ppm. HRMS for C19H18O4N5Cl2 ([M-H]-): calculated 450.07428, found 450.07413. HPLC (0–10 min, 10–90% ACN in 0.1% TFA, 10–11 min, 90% ACN in 0.1% TFA, Waters Acquity UPLC HSS C18 column: 1.8 μ m, 2.1 \times 50 mm): t_r 5.703 min (95.50% at 254 nm, 95.08% at 280 nm).

3,4-Dichloro-N-(2-(2,6-dimethylmorpholino)-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-

yl)phenyl)-5-methyl-1*H*-pyrrole-2-carboxamide (22g). To the solution of compound 21g (217 mg, 0.492 mmol) in a mixture of DMF (8 mL) and 1,4-dioxane (15 mL) 1,1'-carbonyldiimidazole (319 mg, 1.97 mmol) was added and the reaction mixture was stirred at 101 °C for 15 h. The solvent was removed under reduce pressure, the solid residue was sequentially triturated with acetonitrile, MeOH and THF, and the undissolved solid was filtered off and dried. The crude product was crystallized from DMF and dried to obtain 22g (112 mg) as a white solid. Yield 49% (112 mg); white solid; mp 301 – 303 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.57 (s, 1H, NH), 12.45 (s, 1H, NH), 9.79 (s, 1H, NH), 8.57 (d, 1H, *J* = 8.6 Hz, ArH), 7.61 – 7.71 (m, 2H, 2 × ArH), 3.77 – 3.86 (m, 2H, 2 × CH), 2.86 – 2.93 (m, 2H, 2 × CH), 2.43 – 2.48 (m, 2H, 2 × CH), 2.24 (s, 3H, CH₃), 1.12 (d, 6H, *J* = 6.1 Hz, 2 × CH₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 157.0, 154.9, 153.9, 141.9, 137.1, 130.4, 123.4, 119.9, 119.5, 119.3, 119.1, 109.1, 110.2, 72.0, 58.1, 19.3, 11.2 ppm. HRMS for C₂₀H₂₂O₄N₅Cl₂ ([M+H]⁺): calculated 466.10399, found 466.10434. HPLC (0–10 min, 10–90% ACN in 0.1% TFA, 10–11 min, 90% ACN in 0.1% TFA, Waters Acquity UPLC HSS C18 column: 1.8 µm, 2.1 × 50 mm): *t*_r 6.077 min (98.33% at 254 nm, 98.27% at 280 nm).

4-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-**2-yl)phenyl)piperazin-1-ium chloride (23a).** To a solution of **22a** (60.0 mg, 0.110 mmol) in DMF (6 mL) 4 M HCl in 1,4-dioxane (6 mL) was added and the reaction mixture was stirred at rt for 15 h. The solvent was removed under reduced pressure and the solid residue was triturated with acetonitrile, the undissolved solid was filtered off and dried, to obtain **23a** (47.4 mg) as a white solid. Yield 91% (47.4 mg); white solid; mp 287 – 289 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.63 (s, 1H, NH), 12.51 (s, 1H, NH), 9.60 (s, 1H, NH), 9.17 (s, 2H, NH₂⁺), 8.53 (dd, 1H, *J* = 8.7, 1.3 Hz, ArH), 7.68 (d, 1H, *J* = 8.5 Hz, ArH), 7.62 (s, 1H, ArH), 3.23 – 3.31 (m, 4H, 2 × CH₂), 3.08 – 3.15 (m, 4H, 2 × CH₂), 2.25 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 157.1, 154.9, 153.8, 141.5, 136.9, 130.4, 123.9, 120.4, 119.6, 119.2, 118.8, 110.7, 109.2, 49.2, 43.9, 11.2 ppm. HRMS for C18H19O3N6Cl2 ([M+H]⁺): calculated 437.08880, found 437.08902. HPLC (0–10 min, 10–90% ACN in 0.1% TFA, 10–11 min, 90% ACN in 0.1% TFA, Waters Acquity UPLC HSS C18 column: 1.8 μm, 2.1 × 50 mm): tr 3.107 min (96.56% at 254 nm, 95.85% at 280 nm).

(*S*)-1-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4oxadiazol-2-yl)phenyl)pyrrolidin-3-aminium chloride (23b). To a solution of compound 22b (24 mg, 0.045 mmol) in DMF (1 mL) 4 M HCl in 1,4-dioxane (3 mL) was added and the reaction mixture was stirred at rt for 15 h. The solvent was removed under reduced pressure and the solid residue was sequentially triturated with diethyl ether and acetonitrile, the undissolved solid was filtered off and dried, to obtain 23b (13 mg) as off-white solid. Yield 60% (13 mg); off-white solid; mp > 230 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.63 (s, 1H, NH), 12.58 (s, 1H, NH), 9.50 (s, 1H, NH), 8.32 (br s, 3H, NH₃⁺), 8.25 (d, 1H, J = 8.5 Hz, ArH), 7.61 (d, 1H, J = 1.9 Hz, ArH), 7.55 (dd, 1H, J = 8.5, 1.9 Hz, ArH), 3.87 – 3.97 (s, 1H, CH), 3.50 – 3.57 (m, 1H, CH), 3.37 – 3.45 (m, 1H, CH), 3.02 – 3.14 (m, 2H, 2 × CH), 2.26 – 2.32 (m, 1H, CH), 1.98 – 2.06 (m, 1H, CH), 2.25 (s, 3H, CH₃) ppm. IR (ATR): v 2969, 2360, 2341, 2187, 1994, 1768, 1637, 1584, 1519, 1490, 1360, 1311, 1257, 1179, 1091, 1040, 958, 927, 832, 707 cm⁻¹. [α]_D²⁵ 1.25 (*c* 0.271, DMF). HRMS for C₁₈H₁₉Cl₂N₆O₃: calculated 437.0890, found 437.0890. HPLC (0–16 min, 30–90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 µm, 4.6 × 150 mm): *t*_r 3.523 min (96.05% at 254 nm).

(S)-1-(2-(3,4-Dichloro-5-methyl-1H-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4oxadiazol-2-yl)phenyl)piperidin-3-aminium chloride (23c). To a solution of compound 22c (133 mg, 0.241 mmol) in DMF (2 mL) 4 M HCl in 1,4-dioxane (6 mL) was added and the reaction mixture was stirred at rt for 15 h. The solvent was removed under reduced pressure and the solid residue was sequentially triturated with diethyl ether and acetonitrile, the undissolved solid was filtered off and dried, to obtain 23c (71 mg) as off-white solid. Yield 60% (71 mg); off-white solid; mp > 230 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.64 (s, 1H, NH), 12.57 (s, 1H, NH), 9.58 (s, 1H, NH), 8.46 (d, *J* = 8.4 Hz, 1H, ArH), 8.27 (br s, 3H, NH_3^+), 7.63 – 7.66 (m, 2H, 2 × ArH), 3.26 – 3.40 (s, 1H, CH), 3.16 – 3.25 (m, 1H, CH), 2.83 – 2.94 (m, 1H, CH), 2.65 – 2.81 (m, 2H, CH₂), 2.25 (s, 3H, CH₃), 2.05 – 2.13 (m, 1H, CH), 1.83 – 1.93 (m, 1H, CH), 1.62 – 1.77 (m, 1H, CH), 1.44 – 1.62 (m, 1H, CH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 156.6, 154.4, 153.4, 141.9, 136.0, 129.8, 122.8, 120.3, 119.2, 118.7, 118.2, 110.3, 108.7, 54.7, 52.1, 47.5, 27.5, 23.6, 10.8 ppm. IR (ATR): v 3100, 2361, 1766, 1650, 1613, 1511, 1488, 1408, 1373, 1333, 1255, 1204, 1125, 1086, 1039, 945, 919, 836, 749, 708 cm⁻¹. MS (ESI) m/z = 449.1([M-H]⁻). HRMS for C₁₉H₁₉N₆O₃Cl₂: calculated 449.0896, found 449.0890. HPLC (0–16 min, 30–90%) ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Eclipse Plus C18: 5 μ m, 4.6 × 150 mm): *t*_r 4.633 min (95.8% at 280 nm).

4-((2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-

oxadiazol-2-yl)phenyl)amino)piperidin-1-ium chloride (23d). To a suspension of 22d (25 mg, 0.045 mmol) in 1,4-dioxane (7 mL), 4 M HCl in 1,4-dioxane (3 mL) was added and the reaction mixture was stirred at rt for 3 h. The precipitate that formed was filtered off, washed with diethyl ether and dried to obtain 23d as a pale yellow solid. Yield 100% (22 mg); pale yellow solid; mp 212 – 217 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.55 (s, 1H, NH), 12.53 (s, 1H, NH), 9.10 (s, 1H, NH), 8.72 (s, 2H, NH₂⁺), 7.79 (d, 1H, J = 8.2 Hz, ArH), 7.17 (m, 2H, 2 × ArH), 3.67 – 3.72 (m, 1H, CH), 3.25 – 3.35 (m, 2H, CH₂), 3.01 – 3.11 (m, 2H, CH₂), 2.24 (s, 3H, CH₃), 2.06 (dd, 2H, J = 13.2, 2.8 Hz, CH₂), 1.65 – 1.72 (m, 2H, CH₂) ppm. Signal for one NH proton not seen. ¹³C NMR (100 MHz, DMSO-d₆): δ 167.9, 157.6, 138.7, 130.9, 128.9, 127.7, 123.5, 120.3, 119.6, 115.3, 112.1, 109.1, 47.3, 42.1, 28.6, 11.2 ppm. HRMS (ESI⁺) m/z for C₁₉H₂₁Cl₂N₆O₃ ([M+H]⁺): calculated 451.1047, found 451.1040. HPLC (0–16 min, 30–

90% ACN in 0.1% TFA, 16–20 min, 90% ACN in 0.1% TFA, Agilent Extend-C18 column: 3.5 μ m, 4.6 × 150 mm): *t*_r 12.587 min (92.82 % at 254 nm).

Methyl 4-(methylamino)-3-morpholinobenzoate (24). To a solution of methyl 4-amino-3-morpholinobenzoate (**16e**, 1.50 g, 6.35 mmol) and sodium methoxide (0.48 g, 8.89 mmol) in MeOH (35 mL) paraformaldehyde (0.48 g, 15.9 mmol) was added in one portion. The reaction mixture was heated to 40 °C and stirred for 15 h. Solid NaBH₄ (0.48 g, 12.7 mmol) was added to the reaction mixture and stirred at 40 °C for 5 h. Additional 2.00 equivalents of solid NaBH₄ (0.48 g, 12.7 mmol) was added and the mixture was stirred at 40 °C for 15 h. The reaction mixture was quenched with 80 mL of saturated aqueous NaHCO₃ and then diluted with 80 mL of ethyl acetate. The phases were separated and the aqueous layer was washed with ethyl acetate (3×45 mL). The organic layers were combined, washed with brine (2×50 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using ethyl acetate (413 mg) as a white solid. Yield 26% (413 mg); white solid; mp 125 – 126 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.63 (d, *J* = 8.5 Hz, 1H, ArH), 7.47 (s, 1H, ArH), 6.56 (d, *J* = 8.4 Hz, 1H, ArH), 5.86 (q, *J* = 4.8 Hz, 1H, NH), 3.73 – 3.80 (m, 7H, 2 × CH₂, COOCH₃), 2.81 (d, *J* = 4.9 Hz, 3H, NCH₃), 2.72 – 2.79 (m, 4H, 2 × CH₂) ppm.

Methyl 4-(4,5-dibromo-1*H***-pyrrole-2-carboxamido)-3-morpholinobenzoate (25a).** To a solution of 4,5-dibromo-1*H*-pyrrole-2-carboxylic acid (0.500 g, 1.86 mmol) in anhydrous dichloromethane (20 mL) oxalyl chloride (0.80 mL, 9.30 mmol) was added and the mixture was stirred for 15 h at room temperature under an argon atmosphere. The solvent was evaporated under reduced pressure, anhydrous dichloromethane (15 mL), **16e** (293 mg, 1.24 mmol) and pyridine (1.5 mL) were added, and the reaction mixture was stirred for 15 h under argon atmosphere at room temperature. The product was filtered off and dried to give **25a** as a pale brown solid. Yield 84% (0.507 g); pale brown solid; mp 270 – 274 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.13 (s, 1H, NH), 9.28 (s, 1H, CONH), 8.15 (d, *J* = 8.3 Hz, 1H, ArH), 7.71 – 7.80 (m, 2H, 2 × ArH), 7.15 (s, 1H, ArH), 3.85 (s, 3H, COOCH₃), 3.75 – 3.82 (m, 4H, 2 × CH₂), 2.82 – 2.90 (m, 4H, 2 × CH₂) ppm.

Methyl 4-(3,4-dichloro-*N*,5-dimethyl-1*H*-pyrrole-2-carboxamido)-3-morpholinobenzoate (25b). To a solution of 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (0.500 g, 2.58 mmol) in anhydrous dichloromethane (25 mL), oxalyl chloride (1.10 mL, 12.9 mmol) was added and the mixture was stirred at room temperature for 15 h under argon atmosphere. The solvent was evaporated under reduced pressure, anhydrous dichloromethane (20 mL), **24** (0.431 g, 1.72 mmol) and pyridine (1.72 mL) were added, and the reaction mixture was stirred for 15 h under an argon atmosphere at room temperature. The undissolved solid was filtered off and the mother liquor was evaporated under reduced pressure. The residue was dissolved in ethyl acetate (30 mL) and NaHCO₃ (20 mL) and the phases were separated. The organic phase was washed with NaHCO₃ (20 mL), 1 M HCl (4 × 20 mL) and brine (2 × 30 mL),

dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified with flash column chromatography using ethyl acetate/hexane (1:1) as eluent. The crude product was purified by washing the solid with ethyl acetate to give **25b** as an off-white solid. Yield 70% (0.511 g); off-white solid; mp 187 – 190 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 11.88 (s, 1H, NH), 7.68 (d, *J* = 8.3 Hz, 1H, ArH), 7.52 (s, 1H, ArH), 7.46 (d, *J* = 8.2 Hz, 1H, ArH), 3.84 (s, 3H, COOCH₃), 3.61 – 3.74 (m, 4H, 2 × CH₂), 3.37 (s, 3H, NCH₃), 2.69 – 2.96 (m, 4H, 2 × CH₂), 2.13 (s, 3H, CH₃) ppm.

4,5-Dibromo-N-(4-(hydrazinecarbonyl)-2-morpholinophenyl)-1H-pyrrole-2-carboxamide

(26a). To a solution of 25a (485 mg, 1.00 mmol) in MeOH (15 mL) and THF (10 mL) in a pressure tube hydrazine monohydrate (3.40 mL, 69.8 mmol) was added and the reaction mixture was stirred at 120 °C for 15 h. The precipitate was filtered off and dried. The solvent of the mother liquor was evaporated under reduced pressure, MeOH (1 mL) was added to the crude residue, the undissolved solid was filtered off and combined with the precipitate from the first filtration. Yield 54% (263 mg); pale brown solid; mp 258 – 261 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 13.08 (s, 1H, NH), 9.75 (s, 1H, NH), 9.22 (s, 1H, NH), 8.01 (d, *J* = 8.3 Hz, 1H, ArH), 7.68 (s, 1H, ArH), 7.61 (d, *J* = 8.5 Hz, 1H, ArH), 7.13 (s, 1H, ArH), 4.40 – 4.62 (m, 2H, NH₂), 3.72 – 3.85 (m, 4H, 2 × CH₂), 2.81 – 2.90 (m, 4H, 2 × CH₂) ppm.

3,4-Dichloro-*N***-(4-(hydrazinecarbonyl)-2-morpholinophenyl)***-N***,5-dimethyl-1***H***-pyrrole-2-carboxamide (26b).** To a solution of **25b** (179 mg, 0.420 mmol) in MeOH (5 mL) and THF (4 mL) in a pressure tube hydrazine monohydrate (1.44 mL, 29.6 mmol) was added and the reaction mixture was stirred at 120 °C for 15 h. The precipitate was filtered off and dried to give **26b** as a white solid. Yield 41% (73 mg); white solid; mp 246 – 249 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 11.83 (s, 1H, NH), 9.78 (s, 1H, NH), 7.55 (d, *J* = 8.2 Hz, 1H, ArH), 7.45 (s, 1H, ArH), 7.37 (d, *J* = 8.1 Hz, 1H, ArH), 4.47 (s, 2H, NH₂), 3.60 – 3.75 (m, 4H, 2 × CH₂), 2.70 – 2.95 (m, 4H, 2 × CH₂), 2.12 (s, 3H, CH₃) ppm. The peak for NCH₃ overlaps with the peak of water.

4,5-Dibromo-*N***-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1***H***-pyrrole-2-carboxamide (27a).** To a solution of **26a** (248 mg, 0.510 mmol) in 1,4-dioxane (10 mL) and DMF (20 mL) 1,1'-carbonyldiimidazole (336 mg, 2.07 mmol) was added, and the reaction mixture was stirred at 101 °C for 15 h. The solvent was evaporated under reduced pressure and the solid was washed successively with acetonitrile, water, and diethyl ether. The crude product was recrystallized from DMF and washed with THF to give **27a** as a pale yellow solid. Yield 51% (133 mg); pale yellow solid; mp >300 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.52 (br s, 2H, 2 × NH), 9.35 (s, 1H, NH), 8.17 (d, *J* = 8.3 Hz, 1H, ArH), 7.51 – 7.62 (m, 2H, 2 × ArH), 7.11 (s, 1H, ArH), 3.77 – 3.86 (m, 4H, 2 × CH₂), 2.83 – 2.93 (m, 4H, 2 × CH₂) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 157.4, 154.9, 154.1, 144.2, 135.4, 128.1, 123.0, 122.0, 120.4, 117.5, 114.1, 107.4, 99.1, 66.9, 52.0 ppm. HRMS for C₁₇H₁₆O₄N₅Br₂ [M+H]⁺: calculated 511.95626, found 511.95636. HPLC (0–10 min, 10–90% ACN in 0.1% TFA, 10–11 min,

90% ACN in 0.1% TFA, Waters Acquity UPLC HSS C18 column: 1.8 μ m, 2.1 × 50 mm): *t*_r 4.900 min (95.01% at 254, 95.00% at 280 nm).

3,4-Dichloro-*N***,5-dimethyl-***N***-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)**-**1***H***-pyrrole-2-carboxamide (27b).** To a solution of **26b** (63.9 mg, 0.150 mmol) in 1,4-dioxane (3 mL) and DMF (5 mL) 1,1'-carbonyldiimidazole (73.0 g, 0.450 mmol) was added, and the reaction mixture was stirred at 101 °C for 15 h. The solvent was evaporated under reduced pressure and the solid was washed successively with acetonitrile, water, 1,4-dioxane, and methanol to afford **27b** as a pale yellow solid. Yield 15% (10 mg); pale yellow solid; mp 257 – 259 °C. ¹H NMR (400 MHz, DMSO-4₆): δ 12.52 (s, 1H, NH), 11.89 (s, 1H, NH), 7.49 (s, 2H, 2 × ArH), 7.32 (s, 1H, ArH), 3.68 (s, 4H, 2 × CH₂), 3.37 (s, 3H, NCH₃), 2.71 – 3.00 (m, 4H, 2 × CH₂), 2.13 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz, DMSO-4₆): δ 162.4, 154.9, 153.8, 148.4, 140.6, 130.6, 127.6, 123.3, 121.4, 120.9, 117.1, 108.9, 107.2, 66.0, 51.5, 37.5, 11.1 ppm. HRMS for C₁₉H₁₈O4N₅Cl₂ [M-H]⁻: calculated 450.07394, found 450.07413. HPLC (0–10 min, 10–90% ACN in 0.1% TFA, 10–11 min, 90% ACN in 0.1% TFA, Waters Acquity UPLC HSS C18 column: 1.8 μm, 2.1 × 50 mm): *t*_r 4.243 min (99.49% at 254, 99.82% at 280 nm).

Methyl 4-aminobenzoate (29). The solution of 28 (3.77 g, 20.8 mmol) in a mixture of MeOH and THF (100 mL) was stirred for 15 min under an argon atmosphere. Pd/C (0.913 g) was added, the solution was saturated with hydrogen and the reaction mixture was stirred for 3 h under hydrogen atmosphere. The catalyst was filtered off and the solvent was evaporated to obtain 29 (2.62 g) as pale brown solid. Yield 2.62 g (83%); pale brown solid; mp 90 – 93 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.64 (d, 2H, *J* = 8.8 Hz, 2 × ArH), 6.57 (d, 2H, *J* = 8.8 Hz, 2 × ArH), 5.85 (s, 2H, NH₂), 3.73 (s, 3H, CH₃) ppm. IR (ATR): v 3407, 3330, 3226, 3044, 2988, 2944, 2845, 1681, 1635, 1596, 1574, 1513, 1433, 1313, 1283, 1199, 1175, 1117, 1078, 973, 851, 842, 767, 697, 638 cm⁻¹.

Methyl 4-(benzylamino)benzoate (30). To the solution of **29** (2.07 g, 13.7 mmol, 1 eq.) in CH₂Cl₂ (70 mL) benzaldehyde (3.9 mL, 38.9 mmol) was added and the mixture was stirred at rt for 10 min, after which Na₂SO₄ (7.76 g, 54.6 mmol) was added and the mixture was stirred at reflux for 15 h. The mixture was cooled to rt, filtered and the solvent was removed under reduced pressure. The residue was dissolved in MeOH and cooled on an ice bath, after which NaBH₄ (1.03 g, 27.3 mmol) was added in small portions. The reaction mixture was stirred at rt for 15 h. Few mL of water were added and the solvent was removed under reduced pressure. The residue was removed under reduced pressure. The residue was dissolved in EtOAc (160 mL) and water (80 mL), the phases were separated and the organic phase was washed with brine (2 × 80 mL), dried over Na₂SO₄, filtered and the solvent evaporated. The crude product was purified with flash column chromatography using dichloromethane as the eluent. The fractions that contained the product were combined, the solvent was removed under reduced pressure and the solid residue was triturated with hexane and the undissolved solid was filtered off and dried to obtain **30** (0.959 g) as white solid. Yield 0.959 g (29%); white solid; mp 107 – 109 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.66 (d, 2H, *J* = 8.8 Hz, 2 × ArH), 7.29 – 7.39 (m,

4H, 4 × ArH), 7.20 – 7.28 (m, 1H, ArH), 7.14 (t, 1H, *J* = 6.0 Hz, NH), 6.61 (d, 2H, *J* = 8.8 Hz, 2 × ArH), 4.34 (d, 2H, *J* = 6.0 Hz, CH₂), 3.72 (s, 3H, CH₃) ppm. IR (ATR): v 3416, 3027, 3005, 2952, 1686, 1598, 1569, 1529, 1494, 1456, 1432, 1419, 1344, 1312, 1275, 1236, 1186, 1172, 1111, 1064, 1027, 1003, 962, 909, 834, 767, 738, 700, 644, 618 cm⁻¹.

Methyl 4-(N-benzyl-3,4-dichloro-5-methyl-1H-pyrrole-2-carboxamido)benzoate (31). To a suspension of 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (0.775 g, 4.00 mmol) in anhydrous dichloromethane (55 mL), oxalyl chloride (1.39 mL, 16.0 mmol) was added dropwise and the reaction mixture was stirred at rt under argon atmosphere for 15 h. The solvent was evaporated under reduced pressure, 30 (0.959 g, 3.97 mmol), anhydrous pyridine (8 mL) and anhydrous CH₂Cl₂ (30 mL) were added and the reaction mixture was stirred at rt under argon atmosphere overnight. The solvent was removed in vacuo, and to the residue EtOAc (55 mL) and water (45 mL) were added. The phases were separated, organic phase was washed with 1 M HCl (35 ml), saturated solution of NaHCO₃ (35 mL) and brine (2 \times 20 mL), dried over Na₂SO₄, filtered and solvent removed *in vacuo*. The crude product was purified with flash column chromatography using EtOAc/hexane (1:7 to 1:3) as eluent to obtain 31 (0.925 g) as brown solid. Yield 0.925 g (56%); brown solid; mp 135 - 140 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.19 (s, 1H, NH), 7.79 (d, J = 8.7 Hz, 2H, 2 × ArH), 7.19 – 7.31 (m, 5H, 5 × ArH), 7.19 $(d, J = 8.7 \text{ Hz}, 2H, 2 \times \text{ArH}), 5.16 (s, 2H, CH_2), 3.79 (s, 3H, COOCH_3), 2.15 (s, 3H, pyrrole-CH_3) ppm.$ IR (ATR): v 3265, 3140, 3034, 2950, 1709, 1626, 1600, 1575, 1509, 1483, 1456, 1436, 1412, 1376, 1356, 1314, 1280, 1217, 1180, 1117, 1100, 1067, 1016, 977, 861, 764, 749, 733, 701, 669, 640, 613 cm⁻ ¹. HRMS for $C_{21}H_{19}O_3N_2Cl_2$ ([M+H]⁺): calculated 417.07672, found 417.07615.

N-Benzyl-3,4-dichloro-N-(4-(hydrazinecarbonyl)phenyl)-5-methyl-1H-pyrrole-2-carboxamide

(32). To the solution of 31 (308 mg, 0.738 mmol) in a mixture of MeOH (10 mL) and THF (6 mL) in a high-pressure tube hydrazine hydrate (64%, 1.80 mL, 36.9 mmol) was added. The tube was sealed and the reaction mixture was stirred at 100 °C for 2 d. The tube was cooled down to rt, the solvent was removed under reduced pressure and to the residue water was added to obtain a white suspension. The solid was filtered off and dried. The crude product was triturated with acetonitrile and the undissolved solid was filtered off and dried, to obtain the first part of 32 (145 mg). The filtrate was concentrated under reduced pressure and the residue was purified with flash column chromatography using CH₂Cl₂/MeOH (50:1 to 25:1) as eluent to obtain the second part of 32 (125 mg). Both fractions of the product were combined. Yield 88% (270 mg); white solid; mp 144 – 147 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.07 (s, 1H, pyrrole-NH), 9.70 (s, 1H, NH), 7.66 (d, *J* = 8.7 Hz, 2H, 2 × ArH), 7.20 – 7.32 (m, 5H, 5 × ArH), 7.12 (d, 2H, *J* = 8.6 Hz, 2 × ArH), 5.14 (s, 2H, CH₂), 4.47 (s, 2H, NH₂), 2.14 (s, 3H, pyrrole-CH₃) ppm. ¹³C NMR (101 MHz, DMSO-d₆): δ 165.4, 161.9, 145.3, 137.7, 130.6, 128.8, 128.2, 128.1, 128.1, 127.8, 127.6, 126.0, 120.6, 110.2, 107.7, 52.8, 11.3 ppm. IR (ATR): v 3313, 3236, 2986, 2856, 1655, 1599, 1572, 1540, 1487, 1454, 1426, 1379, 1329, 1286, 1228, 1202, 1103, 1069,

1029, 978, 861, 697, 625 cm⁻¹. HRMS for $C_{20}H_{19}O_2N_4Cl_2$ ([M+H]⁺): calculated 417.08796, found 417.08769.

N-Benzyl-3,4-dichloro-5-methyl-*N*-(4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*pyrrole-2-carboxamide (33). The solution of 32 (245 mg, 0.590 mmol) and CDI (352 mg, 2.17 mmol) in 1,4-dioxane (10 mL) was stirred for 15 h at 101°C. The solvent was removed under reduced pressure and the residue was purified with flash column chromatography, starting with dichloromethane and continuing with dichloromethane/methanol (50:1) as eluent, to obtain 33 (43 mg) as a pale yellow solid. Yield 43 mg (17%); pale yellow solid; mp 202 – 204 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.54 (s, 1H, NH), 12.13 (s, 1H, NH), 7.64 (d, J = 8.6 Hz, 2H, 2 × ArH), 7.19 – 7.32 (m, 7H, 7 × ArH), 5.15 (s, 2H, CH₂), 2.14 (s, 3H, pyrrole-CH₃) ppm. ¹³C NMR (101 MHz, DMSO-d₆): δ 161.8, 154.9, 153.7, 145.6, 137.6, 128.9, 128.5, 128.1, 127.7, 126.9, 126.1, 121.4, 120.4, 110.3, 107.8, 52.8, 11.3 ppm. IR (ATR): v 3202, 2840, 1769, 1597, 1578, 1510, 1481, 1427 1407, 1381, 1351, 1275, 1209, 1182, 1075, 1031, 955, 925, 841, 750, 696, 667, 645, 613 cm⁻¹. HRMS for C₂₁H₁₇O₃N₄Cl₂ ([M+H]⁺): calculated 443.06722, found 443.06693. HPLC: Waters Acquity UPLC BEH C18 (1,7 μm, 2.1 × 50 mm); mobile phase: 10-90% of acetonitrile in TFA (0.1%) in 10 min; flow rate 0.4 mL/min; injection volume: 1.75 μL; t_R: 5.163 min (95.23% at 254 nm, 95.38% at 280 nm).

Methyl 3-(benzyloxy)-4-nitrobenzoate (35). To a stirred suspension of methyl 3-hydroxy-4-nitrobenzoate (**34**, 500 mg, 2.53 mmol) and potassium carbonate (699 mg, 5.06 mmol) in acetonitrile (10 mL) benzyl bromide (0.30 mL, 2.53 mmol) was added and the mixture was stirred at 60 °C for 3 h. The solvent was removed under reduced pressure and to the residue ethyl acetate (20 mL) and water (20 mL) were added, and separated. The organic phase was washed with brine (2 × 20 mL), dried over Na₂SO₄, filtered and the solvent removed under reduced pressure to afford **35** (620 mg) as yellow solid. Yield 85% (620 mg); yellow solid; mp 90 – 93 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.03 (d, *J* = 8.4 Hz, Ar-H), 7.90 (d, *J* = 1.2 Hz, Ar-H), 7.70 (dd, *J* = 8.4, 1.2 Hz, Ar-H), 7.35 – 7.48 (m, 5H, 5 × Ar-H), 5.41 (s, 2H, CH₂), 3.92 (s, 3H, COOCH₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 165.2, 150.9, 143.0, 136.1, 134.7, 129.0, 128.7, 127.9, 125.7, 122.0, 116.2, 71.2, 53.4 ppm. IR (ATR): v cm⁻¹. MS (ESI) m/z = 310.1 ([M+Na]⁺).

3-(Benzyloxy)-4-nitrobenzohydrazide (36). To a solution of **35** (4.60 g, 16.3 mmol) in MeOH (100 mL) and THF (100 mL), hydrazine monohydrate 80% solution (7.95 mL, 163 mmol) was added. The reaction mixture was stirred at 65 °C for 15 h and the solvent was removed under reduced pressure. The residue was suspended in ethanol and the flask was left in the fridge for 1 h. Precipitate was filtered off, suspended in water, the suspension was sonicated, the solid filtered off and dried to give 1.44 g of **36**. Ethanol from the mother liquor of the previous filtration was removed and the residue was purified with flash column chromatography (dichloromethane/methanol 10/1) to give 2.09 of **36**. Yield 77% (3.54 g). ¹H NMR (400 MHz, DMSO-d₆): δ 10.06 (s, 1H, NH), 7.97 (d, *J* = 8.4 Hz, ArH), 7.83 (d, *J* = 1.5 Hz,

ArH), 7.54 (dd, J = 8.4, 1.6 Hz, ArH), 7.40 – 7.48 (m, 4H, 4 × ArH), 7.34 – 7.38 (m, 1H, ArH), 5.37 (s, 2H, CH₂), 4.63 (s, 2H, NH₂) ppm. MS (ESI) m/z = 285.9 ([M-H]⁻).

5-(3-(Benzyloxy)-4-nitrophenyl)-1,3,4-oxadiazol-2(3*H***)-one (37). To a solution of compound 30 (3.50 g, 12.2 mmol) in 1,4-dioxane (175 mL) 1,1'-carbonyldiimidazole (2.96 g, 18.3 mmol) was added and the reaction mixture was stirred at 101 °C for 15 h. The solvent was removed under reduce pressure, the residue was suspended in methanol, the suspension was sonicated, heated and the solid filtered off to give 3.22 g of 37**. Mother liquor was evaporated and purified with flash column chromatography (dichloromethane/methanol 30/1). The purified product was combined with the product after filtration. Yield 98% (3.74 g). ¹H NMR (400 MHz, DMSO-d₆): δ 12.91 (s, 1H, NH), 8.06 (d, *J* = 8.4 Hz, ArH), 7.73 (d, *J* = 1.6 Hz, ArH), 7.54 (dd, *J* = 8.4, 1.6 Hz, ArH), 7.33 – 7.50 (m, 5H, 5 × ArH), 5.43 (s, 2H, CH₂) ppm. MS (ESI) m/z = 312.0 ([M-H]⁻).

5-(4-Amino-3-(benzyloxy)phenyl)-1,3,4-oxadiazol-2(3*H*)-one (38). Compound 37 (523 mg, 1.67 mmol) was suspended in acetic acid (25 mL), iron (932 mg, 16.7 mmol) was added and the reaction mixture was stirred at rt for 90 min. Water was added and iron was filtered over Celite. The flask was left on an ice bath for 1 h upon which the product in the mother liquor crystalized. The product was filtered off and dried. Yield 57% (269 mg). ¹H NMR (400 MHz, DMSO-d₆): δ 12.22 (s, 1H, NH), 7.51 (d, *J* = 7.0 Hz, 2 × Ar-H), 7.40 (s, 2H, 2 × Ar-H), 7.33 (s, 1H, ArH), 7.21 (d, *J* = 1.8 Hz, ArH), 7.16 (dd, *J* = 8.2, 1.8 Hz, ArH), 6.73 (d, *J* = 8.2 Hz, ArH), 5.54 (s, 2H, NH₂), 5.18 (s, 2H, CH₂) ppm. MS (ESI) m/z = 283.9 ([M+H]⁺).

N-(2-(Benzyloxy)-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-3,4-dichloro-5-methyl-1*H*pyrrole-2-carboxamide (39). Synthesised according to *General procedure B* from 3,4-dichloro-5methyl-1*H*-pyrrole-2-carboxylic acid (0.123 g, 0.71 mmol) and **38** (0.150 g, 0.53 mmol). During the extraction the product precipitated and was filtered off. The crude product was sequentially triturated with acetonitrile, methanol, diethyl ether and the undissolved solid was filtered off. The crude product was purified by crystallization from DMF to afford **39** (0.113 g) as white solid. Yield 47% (0.113 g); white solid; mp 293 – 295 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.59 (s, 1H, NH), 12.42 (s, 1H, NH), 9.20 (s, 1H, NH), 8.56 (d, *J* = 8.5 Hz, ArH), 7.51 – 7.62 (m, 3H, 3 × Ar-H), 7.42 – 7.49 (m, 4H, 4 × Ar-H), 5.30 (s, 2H, CH₂), 2.20 (s, 3H, CH₃) ppm. HRMS for C₂₁H₁₅O₄N₄Cl₂([M-H]⁻): calculated 457.04758, found 457.04776. HPLC (30-90% ACN in 0.1% TFA in 10 min, UPLC): *t*_r 5.430 min (98.87% at 254 nm, 98.66% at 280 nm).

7. ¹H and ¹³C NMR spectra of the representative compounds

4-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-((2-methoxy-2-oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (6a)

Methyl (*S*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycinate (6b)

Methyl (*R*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycinate (6c)

tert-Butyl 4-(2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)-5-((2-methoxy-2-oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (7a)

Methyl (*S*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)benzoyl)glycinate (7b)

Methyl (*R*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)benzoyl)glycinate (7c)

(3-(4-(*tert*-Butoxycarbonyl)piperazin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycine (8a)

(*S*)-(3-(3-((*tert*-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycine (8b)

(*R*)-(3-(3-((*tert*-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycine (8c)

(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-4-(4,5-dibromo-1H-pyrrole-2carboxamido)benzoyl)glycine (9a)

(R)-(3-(3-((tert-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1H-pyrrole-2carboxamido)benzoyl)glycine (9c)

4-(5-((Carboxymethyl)carbamoyl)-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2carboxamido)phenyl)piperazin-1-ium chloride (10a)

(S)-1-(5-((Carboxymethyl)carbamoyl)-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)pyrrolidin-3-aminium chloride (10b)

4-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)phenyl)piperazin-1-ium chloride (11a)

(S)-1-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)phenyl)pyrrolidin-3-aminium chloride (11b)

(*R*)-1-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)phenyl)pyrrolidin-3-aminium chloride (11c)

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-((2-hydrazineyl-2-oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (12)

3-(4-(*tert*-Butoxycarbonyl)piperazin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoic acid (18a)

(S)-3-(3-((*tert*-Butoxycarbonyl)amino)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoic acid (18c)

3-(3-(((*tert*-Butoxycarbonyl)amino)methyl)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoic acid (18i)

4-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(methoxycarbonyl)phenyl)piperazin-1-ium chloride (19a)

f1 (ppm)

(S)-1-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(methoxycarbonyl)phenyl)piperidin-3-aminium chloride (19c)

(1-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(methoxycarbonyl)phenyl)piperidin-3-yl)methanaminium chloride (19i)

4-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperazin-1-ium chloride (20a)

(S)-1-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperidin-3-aminium chloride (20c)

f1 (ppm)

4-((5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)amino)piperidin-1-ium chloride (20d)

(1-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperidin-3-yl)methanaminium chloride (20i)

tert-Butyl (*S*)-(1-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperidin-3-yl)carbamate (22c)

tert-Butyl 4-((2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)amino)piperidine-1-carboxylate (22d)

3,4-Dichloro-5-methyl-*N*-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (22e)

3,4-Dichloro-5-methyl-*N*-(2-(2-methylmorpholino)-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (22f)

4-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperazin-1-ium chloride (23a)

(S)-1-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperidin-3-aminium chloride (23c)

4-((2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)amino)piperidin-1-ium chloride (23d)

4,5-Dibromo-*N*-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (27a)

3,4-Dichloro-*N*,5-dimethyl-*N*-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (27b)

N-Benzyl-3,4-dichloro-*N*-(4-(hydrazinecarbonyl)phenyl)-5-methyl-1*H*-pyrrole-2-carboxamide (32)

N-Benzyl-3,4-dichloro-5-methyl-*N*-(4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (33)

N-(2-(Benzyloxy)-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamide (39)

1H NMR (400 MHz, DMSO-d6)

8. HRMS spectra of the representative compounds

4-(2-(3,4-Dichloro-5-methyl-1H-pyrrole-2-carboxamido)-5-((2-methoxy-2oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (6a)

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

1647 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-80 H: 0-110 N: 0-20 O: 0-20 CI: 2-2 NFF-20 41 (1.680) Cm (41) 1: TOF MS ES-

1. TOP MIS ES-								4.94e+003
100			284	ł				
-			282				5	66
								568
%								
		212	2	85	390 4	28		560
69 83 89	97 113 142 155 173	192 213 2	257 256 258 2	⁸⁶ _300_339	392 353 382 408	430 466482 49	6 ₅₃₂ 564	582598 602618
50	100 150	200	250	300 35	0 400	450 500	550	600
Minimum: Maximum:		10.0	5.0	~1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
566.1572	566.1573	-0.1	-0.2	12.5	74.7	0.2	C25 H30 C12	N5 06 / M-14-
	566.1560	1.2	2.1	7.5	76.7	2.3	C24 H34	N 010
	566.1560	1.2	2.1	18.5	77.4	2.9	C22 H22	N15 Cl2
	566.1587	-1.5	-2.6	17.5	77.4	3.0	C26 H26 C12	N9 02
	566.1546	2.6	4.6	13.5	79.1	4.7	C21 H26	N11 04
	566.1592	-2.0	-3.5	-0.5	83.6	9.1	C12 C13 H34	N7 013
	566.1578	-0.6	-1.1	5.5	84.7	10.3	C10 H26	N17 07
	566.1565	0.7	1.2	0.5	85.8	11.4	C9 H30 C12	N13 011

Methyl (*S*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycinate (6b)

Monoisotop 1647 formul Elements U C: 0-80 H NFF-21 45 (1 1: TOF MS E	ic Mass, Even Elec la(e) evaluated with sed: 1: 0-110 N: 0-20 I.828) Cm (44:45) S-	tron lons 8 results wit) O: 0-20	hin limits (all Cl: 2-2	results (up to	9 1000) for ea	ach mass)				
100								566	1.21	e+004
								568		
%										
1			284					569		
62	00 113 127 400	212 241	265 282 285	325 339 353	300399 439			564 571	602 coc 629 c	10
0 69	89 113 200 166	206	- Hilling	trajentajim	390000 420	9 455 477	513 532		606 04	m/z
	100 150	200	250 300	350	400	450 5	500	550	600 650)
Minimum: Maximum:		10.0	5.0	-1.5 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formula		
566.1573	566.1573	0.0	0.0	12.5	163.4	2.0	(C25 H3(N5 06	/h-1+-
	566.1578	-0.5	-0.9	5.5	163.6	2.2	(C10 H26	N17 07	
	566.1565	0.8	1.4	0.5	163.6	2.2	(C9 H30	N13 011	
	566.1560	1.3	2.3	7.5	163.4	2.0	(C24 H34	N 010	
	566.1560	1.3	2.3	18.5	163.3	2.0	(C12 C22 H22	N15 C1:	2
	566.1587	-1.4	-2.5	17.5	163.5	2.1	0	C26 H26	N9 02	
	566.1592	-1.9	-3.4	-0.5	163.7	2.3	(212 213 H34	N7 013	
	566.1546	2.7	4.8	13.5	163.3	1.9	0	221 H26	N11 04	

Single Mass Analysis

emental Composition Report

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Page 1

S103

Methyl (*R*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycinate (6c)

lementa	I Composition	Report							F	Page 1
Single Ma Tolerance Element pr Number of	ass Analysis = 5.0 PPM / DB ediction: Off isotope peaks use	E: min = -1 ed for i-FIT	1.5, max = = 3	100.0						
Monoisotopi 1647 formul: Elements Us C: 0-80 H NFF-36 33 (1 1: TOF MS Es	c Mass, Even Electr a(e) evaluated with 5 sed: I: 0-110 N: 0-20 .348) Cm (32:34) S-	ron lons 7 results wit O: 0-20	hin limits (a Cl: 2-2	all results (up t	o 1000) for eac	ch mass)				
100-								566	5 5	58e+004
								5	568	
%- 62 69 83	97 113 148 178	191 212 2	28	4	377 390 410 4	28 452 466	404	532 542	571 602 60	e 629
0	100 150	200	250	300 350	400	450	500	550	600	+ m/z
Minimum: Maximum:		10.0	5.0	-1.5 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT ((Norm)	Formula		
566.1576	566.1578	-0.2	-0.4	5.5	181.7	11.5		C10 H26	N17 C	7
	566.1573	0,3	0.5	12.5	172.8	2.6		C25 H30	N5 06	1H-H-
	566.1565	1.1	1,9	0.5	182.7	12.4		C12 C9 H30	N13 01	1
	566.1587	-1.1	-1.9	17.5	170.4	0.1		C12 C26 H26	N9 02	
	566.1592	-1.6	-2.8	-0.5	180,7	10.4		C12 C13 H34	N7 01	3
	566.1560	1.6	2.8	7.5	176.5	6.3		C12 C24 H34	N 010	
	566.1560	1.6	2.8	18.5	173.9	3.7		C12 C22 H22	N15 C	12

tert-Butyl 4-(2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)-5-((2-methoxy-2-oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (7a)

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1562 formula(e) evaluated with 9 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-80 H: 0-110 N: 0-20 O: 0-20 Br: 2-2

NFF-27 42 (1.717) Cm (42:46) 1: TOF MS ES-

Methyl (*S*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)benzoyl)glycinate (7b)

Single Mas Tolerance = Element pred Number of is	s Analysis 5.0 PPM / DE diction: Off otope peaks us	BE: min = -1.5 ed for i-FIT =	, max = 10 3	0.0						
Monoisotopic 1562 formula(Elements Use C: 0-80 H: 0	Mass, Even Elect e) evaluated with d: -110 N: 0-20	tron lons 8 results within O: 0-20 Br: 2	n limits (all r -2	esults (up	to 1000) for each	n mass)				
NFF-34 49 (1.99 1: TOF MS ES-	97) Cm (49:50-28:3	4)								1.030+004
100								64	12	1.036+004
								640	644	
%									645	
79 81 69 89	⁹⁹ 128 161 183	207 255 272	284 316 325	358377	400 401 452 47	4 488 528 542 545	572 62	2.628	646 6	72 688706 m/z
10	00 150	200 250	300	350	400 450	500 550	600	(650	700
Minimum: Maximum:		10.0	5.0	-1.5 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Form	nula		
640.0414	640.0420	-0.6	-0.9	17.5	118.0	1.4	C25 Br2	H24	N9	02
	640.0393	2.1	3.3	18.5	118.1	1.5	C21	H20	N15	Br2
	640.0406	0.8	1.2	12.5	118.1	1.5	C24 Br2	H28	№5	06 /h-H-
	640.0393	2.1	3.3	7.5	118.3	1.7	C23 Br2	H32	N (010
	640.0438	-2.4	-3.7	4.5	120.2	3.5	C13 Br2	H28	N11	09
	640.0425	-1.1	-1.7	-0.5	120.3	3.6	C12 Br2	H32	N7	013
	640.0411	0.3	0.5	5.5	120.4	3.8	C9 Br2	H24	N17	07
	640.0398	1.6	2.5	0.5	120.6	4.0	C8 Br2	H28	N13	011

Elemental Composition Report

Page 1

Methyl (*R*)-(3-(3-((*tert*-butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)benzoyl)glycinate (7c)

Elemental	Composition	Page 1										
Single Mas Tolerance = Element pred Number of is	ingle Mass Analysis iolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 ilement prediction: Off lumber of isotope peaks used for i-FIT = 3											
Monoisotopic 1562 formula(Elements Use C: 0-100 H:	Mass, Even Electr e) evaluated with d: 0-100 N: 0-20	ron lons 9 results withi O: 0-20 Br:	in limits (all 2-2	results (up	to 1000) for eac	h mass)						
NFF-40 35 (1.4 1: TOF MS ES-	22) Cm (34:38)						3.67e+005					
100 642.0 640.0 644.0 645.0												
1	00 150 2	200 250	300	350	400 450	500 550	0 600 650					
Minimum: Maximum:		5.0	5.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (No:	rm) Formula					
640.0403	640.0420	-1.7	-2.7	17.5	322.2	0.3	C25 H24 N9 O2 Br2					
	640.0406	-0.3	-0,5	12.5	323.6	1.7	C24 H28 N5 O6/1-14-					
	640.0393	1.0	1.6	18.5	325.4 325.9	3.5 4.0	C21 H20 N15 Br2 C23 H32 N O10					
	640.0395	1.0	2.0	12 5	328 3	6.4	Br2 C20 H24 N11 04					
	640.0379	2.4	3.7	13.5	220.5	0.5	Br2 Cl2 H32 N7 Ol3					
	640.0425	-2.2	-3.4	-0.5	331.5	3.0	Br2					
	640.0411	-0.8	-1.2	5.5	333.3	11.4	Br2					
	640.0398	0.5	0.8	0.5	333.8	11.9	C8 H28 N13 O11 Br2					
	640.0371	3.2	5.0	1.5	336.7	14.7	C4 H24 N19 O9					

(3-(4-(*tert*-Butoxycarbonyl)piperazin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycine (8a)

Monoisotopic Mass, Even Electron Ions 1562 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-80 H: 0-110 N: 0-20 O: 0-20 CI: 2-2 NFF-22 56 (2.075) Cm (56:58) TOF MS ES-1.82e+004 552 100 554 % 284 555 282 255 265 285 566 325 339 353 390 393 428 431 455 569 602 615 629 648 6262 89 113 128 171 187 212 504 518 550 0

50	100 150	200	250 3	300 350	400	450	500	550	600 6	50
Minimum: Maximum:		10.0	5.0	-1.5 100.0						
Mass	Calc. Mass	s mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formula		
552.1411	552.1408	0.3	0.5	0.5	233.7	2.6		C8 H28	N13 011	
	552.1417	-0.6	-1.1	12.5	233.1	1.9		C24 H28	N5 06	JH-17-
	552.1403	0.8	1.4	7.5	233.0	1.9		C23 H32	N 010	()
	552.1403	0.8	1.4	18.5	232.9	1.8		C21 H20	N15 C1	2
	552.1422	-1.1	-2.0	5.5	233.7	2.6		C9 H24 C12	N17 07	2
	552.1430	-1.9	-3.4	17.5	233.1	2.0		C25 H24 C12	N9 02	
	552.1390	2.1	3.8	13.5	232.9	1,7		C20 H24 Cl2	N11 04	
	552.1435	-2.4	-4.3	-0.5	233.8	2.7		C12 H32 Cl2	N7 013	

Jemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Page 1
(S)-(3-(3-((tert-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1H-pyrrole-2carboxamido)benzoyl)glycine (8b)

Number of is	sotope peaks used	for i-FIT	= 3					
Monoisotopic 1562 formula Elements Lise	Mass, Even Electro (e) evaluated with 8	n lons results with	nin limits (all	results (up to	o 1000) for eac	h mass)		
C: 0-80 H: NFF-25 38 (1.5 1: TOF MS ES	0-110 N: 0-20 51) Cm (38:42)	O: 0-20	CI: 2-2					0.01-+004
							55	2.318+004
100								554
%								555
6262	124 148 161 165	201 212	255 265 284	4 303 311 325	³⁵³ 377 403	428 465 478 481	518 550	615618
0	100 150	200	250	300 3	50 400	450 50	0 550) 600
Minimum: Maximum:		10.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
552,1412	552.1430	-1,8	-3.3	17.5	202.0	1.4	C25 H2	4 N9 O2
	552.1417	-0.5	-0.9	12.5	202.2	1.6	C24 H2	8 N5 06 / M-17-
	552.1403	0.9	1.6	18.5	202.3	1.7	C21 H2	0 N15 Cl2
	552.1403	0.9	1.6	7.5	202.5	1.9	C23 H3 C12	2 N 010
	552.1390	2.2	4.0	13.5	202.6	2.0	C20 H2	4 N11 04
	552.1435	-2.3	-4.2	-0.5	204.2	3.6	C12 H3	2 N7 013
	552.1422	-1.0	-1.8	5.5	204.3	3.7	C9 H24 C12	N17 07
	552.1408	0.4	0.7	0.5	204.4	3.8	C8 H28 C12	N13 011

remental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off

(*R*)-(3-(3-((*tert*-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoyl)glycine (8c)

Elemental	Composition I	Report						Page 1
Single Mas Tolerance = Element pre Number of is	ss Analysis 5.0 PPM / DBI diction: Off sotope peaks use	E: min = -1.5 d for i-FIT =	, max = 50 3	.0				
Monoisotopic 1562 formula Elements Use C: 0-100 H NFF-41 33 (1.3 1: TOF MS ES	Mass, Even Electri (e) evaluated with 8 ed: 1: 0-100 N: 0-20 348) Cm (31:33)	on lons results within O: 0-20	n limits (all r Cl: 2-2	esults (up to	o 1000) for each	mass)		
100								1.48e+004 552.1
								554.1
61.607	_	212.1	25	325.2 33	9.2			555.1
0	0 121.0 148.0	192.0	265.1	hender de l	340.2 381.2	425.3 469.3 478.1	507.3 550	0.1 588.1 m/z
0 75	0 121.0 148.0 100 125 150 17	192.0 213.1 5 200 225	265.1 250 275	300 325	340.2 381.2 350 375 400	425.3 469.3 478.1 425 450 475	507.3 550 500 525	0.1 588.1 m/z 550 575
0 75 Minimum: Maximum:	0 121.0 148.0 100 125 150 17	192.0 213.1 5 200 225 5.0	265.1 250 275 5.0	300 325 -1.5 50.0	340.2 381.2 350 375 400	425.3 469.3 478.1 425 450 475	507.3 550 500 525	0.1 588.1 m/z 550 575
0 75 Minimum: Maximum: Mass	0 121.0 148.0 100 125 150 17 Calc. Mass	192.0 213.1 5 200 225 5.0 mDa	265.1 250 275 5.0 PPM	300 325 -1.5 50.0 DBE	i-FIT	425.3 469.3 478.1 425 450 475 i-FIT (Norm)	507.3 550 500 525 Formula	0.1 588.1 m/z 550 575
0 75 Minimum: Maximum: Mass 552.1414	0 121.0 148.0 100 125 150 17 Calc. Mass 552.1430	192.0 213.1 5 200 225 5.0 mDa -1.6	265.1 250 275 5.0 PPM -2.9	300 325 -1.5 50.0 DBE 17.5	340.2 381.2 350 375 400 i-FIT 169.5	425.3 469.3 478.1 425 450 475 i-FIT (Norm) 0.5	507.3 550 500 525 Formula C25 H24 C12	N9 02
0 75 Minimum: Maximum: Mass 552.1414	0 121.0 148.0 100 125 150 17 Calc. Mass 552.1430 552.1417	192.0 213.1 5 200 225 5.0 mDa -1.6 -0.3	265.1 250 275 5.0 PPM -2.9 -0.5	300 325 -1.5 50.0 DBE 17.5 12.5	340.2 381.2 350 375 400 i-FIT 169.5 170.9	425.3 469.3 478.1 425 450 475 i-FIT (Norm) 0.5 1.9	507.3 550 500 525 Formula C25 H24 C12 C24 H28 C12	N9 02 N5 06 / M-H ⁻
0 75 Minimum: Maximum: Mass 552.1414	0 121.0 148.0 100 125 150 17 Calc. Mass 552.1430 552.1417 552.1403	192.0 213.1 5 200 225 5.0 mDa -1.6 -0.3 1.1	265.1 250 275 5.0 PPM -2.9 -0.5 2.0	300 325 -1.5 50.0 DBE 17.5 12.5 18.5	i-FIT 169.5 170.9 171.2	425.3 469.3 478.1 425 450 475 i-FIT (Norm) 0.5 1.9 2.2	507.3 550 500 525 Formula C25 H24 C12 C24 H28 C12 C21 H20	N9 02 N5 06 / M-H ⁻ N15 Cl2
0 75 Minimum: Maximum: Mass 552.1414	0 121.0 148.0 100 125 150 17 Calc. Mass 552.1430 552.1417 552.1403	192.0 213.1 5 200 225 5.0 mDa -1.6 -0.3 1.1 1.1	265.1 250 275 5.0 PPM -2.9 -0.5 2.0 2.0	300 325 -1.5 50.0 DBE 17.5 12.5 18.5 7.5	i-FIT 169.5 170.9 171.2 171.9	425.3 469.3 478.1 425 450 475 i-FIT (Norm) 0.5 1.9 2.2 2.9	507.3 550 500 525 Formula C25 H24 C12 C24 H28 C12 C21 H20 C23 H32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	0 121.0 148.0 100 125 150 17 Calc. Mass 552.1430 552.1417 552.1403 552.1403 552.1390	192.0 213.1 5 200 225 5.0 mDa -1.6 -0.3 1.1 1.1 2.4	265.1 250 275 5.0 PPM -2.9 -0.5 2.0 2.0 4.3	300 325 -1.5 50.0 DBE 17.5 12.5 18.5 7.5 13.5	i-FIT 169.5 170.9 171.2 172.3	425.3 469.3 478.1 425 450 475 i-FIT (Norm) 0.5 1.9 2.2 2.9 3.2	507.3 550 500 525 Formula C25 H24 C12 C24 H28 C12 C21 H20 C23 H32 C12 C20 H24 C12	N9 02 N5 06 / M-H ⁻ N15 Cl2 N 010 N11 04
0 75 Minimum: Maximum: Mass 552.1414	0 121.0 148.0 100 125 150 17 Calc. Mass 552.1430 552.1403 552.1403 552.1403 552.1390 552.1435	192.0 213.1 5 200 225 5.0 mDa -1.6 -0.3 1.1 1.1 2.4 -2.1	265.1 250 275 5.0 PPM -2.9 -0.5 2.0 2.0 4.3 -3.8	300 325 -1.5 50.0 DBE 17.5 12.5 18.5 7.5 13.5 -0.5	i-FIT 169.5 170.9 171.2 172.3 175.9	425.3 469.3 478.1 425 450 475 i-FIT (Norm) 0.5 1.9 2.2 2.9 3.2 6.9	507.3 550 500 525 Formula C25 H24 C12 C24 H28 C12 C21 H20 C23 H32 C12 C20 H24 C12 C12 H32 C12	N9 02 N5 06 / M-H ⁻ N15 Cl2 N 010 N11 04 N7 013
0 75 Minimum: Maximum: Mass 552.1414	0 121.0 148.0 100 125 150 17 Calc. Mass 552.1430 552.1417 552.1403 552.1403 552.1390 552.1435 552.1422	192.0 213.1 5 200 225 5.0 mDa -1.6 -0.3 1.1 1.1 2.4 -2.1 -0.8	265.1 250 275 5.0 PPM -2.9 -0.5 2.0 2.0 4.3 -3.8 -1.4	300 325 -1.5 50.0 DBE 17.5 12.5 18.5 7.5 13.5 -0.5 5.5	i-FIT 169.5 170.9 171.2 172.3 175.9 176.2	425.3 469.3 478.1 425 450 475 i-FIT (Norm) 0.5 1.9 2.2 2.9 3.2 6.9 7.2	507.3 550 500 525 Formula C25 H24 C12 C24 H28 C12 C21 H20 C23 H32 C12 C12 H32 C12 C12 H32 C12 C12 H32 C12 C12 H32 C12 C12 H32 C12 C12 H32 C12	N9 02 N5 06 / M-H ⁻ N15 Cl2 N 010 N11 04 N7 013 N17 07

(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-4-(4,5-dibromo-1H-pyrrole-2carboxamido)benzoyl)glycine (9a)

Elemental Composition Report

Monoisotopic Mass, Even Electron Ions

626.0282

-2.7

-4.3

Number of isotope peaks used for i-FIT = 3

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0

Single Mass Analysis

Element prediction: Off

1482 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-80 H: 0-110 N: 0-20 O: 0-20 Br: 2-2 NFF-30 40 (1.625) Cm (38:40) 1: TOF MS ES-1:76e+004 628 100 626 630 % 631 377 390 255265²⁸⁴ 307311 339 353 428 452 466 493 528 548 552 585 598 632 79.81 139 161 187 212 644662 688 111 0 ⊶ m/z 100 150 200 300 250 350 450 500 550 400 600 650 Minimum: -1.5 Maximum: 10.0 5.0 100.0 Mass Calc. Mass PPM DBE mDa i-FIT i-FIT (Norm) Formula 626.0255 626.0255 0.0 0.0 5.5 147.7 2.7 C8 H22 N17 07 Br2 626.0250 0.5 0.8 12.5 146.7 1.7 C23 H26 Ν5 06 M-H-Br2 626.0263 -0.8 -1.3 17.5 146.6 1.6 C24 H22 Ν9 02 Br2 626.0268 -1.3 -2.1 -0.5 147.6 2.6 C11 H30 N7013 Br2 626.0241 1.4 2.2 0.5 147.8 2.8 C7 011 H26 N13 Br2 626.0236 1.9 3.0 7.5 146.8 1.8 C22 H30 Ν 010 Br2 626.0236 1.9 3.0 146.7

18.5

4.5

147.6

1.7

2.6

C20

C12

Br2

H18

H26

N15

N11 09

Br2

(*S*)-(3-(3-((*tert*-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)benzoyl)glycine (9b)

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 1482 formula(e) evaluated with 21 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 Br; 2-2

NFF-38 39 (1.587) Cm (38:39) 1: TOF MS ES-

100								6	28	I.32e+004
%-								626	630 631	
79,81	89 111 139 161 183	3 212 255	265 277 309	341 353 37	3 410 423	460 474 494 52	8 554	592 595	632	674 682
0 million	100 150	200 250	300	350	400 4	150 500	550	600	650	
Minimum: Maximum:		5.0	5.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (N	lorm) F	ormula		
626.0239	626.0241	-0.2	-0.3	0.5	162.5	3.2	СВ	7 H26 r2	N13	011
	626.0241	-0.2	-0.3	6.0	162.5	3.2	C	6 H20 r2	N20	06
	626.0236	0.3	0.5	13.0	162.3	3.0	CB	21 H24 r2	NB	05
	626.0236	0.3	0.5	7.5	162.4	3.0	СВ	22 H30 r2	N	010
	626.0236	0.3	0.5	18.5	162.3	3.0	C	20 H18	N15	Br2
	626.0245	-0.6	-1.0	25.0	162.2	2.8	C	37 H24	Br2	a. 1
	626.0250	-1.1	-1.8	12.5	162.4	3.0	В	23 H26 r2	N5	°°/n-H
	626.0250	-1.1	-1.8	18.0	162.4	3.0	C	22 H20 r2	N12	0
	626.0228	1,1	1.8	1.0	162.5	3.1	C	5 H24 r2	N16	010
	626.0223	1.6	2.6	8.0	162.3	2.9	CB	20 H28 r2	N4	09
	626.0255	-1.6	-2.6	0.0	162.6	3.3	C	9 H28	N10	012
	626.0255	-1.6	-2.6	5.5	162.6	3.2	CB	8 H22 r2	N17	07
	626.0223	1.6	2.6	13.5	162.3	2.9	C	19 H22	N11	04
	626.0263	-2.4	-3.8	17.5	162.4	3.1	C	24 H22	N9	02
	626.0215	2.4	3.8	1.5	162.4	3.0	C	3 H22	N19	09
	626.0263	-2.4	-3.8	12.0	162.5	3.1	C	25 H28	N2	07
	626.0210	2.9	4.6	8.5	162.2	2.9	C	18 H26	N7	08
	626.0210	2.9	4.6	14.0	162.2	2.8	Č R	17 H20	N14	03
	626.0268	-2.9	-4.6	5.0	162.7	3.3	C B	10 H24	N14	08
	626.0268	-2.9	-4.6	-0.5	162.7	3.3	C	11 H30	N7	013
	626.0210	2.9	4.6	3.0	162.2	2.9	õ	19 H32	013	Br2

(*R*)-(3-(3-((*tert*-Butoxycarbonyl)amino)pyrrolidin-1-yl)-4-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)benzoyl)glycine (9c)

Elemental Composition Report

Number of isotope peaks used for i-FIT = 3

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Single Mass Analysis

Monoisotop 1482 formu Elements I	oic Mass Ia(e) eva	, Odd ar aluated	nd Even with 21	Elect result	tron Ions s within	s limits (all resul	ts (up to 100	0) for each	n mass)						
C: 0-100	H: 0-100	N: 0-	20 O:	0-20	Br: 2-3	2										
NFF-46 27 (1: TOF MS E	1.108) Cn ES-	n (25:27)												0	48++00	3
100													628	3.0	408100	2
%					267.8	3							626.0	630.0		
					20	99.0								631.0		
80	9		212.1	223.9	264.9	206.7	200.4	275 6 402 0	450 0 485	1 518 7 528.0	554.0	6	524.0	.644	.0 684.1	l.
0	10.8	145.9	200		250	300	329.1	400	459.9	500	550	60	00	650	m/z	1
Minimum: Maximum:				5.0	5	. 0	-1.	5								
Mass	Calc	c. Mas	s	mDa	F	PPM	DBE	i-F	TIT	i-FIT (No	rm) F	orm	ula			
626.0252	626.	0250		0.2	0	.3	18.	0 129	.7	2.4	C	22	H20	N12	0	
	626.	0250		0.2	0	.3	12.	5 129	. 9	2.5	C	23 r2	H26	N5	⁰⁶ V	/n-H-
	626.	0255		-0.3	-	0.5	0.0	132	. 5	5.1	C	9	H28	N10	012	
	626.	0255		-0.3	-	0.5	5.5	132	. 4	5.1	C B	8 r2	H22	N17	07	
	626. 626.	0245		0.7 -1.1	1	.1 1.8	25. 17.	0 129 5 129).5).9	2.1 2.5	c	37	H24 H22	Br2 N9	02	
	626.	0241		1.1	1	8	0.5	132	.5	5.2	C	7	H26	N13	011	
	626.	0241		1×1	1	. 8	б.О	132	. 5	5.2	C	5 5 72	H20	N20	06	
	626.	0263		-1.1	-	1.8	12.	0 130	1.0	2.7	C	25	H28	N2	07	
	626.	0236		1.6	2	2.6	13.	0 129	.8	2.4	C	21	H24	N8	05	
	626.	0268		-1.6	-	2.6	-0.	5 132	. 5	5.1	C	11	H30	N7	013	
	626.	0268		-1.6	-	2.б	5.0	132	1.4	5.0	C	10	H24	N14	08	
	626	0236		1.6	2	2.6	18.	5 129	. 7	2.3	č	20	H18	N15	Br2	
	626	0236		1.6	2	2.6	7.5	129).9	2.6	CB	22 r2	H30	N	010	
	626.	0228		2.4	З	. 8	1.0	132	. 7	5.3	CB	5 r2	H24	N16	010	
	626.	0277		-2.5	-	4.0	17.	0 130	1.0	2.7	C	26 r2	H24	N6	03	
	626.	0223		2.9	4	, 6	8.0	129	9.9	2.5	C	20 r2	H28	N4	09	
	626	0223		2.9	4	.6	13.	5 129	. 8	2.4	C	19 r2	H22	Nll	04	
	626.	0282		-3.0	-	4.8	-1.	0 132	2.5	5.2	C	13 r2	H32	N4	014	
	626.	0282		-3.0	-	4.8	10.	0 132	2.3	4.9	C	11 r2	H20	N18	04	
	626.	0282		-3.0		4.8	4.5	132	2.4	5.1	CB	12 r2	H26	N11	09	

4-(5-((Carboxymethyl)carbamoyl)-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperazin-1-ium chloride (10a)

emental Composition Report

Page 1

1.00e+004

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 979 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-80 H: 0-110 N: 0-20 O: 0-20 CI: 2-2

NFF-23 41 (1.680) Cm (41) 1: TOF MS ES-

100							452
-							454
%				284			
-				282		428	455
⁵⁰ 69 ⁸³	89 ⁹⁵ 113127 158	161 165 198 ^{2°}	12 231 257	285 265 3	9 325 339 353	381 ³⁹⁰ 411 43	457 490 510 514 ⁵³⁴
50 75	100 125 15	60 175 200	225 250	275 300	325 350	375 400 425	450 475 500 525
Minimum: Maximum:		10.0	5.0	-1.5 100.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula
452.0891	452.0892	-0.1	-0.2	11.5	127.3	1.4	C19 H20 N5 04 /M-H-
	452.0897	-0.6	-1.3	4.5	132.2	6.2	C4 H16 N17 05 Cl2
	452.0884	0.7	1.5	-0.5	132.5	6.5	C3 H20 N13 09 Cl2
	452.0879	1.2	2.7	6.5	128.1	2.1	C18 H24 N O8 C12
	452.0906	-1.5	-3.3	16.5	126.4	0.5	C20 H16 N9 Cl2
	452.0911	-2.0	-4.4	-1.5	131.7	5.8	C7 H24 N7 O11 Cl2

(S)-1-(5-((Carboxymethyl)carbamoyl)-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2carboxamido)phenyl)pyrrolidin-3-aminium chloride (10b)

emental	Compositio	on Report					Page 1
Single Mas Tolerance = Element pre Number of is	ss Analysis 5.0 PPM / diction: Off sotope peaks	DBE: min = -1.	5, max = 1(: 3	00.0			
Monoisotopic 979 formula(e Elements Use C: 0-80 H: NFF-33 46 (1.8 1: TOE MS ES	Mass, Even El e) evaluated wit d: 0-110 N: 0- 86) Cm (45:47)	ectron lons th 5 results within 20 O: 0-20	limits (all re	esults (up	to 1000) for ea	ch mass)	
1. 101 110 20	-						2.22e+004
100-							452
0 69 79 81	93,95 128 1	161 145 165 187	98,212 243	284 257 261	285 ³⁰³ 325 34	377 ₃₉₀ 410	455 428 451 466 490 510 514 m/z
75	100 125	150 175 200	225 25	0 275	300 325 3	350 375 400	425 450 475 500
Minimum: Maximum:		10.0	5.0	-1.5 100.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Nor	m) Formula
452.0881	452.0892	-1.1	-2.4	11.5	192.9	0.3	C19 H20 N5 04 /M-H-
	452.0879	0.2	0.4	6.5	194.2	1.7	C18 H24 N 08 Cl2
	452.0865	1.6	3.5	12.5	195.1	2.5	C15 H16 N11 02
			3.2				C12
	452.0897	-1.б	-3.5	4.5	199.2	6.7	C4 H16 N17 O5 Cl2
	452.0884	-0.3	-0.7	-0.5	199.8	7.3	C3 H20 N13 O9 Cl2

(R)-1-(5-((Carboxymethyl)carbamoyl)-2-(3,4-dichloro-5-methyl-1H-pyrrole-2carboxamido)phenyl)pyrrolidin-3-aminium chloride (10c)

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 979 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 CI: 2-2 NFF-47 42 (1.716) Cm (41:42) 1: TOF MS ES-

1.101 1.0 20	-							7.27e+003
100							452.1	
							454.1	
%				267.8				
-				265.8 269.8			455.1	
69.0 80.9	9 100.9 134.9 10	2 62.8 206.8	12.1 2 225.	64.1 284.1 9 28	35.1_307.2326.9	390.2410.2 42	28.2 474.7	490.1 512.0
75	100 125 150	175 200	225	250 275 3	300 325 350	375 400 42	25 450 475	500
Minimum: Maximum:		5.0	5.0	-1.5 50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
452.0898	452.0906	-0.8	-1.8	16.5	156.9	0.6	C20 H16 N	9 Cl2
	452.0892	0.6	1.3	11.5	157.5	1,2	C19 H20 N	5 04 /11-11-
	452.0879	1.9	4.2	6.5	158.0	1.8	C18 H24 N	08
	452.0911	-1.3	-2.9	-1.5	161.7	5.4	C7 H24 N7	011
	452.0897	0.1	0.2	4.5	161.9	5.6	C4 H16 N1	7 05
	452.0884	1.4	3.1	-0.5	162.1	5.8	C3 H20 N1 C12	3 09

4-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)phenyl)piperazin-1-ium chloride (11a)

Elemental	Composition F	Report						Page 1
Single Ma Tolerance = Element pre Number of i	ss Analysis 5.0 PPM / DBB ediction: Off sotope peaks use	E: min = -1.8 d for i-FIT =	5, max = 10 3	00.0				
Monoisotopic 905 formula(Elements Us C: 0-80 H:	Mass, Even Electro e) evaluated with 6 ed: 0-110 N: 0-20 O	on lons results within : 0-20 Br: 2	limits (all re 2-2	esults (up to	1000) for each	mass)		
NFF-32 40 (1.)	627) Cm (38:40)							
T. FOF MISES	-						529	1.42e+004
100							526	
							526 530	
%								
-52 70 81	128	212 22	272 2	84 285 316 325	5 358 377 390 /	428 452	498 531	
0 79 81	83 113 25 150 1	187 212 2	250 275	300 325	350 375 400	455 47	2 558	86.590 m/z
Minimum	100 120 100 1		200 270		000 010 400	420 400 470	500 525 550 570	
Maximum:		10.0	5.0	-1.5				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
525.9727	525.9739	-1.2	-2.3	16.5	172.1	1.1	C19 H14 N9 H	3r2
	525.9726	0.1	0.2	11.5	172.2	1.2	C18 H18 N5 (Br2	²⁴ / h-H-
	525.9712	1.5	2.9	6.5	172.3	1.3	C17 H22 N O	B Br2
	525.9744	-1.7	-3,2	-1.5	174.6	3.6	C6 H22 N7 0	11
							Br2	
	525.9731	-0.4	-0.8	4.5	174.9	3.8	C3 H14 N17 ()5
	525.9717	1.0	1.9	-0.5	175.0	4.0	Br2 C2 H18 N13 (9
							Br2	

(S)-1-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1*H*-pyrrole-2carboxamido)phenyl)pyrrolidin-3-aminium chloride (11b)

Elemental	Con	nposi	ition	Rep	ort														Page	1
Single Mar Tolerance = Element pre Number of is	ss A 10.0 dictio sotop	nalys PPM n: Off e pea	s is / D f ks us)BE: ed fo	min = pr i-Fl	= -1.{ T = ;	ō, max 3	(= 50	0.0											
Monoisotopic 905 formula(e Elements Use C: 0-100 H:	Mass e) eva ed: 0-100	, Even luated	n Elect with 1 0-20	tron lo 11 res O: 0	ons sults w)-20	vithin Br: 2	limits 2-2	(all re	esults	(up to	1000) for e	each i	mass)						
NFF-43 29 (1.1 1: TOF MS ES	82) Cr	n (28:3	2)																	
100																	528 526.0	3.0 530.0	1.02e+(005
0 51.8 80.9 75	100.9	134.	9 160	8 197	200	2.1	265.1	284	4.1	325.2	339.2	390.2	410.2	428.2	452.145	3.9 5	08.9	531.0	50.0 573	3 Nz
Minimum: Maximum:	100	120	100	5	. 0	225	10.0	215	-1.5 50.0	525	350	3/5	400	425	450 47	5 50	0 525	550	5/5	
Mass	Calc	c. Ma	SS	mi	Da		PPM		DBE		i-F	T		i-FIT	(Norm) Foi	rmula			
525.9726	525,	9726		0	. 0		0.0		11.5		255	0	1	0.1		Cl8 Br2	8 H18	8 N5	04	/ M-H-
	525. 525.	9739		- :	1.3 4		-2.5		16.5	i	257	9		3.0		C19	H14	4 N9	Br2	
	525.	9699		2	. 7		5.1		12.5	j.	261	2		5.3		Br2 C14	H14	1 N1:	1 02	
	525.	9766		- 4	4.0		-7.6		15.5	,	261	4		5.4		Br2 C23	2 8 H18	3 N3	02	
	525.	9685		4	.1		7.8		7.5		263.	7		8.8		Br2 C13	H18	3 N7	06	
	525.	9771		- 4	4.5		-8.6		8.5		266.	2		11.3		Br2 C8	H14	N15	03	
	525.	9744		-]	1.8		-3.4		-1.5		266.	6	1	11.7		Br2 C6	H22	N7	011	
	525.	9757		- 3	3.1		-5.9		3.5		266.	6	:	11.7		C7	H18	N11	07	
	525.	9731		- (0.5		-1.0		4.5		269.	5	:	L4.6		Br2 C3 Br2	H14	N17	05	
	525.	9717		0.	. 9		1.7		-0.5		270.	2	:	15.3		C2 Br2	H18	N13	09	

(*R*)-1-(5-((Carboxymethyl)carbamoyl)-2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)phenyl)pyrrolidin-3-aminium chloride (11c)

Iemental	Composition R	eport						Page 1
Single Ma Tolerance = Element pre Number of i	ss Analysis 10.0 PPM / DB ediction: Off sotope peaks used	E: min = -1 I for i-FIT =	.5, max = 5 3	i0.0				
Monoisotopic 905 formula(Elements Use C: 0-100 H:	Mass, Even Electro e) evaluated with 11 ed: 0-100 N: 0-20 C	n lons results withi): 0-20 Br:	n limits (all r 2-2	esults (up to	1000) for eac	h mass)		
NFF-48 55 (2.2 1: TOF MS ES	238) Cm (54:56) -							
100							528.0	1.73e+004
%-							526.0 530.0	
0 78.9	119.0 146.9 160.8	197.8 223.9	267.8 265.8 269. 290	8 .1 303.1 .324.	9 390.2.398.0	440.1 458.9	531.0 508.9 556.9	.574.9 ^{603.9}
Minimum: Maximum:	100 123 130 173	5.0	10.0	-1.5 50.0	50 375 400	425 450 475 5	00 525 550 57	5 600
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
525.9727	525.9712	1.5	2.9	6.5	138.2	1.2	C17 H22 N	08
	525.9726	0.1	0.2	11.5	138.7	1.7	C18 H18 N5 Br2	04/11-11-
	525.9699	2.8	5.3	12.5	138.9	1.9	C14 H14 N1 Br2	1 02
	525.9685	4.2	8.0	7.5	138.9	1.9	C13 H18 N7 Br2	06
	525.9739	-1.2	-2.3	16.5	138.9	1.9	C19 H14 N9	Br2
	525.9766	~3.9	-7.4	15.5	139.7	2.7	C23 H18 N3 Br2	02
	525.9744	-1.7	-3.2	-1.5	142.5	5.5	C6 H22 N7	011
	525.9757	-3.0	-5.7	3.5	142.8	5.9	C7 H18 N11	07
	525.9771	-4.4	-8.4	8.5	143.0	6.0	C8 H14 N15	03
	525.9731	-0.4	-0.8	4.5	144.0	7.0	C3 H14 N17	05
	525.9717	1.0	1.9	-0.5	144.2	7.2	C2 H18 N13 Br2	09

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-((2-hydrazineyl-2-oxoethyl)carbamoyl)phenyl)piperazine-1-carboxylate (12)

Elemental	Composition R	eport					F	age 1
Single Mas Tolerance = Element pre Number of is	ss Analysis 5.0 PPM / DBE ediction: Off sotope peaks used	: min = -1.5 d for i-FIT =	5, max = 10 3	0.0				
Monoisotopic 1646 formula Elements Use C: 0-80 H: NFF-35 29 (1.1 1: TOF MS ES	Mass, Even Electro (e) evaluated with 8 ed: 0-110 N: 0-20 184) Cm (27:29)	n lons results withi O: 0-20	n limits (all n Cl: 2-2	esults (up to	1000) for each	mass)		
100							1. 566	28e+004
							568	
%	170	242	284				569	
1 m a m a			6.07				L'111 E 74 004	
0 70/070 8	33 113 148 178 1	193 212 218	257 28	6316 341	377 390 400 428	455 466 494	532 542 571 582 ⁶⁰⁴	.618 m/z
0 70/070 8	<u>33 113 148 178 1</u> 100 150	193 ²¹² 218 200 2	257 280 250 30	6316 341 0 350	³⁷⁷ 390 ⁴⁰⁰ 428 400	455 466 494 450 500	532 542 571 582 ⁶⁰⁴ 550 600	.618 m/z
0 Minimum: Maximum:	<u>33 113 148 178 1</u> 100 150	193 212 218 200 2 10.0	257 280 250 30	6316 341 0 350 -1.5 100.0	377 390 400 428 400	455 466 494 450 500	532 542 571 582 604 550 600	.618 T ^{**} m/z
0 70/0708 Minimum: Maximum: Mass	33 113 148 178 1 100 150 Calc. Mass	193 212 218 200 2 10.0 mDa	257 281 250 30 5.0 PPM	6316 341 0 350 -1.5 100.0 DBE	377 390 400 428 400 i-FIT	455 466 494 450 500 i-FIT (Norm)	532 542 571 582 604 550 600	.618 m/z
Minimum: Maximum: Mass 566.1682	33 113 148 178 1 100 150 Calc. Mass 566.1685	193 212 218 200 2 10.0 mDa -0.3	257 28 250 30 5.0 PPM -0.5	6316 341 0 350 -1.5 100.0 DBE 12.5	377 390 ⁴⁰⁰ 428 400 i-FIT 152.1	455 466 494 450 500 i-FIT (Norm) 2.0	532 542 571 582 604 550 600 Formula C24 H30 N7 OS	^{.618} m/z [™] m/z
0 7020708 Minimum: Maximum: Mass 566.1682	33 113 148 178 1 100 150 Calc. Mass 566.1685 566.1677	193 212 218 200 2 10.0 mDa -0.3 0.5	257 28 250 30 5.0 PPM -0.5 0.9	6316 341 0 350 -1.5 100.0 DBE 12.5 0.5	i-FIT 152.1 158.1	455 466 494 450 500 i-FIT (Norm) 2.0 8.0	532 542 571 582 604 550 600 Formula C24 H30 N7 OS C12 C8 H30 N15 OI	5 /h-H-
0 702070 E Minimum: Maximum: Mass 566.1682	33 113 148 178 1 100 150 Calc. Mass 566.1685 566.1677 566.1691	193 212 218 200 2 10.0 mDa -0.3 0.5 -0.9	257 20 250 30 5.0 PPM -0.5 0.9 -1.6	6316 341 0 350 -1.5 100.0 DBE 12.5 0.5 5.5	i-FIT 152.1 157.8	455 466 494 450 500 i-FIT (Norm) 2.0 8.0 7.7	532 542 571 582 604 550 600 Formula C24 H30 N7 05 C12 C8 H30 N15 01 C12 C9 H26 N19 06	⁶¹⁸ m/z
0 7020708 Minimum: Maximum: Mass 566.1682	Calc. Mass 566.1685 566.1677 566.1691 566.1672	193 212 218 200 2 10.0 mDa -0.3 0.5 -0.9 1.0	257 28 250 30 5.0 PPM -0.5 0.9 -1.6 1.8	6316 341 0 350 -1.5 100.0 DBE 12.5 0.5 5.5 7.5	i-FIT 152.1 158.1 157.8 153.1	455 466 494 450 500 i-FIT (Norm) 2.0 8.0 7.7 3.0	532 542 571 582 604 550 600 Formula C24 H30 N7 OS C12 C8 H30 N15 OI C12 C9 H26 N19 OS C12 C23 H34 N3 OS	5 5 5 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
0 7020708 Minimum: Maximum: Mass 566.1682	33 113 148 178 1 100 150 Calc. Mass 566.1685 566.1677 566.1691 566.1672 566.1699	193 212 218 200 2 10.0 mDa -0.3 0.5 -0.9 1.0 -1.7	257 28 250 30 5.0 PPM -0.5 0.9 -1.6 1.8 -3.0	3316 341 0 350 -1.5 100.0 DBE 12.5 0.5 5.5 7.5 17.5	i-FIT 152.1 157.8 153.1 150.9	455 466 494 450 500 i-FIT (Norm) 2.0 8.0 7.7 3.0 0.8	532 542 571 582 604 550 600 Formula C24 H30 N7 05 C12 C8 H30 N15 01 C12 C9 H26 N19 06 C12 C23 H34 N3 05 C12 C25 H26 N11 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0 7020708 Minimum: Maximum: Mass 566.1682	Calc. Mass 566.1685 566.1677 566.1691 566.1699 566.1699 566.1704	193 212 218 200 2 10.0 mDa -0.3 0.5 -0.9 1.0 -1.7 -2.2	257 28 250 30 5.0 PPM -0.5 0.9 -1.6 1.8 -3.0 -3.9	6316 341 0 350 -1.5 100.0 DBE 12.5 0.5 5.5 7.5 17.5 -0.5 5.5	i-FIT 152.1 158.1 157.8 153.1 150.9 157.6	455 466 494 450 500 i-FIT (Norm) 2.0 8.0 7.7 3.0 0.8 7.5	532 542 571 582 604 550 600 Formula C24 H30 N7 05 C12 C8 H30 N15 01 C12 C9 H26 N19 06 C12 C23 H34 N3 05 C12 C25 H26 N11 C C12 C12 H34 N9 01	⁶¹⁸ /μ/z
0 7020708 Minimum: Maximum: Mass 566.1682	Calc. Mass 566.1685 566.1677 566.1691 566.1672 566.1699 566.1704 566.1659	193 212 218 200 2 10.0 mDa -0.3 0.5 -0.9 1.0 -1.7 -2.2 2.3	257 28 250 30 5.0 PPM -0.5 0.9 -1.6 1.8 -3.0 -3.9 4.1	6316 341 0 350 -1.5 100.0 DBE 12.5 0.5 5.5 7.5 17.5 17.5 -0.5 13.5 -0.5	i-FIT 152.1 158.1 157.8 153.1 150.9 157.6 153.5	455 466 494 450 500 i-FIT (Norm) 2.0 8.0 7.7 3.0 0.8 7.5 3.3	532 542 571 582 604 550 600 Formula C24 H30 N7 OS C12 C8 H30 N15 O3 C12 C9 H26 N19 OS C12 C23 H34 N3 OS C12 C23 H34 N3 OS C12 C12 H26 N11 C C12 C12 H34 N9 O1 C12 C12 H34 N9 O1 C12 C12 C12 C12 H34 N9 O1 C12 C12 C12 H34 N9 O1 C12 C12 C12 C12 H34 N9 O1 C12 C12 C12 C12 H34 N9 O1 C12 C12 C12 C12 C12 H34 N9 O1 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	.618 m/z .0 .0 .2 .3

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(((5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)methyl)carbamoyl)phenyl)piperazine-1-carboxylate (13)

	I Composition	Report								Page 1	
Single Ma Tolerance Element pr Number of	ass Analysis = 5.0 PPM / Di rediction: Off isotope peaks us	BE: min = -1 sed for i-FIT	1.5, max = 10 = 3	0.0							
Monoisotopi 1798 formul Elements Us C: 0-80 H NFF-37 39 (1 1: TOF MS E	ic Mass, Even Elec a(e) evaluated with sed: 1: 0-110 N: 0-2(.587) Cm (37:40) S-	ctron lons n 9 results wit 0 O: 0-20	thin limits (all Cl: 2-2	results (up	to 1000) for	each mass)					
100-								592	1	.63e+004	
100											
%-								594			
1								1595			
-							500	000			
	440										
69 868	787 113 148 178	3 232	264 284 309	343 359	390 410 428	443 460 494 49	7 558 580	597	630 642 6	55 674	
0 69 868	787 ¹¹³ 148 178 100 150	3 212 232 200 25	264 ²⁸⁴ 309 0 300	343 ³⁵⁹ 350	390 410 428 400	443 460 494 49 450 500	7 558 580 550	600	630 642 650	55 674 m/z	
0 69.868 Minimum: Maximum:	787 ¹¹³ 148 176 100 150	200 25	264 ²⁸⁴ 309 5.0	343 359 350 -1.5 100.0	390 410428 400	443 460 ⁴⁹⁴ 450 500	7 558 580 550	600	630 642 650	55.674 m/z	
0 ^{69.868} Minimum: Maximum: Mass	787 113 148 176 100 150 Calc. Mass	232 200 25 10.0 mDa	264 ²⁸⁴ 309 0 300 5.0 PPM	343 359 350 -1.5 100.0 DBE	390 410428 400 i-FIT	443 460 494 450 500 i-FIT	7 558 550 550	600 mula	630 642 ++	55674 m/z	
0 69 868 Minimum: Maximum: Mass 592.1474	787 113 148 176 100 150 Calc. Mass 592.1478	200 25 10.0 mDa -0.4	264 284 309 60 300 5.0 PPM -0.7	343 359 350 -1.5 100.0 DBE 14.5	390410428 400 i-FIT 186.2	443 460 494 49 450 500 i-FIT 1.9	7 558 550 550 (Norm) Form C25 C12	600 mula H28	630 642 6 650	55.674 m.m/z	4-
0 69 868 Minimum: Maximum: Mass 592.1474	Z87 113 148 176 100 150 Calc. Mass 592.1478 592.1470	3 212 232 200 25 10.0 mDa -0.4 0.4	264 284 309 5.0 PPM -0.7 0.7	343 359 350 -1.5 100.0 DBE 14.5 2.5	390 410428 400 i-FIT 186.2 192.2	443 460 494 49 450 500 i-FIT 1.9 7.9	7 558 550 550 (Norm) Form C25 C12 C9	600 mula H28 H28	630 642 6 650 N7 C	55.674 10. m/z 06 / 11-1	4-
0 69 868 Minimum: Maximum: Mass 592.1474	Z87 113 148 176 100 150 Calc. Mass 592.1478 592.1470 592.1483	200 25 10.0 mDa -0.4 0.4 -0.9	264 284 309 5.0 PPM -0.7 0.7 -1.5	343 359 350 -1.5 100.0 DBE 14.5 2.5 7.5	390 410428 400 i-FIT 186.2 192.2 191.9	443 460 494 49 450 500 i-FIT 1.9 7.9 7.6	7 558 550 550 (Norm) Form C25 C12 C10 C12 C10 C12	600 mula H28 H28 H24	630 642 650 N7 C N15 C N19	55.674 100. m/z 06 / 11-1 07	4-
0 69 868 Minimum: Maximum: Mass 592.1474	Z87 113 148 176 100 150 Calc. Mass 592.1478 592.1470 592.1483 592.1465	200 25 10.0 mDa -0.4 0.4 -0.9 0.9	264 284 309 5.0 PPM -0.7 0.7 -1.5 1.5	343 359 350 -1.5 100.0 DBE 14.5 2.5 7.5 20.5	390 410428 400 i-FIT 186.2 192.2 191.9 186.6	443 460 494 49 450 500 i-FIT 1.9 7.9 7.6 2.3	7 558 580 550 (Norm) Form C25 C12 C10 C12 C10 C12 C22	600 mula H28 H28 H24 H20	630 642 650 650 N7 C N15 C N19 N17	55.674 100. m/z 06 / 11-1 07 c12	4-
0 69 868 Minimum: Maximum: Mass 592.1474	Z87 113 148 176 100 150 Calc. Mass 592.1478 592.1470 592.1483 592.1465 592.1465	200 25 10.0 mDa -0.4 0.4 -0.9 0.9 0.9 0.9	264 284 309 5.0 PPM -0.7 0.7 -1.5 1.5 1.5	343 359 350 -1.5 100.0 DBE 14.5 2.5 7.5 20.5 9.5	390 410428 400 i-FIT 186.2 192.2 191.9 186.6 187.4	443 460 494 49 450 500 i-FIT 1.9 7.9 7.6 2.3 3.0	7 558 550 550 (Norm) Form C25 C12 C10 C12 C10 C12 C22 C24	600 mula H28 H28 H24 H20 H32	630 642 650 650 N7 C N15 C N19 N17 N3 C	55.674 100 m/z 06 / 11-1 07 c12 00	4-
0 69 868 Minimum: Maximum: Mass 592.1474	<pre>Z87 113 148 176 100 150 Calc. Mass 592.1478 592.1470 592.1483 592.1465 592.1465 592.1491</pre>	200 25 10.0 mDa -0.4 0.4 -0.9 0.9 0.9 -1.7	264 284 309 5.0 PPM -0.7 0.7 -1.5 1.5 1.5 -2.9	343 359 350 -1.5 100.0 DBE 14.5 2.5 7.5 20.5 9.5 19.5	390 410428 400 i-FIT 186.2 192.2 191.9 186.6 187.4 185.0	443 460 494 450 500 i-FIT 1.9 7.9 7.6 2.3 3.0 0.7	7 558 550 550 (Norm) Form C25 C12 C9 C12 C10 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C25 C12 C24 C12 C25 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	600 mula H28 H28 H24 H20 H32 H24	630 642 650 650 N7 C N15 C N19 N17 N3 C N11	55.674 10. m/z 06 / 11-1 07 c12 02	4-
0 69.868 Minimum: Maximum: Mass 592.1474	Z87 113 148 176 100 150 Calc. Mass 592.1478 592.1470 592.1465 592.1465 592.1491 592.1497	200 25 10.0 mDa -0.4 0.4 -0.9 0.9 0.9 -1.7 -2.3	264 284 309 5.0 PPM -0.7 0.7 -1.5 1.5 1.5 -2.9 -3.9	343 359 350 -1.5 100.0 DBE 14.5 2.5 7.5 20.5 9.5 19.5 1.5	390 410428 400 i-FIT 186.2 192.2 191.9 186.6 187.4 185.0 191.6	443 460 494 49 450 500 i-FIT 1.9 7.9 7.6 2.3 3.0 0.7 7.3	7 558 550 550 (Norm) Form C25 C12 C9 C12 C12 C12 C12 C12 C22 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C25 C12 C24 C12 C25 C12 C25 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	600 mula H28 H28 H24 H20 H32 H24 H32	630 642 6 650 N7 C N15 C N19 N17 N3 C N11 N3 C N11	55.674 10. m/z 06 / 11-1 07 c12 00 02 13	4-
0 69.868 Minimum: Mass 592.1474	<pre>Z87 113 148 176 100 150 Calc. Mass 592.1478 592.1470 592.1465 592.1465 592.1491 592.1491 592.1451</pre>	200 25 200 25 10.0 mDa -0.4 0.4 -0.9 0.9 -1.7 -2.3 2.3	264 284 309 5.0 PPM -0.7 0.7 -1.5 1.5 1.5 -2.9 -3.9 3.9	343 359 350 -1.5 100.0 DBE 14.5 2.5 7.5 20.5 9.5 19.5 1.5 1.5 15.5	390 410428 400 i-FIT 186.2 192.2 191.9 186.6 187.4 185.0 191.6 187.7	443 460 494 49 450 500 i-FIT 1.9 7.6 2.3 3.0 0.7 7.3 3.4	7 558 550 550 (Norm) Form C25 C12 C9 C12 C22 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C24 C12 C25 C12 C24 C12 C25 C12 C25 C12 C25 C12 C25 C12 C25 C12 C25 C12 C25 C12 C25 C12 C25 C12 C25 C12 C25 C12 C12 C25 C22 C25 C22 C22 C22 C22 C22 C22 C2	600 mula H28 H28 H24 H20 H32 H24 H32 H24	630 642 6 650 N7 C N15 C N19 N17 N3 C N11 N9 C N13	55674 10. m/z 06 / 11-1 07 c12 010 02 013 04	4-

4-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(((5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)methyl)carbamoyl)phenyl)piperazin-1-ium chloride (14)

_iemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 1209 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 CI: 2-2 NFF-49 25 (1.015) Cm (23:26)

1: TOP MS ES-							492	2.1	6.59e+003
100								494.1	
%-		21	2.1					495.1	
0 69.0 80.9 75	9 116.9 100 125 1	160.8 _{183.0}	213.1 2 225 250	284.1 282.1 285.1 3 275 300	^{29.2} 343.1 325 350	390.2 375 400 425 45	2.1458.1 0 475	528.1 ^{\$} 500 525	542.0 553.2 m/z 550
Minimum: Maximum:		5.0	5.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm) Formul	la	
492.0959	492.0959	0.0	0.0	6.5	174.3	9.3	C5 HI	16 N19	05
	492.0954	0.5	1.0	13.5	167.3	2.4	C20 F	H20 N7	04/M-H-
	492.0967	-0.8	-1.6	18.5	165.9	1.0	C21 H	416 N11	C12
	492.0972	-1.3	-2.6	0.5	174.6	9.6	C8 H2 C12	24 N9	011
	492.0945	1.4	2.8	1.5	174.3	9.4	C4 H2 C12	20 N15	09
	492.0940	1.9	3.9	8.5	168.6	3.7	C19 H C12	H24 N3	08
	492.0981	-2.2	-4.5	12.5	165.6	0.7	C24 H C12	H24 N	06

tert-Butyl 4-(2-amino-5-(methoxycarbonyl)phenyl)piperazine-1-carboxylate (16a)

Elemental Composition Report

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 771 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 NBH-51 19 (0.775) Cm (19:22) 1: TOF MS ES+ 1.19e+006 248.1 280.1 100 P MIN MNat 236.1 1 % 358.2 249.1 281.1 282.1 299.1 332.2 336.2 350.2 359.2 206.1 214.1 131.1 141.0 158.0 195.1 250.1 374.2 69.1 77.0 87.1 101.1 0 m/z 100 60 80 120 140 160 180 200 220 240 260 280 300 320 340 360 380 Minimum: -1.5 Maximum: 5.0 10.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 336.1924 336.1923 0.1 0.3 6.5 491.5 0.9 C17 H26 N3 04 MH+ 491.6 336.1937 -1.3 -3.9 11.5 1.0 C18 H22 N7 336.1896 2.8 8.3 7.5 492.6 2.0 C13 H22 N9 02 336.1955 -3.1 493.6 -9.2 -1.5 3.0 C6 H26 N9 07 -0.4 336.1928 -1.2 N15 -0.5 494.6 4.0 C2 H22 05 336.1942 4.5 C3 -1.8 -5.4 495.1 4.5 H18 N19 0

Methyl (S)-4-amino-3-(3-((tert-butoxycarbonyl)amino)piperidin-1-yl)benzoate (16c)

Elemental Composition Report

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 843 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 NBH-3 10 (0.406) Cm (7 10) 1: TOF MS ES+ 1.28e+006 350.2 100 294 1 % 351.2 372.2 295.2 341 3 362.2 373.2388 2 0 m/z 200 60 80 100 120 140 160 180 220 240 260 280 300 320 340 360 380 400 Minimum: -1.5 Maximum: 5.0 10.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 350.2072 350.2093 -2.1 11.5 617.6 0.9 C19 H24 N7 -6.0 04 / MH+ 617.7 N3 -0.8 C18 H28 350,2080 -2.3 6.5 0.9 02 5.4 7.5 619.1 C14 N9 350.2053 1.9 2.4 H24 350.2040 3.2 9.1 2,5 619.3 2.6 C1 3 H28 N5 06 -3.7 350.2085 -1.3 -0.5 621.8 5.1 C3 H24 N1 5 05 350.2098 -2.6 -7.4 4.5 622,1 5.3 C4 H20 N19 0

tert-Butyl 4-(2-(3,4-dichloro-5-methyl-1H-pyrrole-2-carboxamido)-5-(methoxycarbonyl)phenyl)piperazine-1-carboxylate (17a)

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1346 formula(e) evaluated with 14 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 CI: 2-2 NBH-53 14 (0.573) Cm (12:15-2:7)

1: TOF MS ES+ 2.69e+005 511.2 100-513.2 % 533.1 535.1 85.0 98.0 218.1 142.0 238.0 536.1 282.1 301.1 413.3425.2 455.1 335.1359.2 565.1 606.1 m/z 70.0 157.1 511.1 0 100 150 200 250 300 350 400 450 500 550 600 Minimum: -1.5 5.0 10.0 Maximum: 50.0 DBE i-FIT i-FIT (Norm) Formula Calc. Mass mDa PPM Mass C24 N8 0 511.1524 511.1528 -0.4 -0.8 15.5 333.4 0.8 H25 C12 511.1515 0.9 1.8 10.5 333.5 0.9 C23 H29 N405 / MHF C12 511.1555 -3.1 335.4 C28 H29 N2 03 -6.1 14.5 2.8 C12 511.1502 2.2 4.3 5.5 335.9 3.2 C22 H33 09 C12 C19 7.0 N10 511.1488 11.5 338.2 H25 03 3.6 5.6 C12 C18 07 511.1475 4.9 9.6 6.5 340.2 7.5 H29 N6 C12 511.1574 -5.0 -9.8 1.5 341.0 8.4 C16 H33 N4 010 C12 341.3 C12 H29 N10 08 511.1547 -2.3 -4.5 2.5 8.6 C12 511.1574 8.7 H21 N18 C12 -5.0 -9.8 12.5 341.3 C14 C13 7.5 511.1560 -7.0 341.5 H25 N14 04 -3.6 8.8 C12 511.1533 -0.9 -1.8 8.5 343.7 11.1 C9 H21 N20 02 C12 511.1520 0.4 0.8 3.5 344.2 11.5 C8 H25 N16 06 C12 C7 511.1507 1.7 3.3 -1.5 344.5 11.9 H29 N12 010 C12 -0.5 347.7 C3 H25 N18 08 511.1480 4.4 8.6 15.1 C12

Methyl (*S*)-3-(3-((*tert*-butoxycarbonyl)amino)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoate (17c)

Elemental Composition Report									Page 1		
Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3											
Monoisotopic 1432 formula Elements Use C: 0-100 H NBH-5 14 (0.5 1: TOF MS ES	Mass, Even Electror (e) evaluated with 14 ed: 1: 0-100 N: 0-20 72) Cm (13:15) +	n lons results with O: 0-20	in limits (all Cl: 2-2	results (u	p to 1000) for ea	ach mass)				2	.22e+005
100 								525	.2 527.2 528.2		
0 79.0 85.	0 141.0 158.0 100 125 150 175	214.1 201.2 200 225	294.1 250 275 3	313.3 00 325	353.3 381.3 415.2 350 375 400	425.2 469.1 425 450	491.2 5	11.2 0 52	547.2	557.2 ₅ 575	81.2 600
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	For	nula		
525.1681	525.1712	-3.1	-5.9	14.5	363.0	0.9		C29	H31	N2	03
	525.1672	0.9	1.7	10.5	363.4	1.3		C24	H31	N4	05/ MH+
	525.1685	-0.4	-0.8	15.5	363.7	1.6		C25	H27	N8	0
	525.1658	2.3	4.4	5.5	364.7	2.7		C23	H35	09	C12
	525.1730	-4.9	-9.3	1.5	365.6	3.6		C17 C12	H35	N4	010
	525.1645	3.6	6.9	11.5	366.0	3.9		C20 C12	H27	N10	03
	525.1730	-4.9	-9.3	12.5	366.4	4.4		C15	H23	N18	C12
	525.1717	-3.6	-6.9	7.5	367.2	5.1		C14	HZ/	N14	04
	525.1631	5.0	9.5	б.5	367.4	5.4		C19 C12	H31	NG	07
	525.1703	-2.2	-4.2	2.5	368.0	5.9		C13 C12	H31	N10	08
	525.1690	-0.9	-1.7	8.5	369.5	7.5		C10 C12	H23	N20	02
	525.1677	0.4	0.8	3.5	370.3	8.3		C9 C12	H27	N16	06
	525.1663	1.8	3.4	-1.5	371.0	9.0		C8	НЗІ	N12	010
	525.1636	4.5	8.6	-0.5	373.1	11.1		C4 C12	H27	N18	08

3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-4-(3,4-dichloro-5-methyl-1H-pyrrole-2carboxamido)benzoic acid (18a)

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1251 formula(e) evaluated with 13 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 CI: 2-2 NBH-54 NEG 33 (1.347) Cm (32:34-6:18)

1: TOF MS ES-

									8	.34e+002
100									495.1	.1
0 74.9 83. 75	0100.9 116.9 148.0 100 125 150	183.0 192.0 195 200	259.1 241.2 225 250	65.1 280.1 ³⁰ 275 300	324.9 9.2 326.9 353 325 350	378.2 395.1 .2 .397.2 423 .375 400 425	8.1 46 450	499	498 3.2 50 500	3.1 0.1 51 <u>6.2</u>
Minimum: Maximum:		5.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Form	ula		
495.1206	495.1215	-0.9	-1.8	16.5	38.6	1.1	C23	H21	N8	0
	495.1202	0.4	0.8	11.5	39.0	1.5	C22	H25	N4	05 / M-H-
	495.1175	3.1	6.3	12.5	39.3	1.8	C18	H21	N10	03
	495.1242	-3.6	-7.3	15.5	39.4	2.0	C27 C12	H25	N2	03
	495 1199	1 7	2 4	6 5	30 0	2 5	C21	H29	09	C12
	495.1162	4.4	8.9	7.5	40.2	2.8	C17	H25	NG	07
	495.1247	-4.1	-8.3	8.5	43.9	6.4	C12 C12	H21	N14	04
	495.1220	-1.4	-2.8	9.5	44.0	6.6	C8 1	H17	N20	02
	495.1167	3.9	7.9	0.5	44.2	6.8	C2 1	H21	N18	08
	495.1207	-0.1	-0.2	4.5	44.4	6.9	C7 1	H21	N16	06
	495.1234	-2.8	-5.7	3.5	44.4	7.0	C11	H25	N10	08
	495.1194	1.2	2.4	-0.5	44.6	7.2	C6 1	H25	N12	010
	495.1221	-1.5	-3.0	-1.5	44.8	7.4	C10 C12	H29	NG	012

(S)-3-(3-((*tert*-Butoxycarbonyl)amino)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)benzoic acid (18c)

Elemental	Elemental Composition Report									
Single Mas Tolerance = Element pre Number of is	ss Analysis 10.0 PPM / DBI diction: Off sotope peaks used	E: min = -1.	5, max = 50 3	0.0						
Monoisotopic 1346 formula(Elements Use C: 0-100 H NBH-6 17 (0.7 1: TOF MS ES	Mass, Even Electron (e) evaluated with 14 ed: I: 0-100 N: 0-20 01) Cm (16:17-1:8) *	n lons results with O: 0-20	in limits (all r Cl: 2-2	results (up to	o 1000) for eac	h mass)				00004
100								511.2	4	.08e+004
~~~~								513	3.2	
-	98.0 142.0							514	1.2	
61.0 85.	0 128.0 147.0	201.2 218.1	230.9 280	).1 313.3 ³³	6.2 368.2 ³⁹	7.1 411.1 455.14	77.2	51	6.2 551	5 565.1
75	100 125 150 17	5 200 22	5 250 275	300 325	350 375 4	00 425 450 4	75 5	00 52	5 550	m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	For	nula		
511.1512	511.1515	-0.3	-0.6	10.5	216.1	0.2	C23	H29	N4	05 / MHt
	511.1502	1.0	2.0	5.5	217.9	2.0	C12 C22	H33	09	C12
	511.1488	2.4	4.7	11.5	219.3	3.3	C19 C12	H25	N10	03
	511.1528	-1.6	-3.1	15.5	219.9	4.0	C24 C12	H25	N8	0
	511.1555	-4.3	-8.4	14.5	221.5	5.5	C28 C12	H29	N2	03
	511.1475	3.7	7.2	6.5	221.8	5.9	C18 C12	H29	NG	07
	511.1461	5.1	10.0	12.5	222.8	6.9	C15	H21	N16	0
	511.1461	5.1	10.0	1.5	223.6	7.7	C17	H33	N2	011
	511.1560	-4.8	-9.4	7.5	224.1	8.1	C12 C13	H25	N14	04
	511.1547	-3.5	-6.8	2.5	224.9	9.0	C12 C12	H29	N10	08
	511.1533	-2.1	-4.1	8.5	225.9	9.9	C12 C9	H21	N20	02
	511.1520	-0.8	-1.6	3.5	226.6	10.7	Cl2 C8	H25	N16	06
	511.1507	0.5	1.0	-1.5	227.3	11.4	C12 C7	H29	N12	010
	511.1480	3.2	6.3	-0.5	229.2	13.3	C12 C3 C12	H25	N18	08

# 4-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-3-(4-phenylpiperazin-1-yl)benzoic acid (18h)

LEU-36 #16-30 RT: 0.07-0.13 AV: 15 NL: 4.15E6 T: FTMS + c ESI Full ms [100.0000-750.0000]



Elemental composition search on mass 473.11380

a/z= 468.11380-478.11380										
m/z	Theo. Mas	s Delta	RDB	Composition						
		(ppm)	equiv.							
473.11380	473.1141	7 -0.79	13.5	C 23 H 23 O 3 N 4 Cl 2						

3-(3-(((tert-Butoxycarbonyl)amino)methyl)piperidin-1-yl)-4-(3,4-dichloro-5-methyl-1H-pyrrole-2-carboxamido)benzoic acid (18i)

DBT-222 #7-11 RT: 0.03-0.05 AV: 5 NL: 5.51E7 T: FTMS + c ESI Full ms [100.0000-800.0000] 525.16620 C 24 H 31 O 5 N 4 Cl 2 100 _ 95 90<u>-</u> 335.18627 C 20 H 23 O N 4 85-80-75-70-65-60 182.02342 C11 H4 O2 N 55-50-45-40 360.32326 35-407.20740 C₂₃ H₂₇ O₃ N₄ 30-25-20-239.08876 563.12220 496.27029 15-10 610.10256 5-675.67538 723.46412 0-**┝╷╢╿┍**┥╷╴┡╺ ┉┉ 400 100 200 300 5**0**0 6Ó0 700

Elemental composition search on mass 525.16620

m/z= 520.16620-530.16620 Theo. Mass Delta RDB m/z Composition (ppm) equiv. 525.16620 525.16660 -0.77 10.5 C24 H31 O5 N4 Cl2

m/z

8<u>0</u>0

### 4-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(methoxycarbonyl)phenyl)piperazin-1-ium chloride (19a)

Elemental	Composition Re	Page 1							
Single Mas Tolerance = Element pred Number of is	<b>s Analysis</b> 10.0 PPM / DBE diction: Off sotope peaks used	E: min = -1.8	5, max = 50 3	).0					
Monoisotopic 779 formula(e) Elements Use C: 0-100 H NBH-56 7 (0.29 1: TOF MS ES+	Mass, Even Electror ) evaluated with 8 re d: : 0-100 N: 0-20 95) Cm (6:8)	n lons sults within l O: 0-20	imits (all res Cl: 2-2	ults (up to 10	000) for each m	ass)		2.	77e+006
100 % 69.1.8:	5.099.0 129.1 146.1	158.0 199.	1 214.1 23	9.2 262.1267	7.3 313.3 ³⁴	1.3 353.3 381.3	411.1	4.1 4.55	1 469.1 mm∫ m/z
60 80 Minimum: Maximum:	) 100 120 140	5.0	10.0	-1.5 50.0	0 300 320	340 360 360	400 42	0 440 40	50
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formul	la	
411.0998	411.1031	-3.3	-8.0	13.5	438.2	0.6	C23 H	H21 N2	0
	411.0991	0.7	1.7	9.5	438.7	1.0	C18 F C12	421 N4	03 / MH+
	411.0977 411.0964	2.1 3.4	5.1 8.3	4.5 10.5	441.1 441.7	3.4 4.0	C17 H C14 H C12	H25 07 H17 N10	C12 0
	411.1036	-3.8	-9.2	6.5	444.9	7.3	C8 H1	17 N14	02
	411.1023	-2.5	-6.1	1.5	445.7	8.0	C7 H2	21 N10	06
	411.1009 411.0996	-1.1 0.2	-2.7 0.5	7.5 2.5	446.5 447.3	8.9 9.6	C4 H1 C3 H1 C12	13 N20 17 N16	C12 04

### (S)-1-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(methoxycarbonyl)phenyl)piperidin-3-aminium chloride (19c)

Elemental (	Composition Re	eport						Page 1
Single Mas Tolerance = Element pred Number of ise	<b>s Analysis</b> 10.0 PPM / DBE liction: Off otope peaks used	E: min = -1. for i-FIT =	.5, max = 9	50.0				
Monoisotopic I 856 formula(e) Elements Used C: 0-100 H: NBH-9 13 (0.53) 1: TOF MS ES+	Mass, Even Electror ) evaluated with 7 re d: : 0-100 N: 0-20 6) Cm (11:13)	n Ions esults within O: 0-20	limits (all re Cl: 2-2	esults (up to	o 1000) for each r	nass)		
100							425.1	2.43e+006
%							427	.1
0 54.1 77.0	^{84.6} 110.0 ^{141.0} 1	58.0 198	1 214 1	250.2.2	761 2122	341 2 356 4 301	428	3.1 30.1 457.2 m/z
60 80	100 120 140	160 180	200 220	240 260	280 300 320	340 360 380	400 420 4	40 460
Minimum: Maximum:		5.0	10.0	-1.5 50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
425.1145	425.1147	-0.2	-0.5	9.5	524.3	0.0	C19 H23 Cl2	N4 03√H#+
	425.1134	1.1	2.6	4.5	528.0	3.7	C18 H27	07 Cl2
	425.1120	2.5	5.9	10.5	529.0	4.7	C15 H19 Cl2	N10 O
	425.1107	3.8	8.9	5.5	530.9	6.7	C14 H23 C12	N6 05
	425.1179	-3.4	-8.0	1.5	533.5	9.2	C8 H23	N10 O6
	425.1166	-2.1	-4.9	7.5	534.7	10.4	C5 H15	N20 C12
	425.1152	-0.7	-1.6	2.5	535.5	11.2	C4 H19 Cl2	N16 04

### (1-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(methoxycarbonyl)phenyl)piperidin-3-yl)methanaminium chloride (19i)

DBT228



### Elemental composition search on mass 439.12930

m/z= 434.12930-444.12930										
m/z	Theo. Mass	Delta	RDB	Composition						
		(ppm)	equiv.							
439.12930	439.12982	-1.19	9.5	C 20 H 25 O 3 N 4 Cl 2						

# 4-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperazin-1-ium chloride (20a)

Elemental (	Composition Re	port						Page 1
Single Mas Tolerance = 1 Element pred Number of iso	<b>s Analysis</b> 10.0 PPM / DBE liction: Off otope peaks used	: min = -1.5 for i-FIT = 3	, max = 50.	.0				
Monoisotopic N 698 formula(e) Elements Used C: 0-100 H: NBH-55 NEG 47	Mass, Even Electron ) evaluated with 8 res d: : 0-100 N: 0-20 7 (1.920) Cm (46:48)	lons sults within li O: 0-20	mits (all resu Cl: 2-2	ults (up to 10	00) for each m	ass)		
1: TOP MS ES-							305.1	9.74e+003
100							397.1	
0-69.0.75.0 60 80	101.0 135.0.141.0 0 100 120 140	162.8 ¹⁹⁷	.8 212.1 213.1 200 220	259.1 246.1 240 260	1 _275.1 307.1 3 280 300 32	327.0 377.1 20 340 360 38	398.1 93.1 30 400 420	443.1 453.0 میں البریم 440
Minimum: Maximum:		5.0	10.0	-1.5 50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
395.0670	395.0678	-0.8	-2.0	10.5	182.1	0.1	C17 H17 N4 C12	03/11-H-
	395.0651	1.9	4.8	11.5	185.0	3.0	C13 H13 N1 C12	0 0
	205 0564	0.6	1 5	5.5	185.5	3.5	C16 H21 07	C12
	395.0004	3.3	8.4	6.5	185.9	3.9	C12 H17 N6	05
	395.0037	5.5					C12	
	395.0710	-4.0	-10.1	2.5	192.6	10.6	C6 H17 N10 Cl2	06
	205 0696	-2.6	-6.6	8.5	192.9	10.9	C3 H9 N20	C12
	395.0090	-1.3	-3.3	3.5	193.5	11.5	C2 H13 N16	04
	395.0669	0.1	0.3	-1.5	193.9	12.0	Cl2 C H17 N12 Cl2	08

### (S)-1-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperidin-3aminium chloride (20c)

Elemental	Composition R			I	Page 1				
Single Mas Tolerance = Element pre Number of is	ss Analysis 10.0 PPM / DBI diction: Off sotope peaks used	E: min = -1.	5, max = 5 3	60.0					
Monoisotopic Mass, Even Electron Ions 779 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 CI: 2-2 NBH-7 15 (0.609) Cm (15:16-1:9) 1: TOF MS ES+									
100 %- 0 69.1.8 60 80	<u>15.0^{110.0}131.0</u> 146. 0 100 120 140	1 185.1 1 160 180	98.1 218.1 2 200 220	<u>39.2 262.1 2</u> 240 260 28	83.1 <u>313.3 ³⁴</u> 80 300 320	1.3 353.3 381.3 340 360 380	411.1 413.1 425.1 400 420	1 27.1 28.1 443 440 46	3 469.3 mmm m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
411.1002	411.1031	-2.9	-7.1	13.5	383.2	0.3	C23 H21 C12	N2	0
	411.0991	1.1	2.7	9.5	384.4	1.5	C18 H21 C12	LN4	03 /MIH+
	411.0977	2.5	6.1	4.5	386.9	4.0	C17 H25	5 O7	C12
	411.0964	3.8	9.2	10.5	387.9	5.0	C14 H17	/ N10	0
							the second second		
	411.1036	-3.4	-8.3	6.5	391.0	8.1	C8 H17 Cl2	N14	02
	411.1036 411.1023	-3.4 -2.1	-8.3 -5.1	6.5 1.5	391.0 391.7	8.1 8.8	C8 H17 C12 C7 H21 C12	N14 N10	02 06
	411.1036 411.1023 411.1009	-3.4 -2.1 -0.7	-8.3 -5.1 -1.7	6.5 1.5 7.5	391.0 391.7 393.0	8.1 8.8 10.1	C8 H17 C12 C7 H21 C12 C4 H13	N14 N10 N20	02 06 C12

## 4-((5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)amino)piperidin-1-ium chloride (20d)



Elemental composition search on mass 411.09798

# (1-(5-Carboxy-2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)phenyl)piperidin-3-yl)methanaminium chloride (20i)



m/2= 420.1	1308-430.11	.308		
m/z	Theo. Mass	Delta	RDB	Composition
		(ppm)	equiv.	
425.11368	425.11417	-1.16	9.5	C19 H23 O3 N4 Cl 2

# *tert*-Butyl 4-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperazine-1-carboxylate (22a)

ZMP-39 #20 RT: 0.09 AV: 1 NL: 1.03E7 T: FTMS + c ESI Full ms [100.0000-750.0000]



Elemental composition search on mass 537.14075

# *tert*-Butyl (*S*)-(1-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)pyrrolidin-3-yl)carbamate (22b)

NUR-8c #8-17 RT: 0.03-0.07 AV: 10 NL: 4.00E7 T: FTMS + c ESI Full ms [150.0000-2000.0000]



Elemental composition search on mass 537.14156

m/z= 532.1	4156-542.14	1156		
m/z	Theo. Mass	Delta	RDB	Composition
		(ppm)	equiv.	
537.14156	537.14145	0.21	12.5	C 23 H 27 O 5 N 6 Cl 2

## *tert*-Butyl (*S*)-(1-(2-(3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperidin-3-yl)carbamate (22c)

### **Elemental Composition Report**

Page 1

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1576 formula(e) evaluated with 16 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 CI: 2-2 NBH 11 48 (1.956) Cm (47:48) 1: TOF MS ES-

100-								549.1		7.86e+003	
-								55	51.1		
%-			265.1	9 2 200 2				55	52.1		
62.0	100.9 138.0	182.0 212.1	253.2	311.	2 353.2 397.2	441.3	475.1515.2.523	2 5	54.1 57	9.2 599.5	
	100 150	200	250	300	350 400	450	500	550		600	
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm) For	mula			
549.1436	549.1438	-0.2	-0.4	0.5	113.1	8.6	C12	H31	N8	012	
	549.1433	0.3	0.5	18.5	107.0	2.5	C25	H23	N10	0	
	549.1447 549.1425	-1.1 1.1	-2.0 2.0	12.5 6.5	106.5 113.6	2.0 9.1	C28 C9	H31 H23	07 N18	C12 06	
	549.1420	1.6	2.9	13.5	108.3	3.8	C12 C24	H27	NG	05 /M-	-11-
	549.1452	-1.6	-2.9	5.5	112.7	8.2	C12 C13	H27	N12	08	17
	549.1412	2.4	4.4	1.5	113.9	9.4	C12 C8 C12	H27	Nl4	010	
	549.1460	-2.4	-4.4	17.5	105.1	0.6	C29 C12	H27	N4	03	
	549.1465	-2.9	-5.3	10.5	112.3	7.8	C14 C12	H23	N16	04	
	549.1465	-2.9	-5.3	-0.5	112.4	7.9	C16	H35	N2	014	
	549.1407	2.9	5.3	8.5	109.2	4.7	C23	H31	N2	09	
	549.1393	4.3	7.8	14.5	109.7	5.2	C20	H23	N12	03	
	549.1479 549.1479	-4.3 -4.3	-7.8 -7.8	15.5 4.5	111.8 112.0	7.2 7.5	C12 C15 C17	H19 H31	N20 N6	C12 010	
	549.1388 549.1385	4.8 5.1	8.7 9.3	21.5 2.5	106.2 115.0	1.7 10.5	C35 C4 C12	H27 H23	02 N20	C12 08	

## 3,4-Dichloro-5-methyl-*N*-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (22e)

ZMP-16 #20-37 RT: 0.09-0.16 AV: 18 NL: 1.81E7 T: FTMS + c ESI Full ms [100.0000-750.0000] 171.0987 C7 H 13 O 2 N 3 100 95 90-85-438.0724 80-C 18 H 18 O 4 N 5 Cl 2 75-70-65 60 Relative Abundance 55-213.1436 50 C 5 H 19 O 4 N 5 45 40 35 360.3230 30-338.3410 25-376.2976 264.0778 460.0543 20 C9 H 16 N 5 Cl 2 15-10-476,0284 663.4520 736.5408 5-522.5923 598.2891  $h_{\eta h n \eta h} + h_{\eta h}$ 0-1000m 200 200 400 500 700 100 CÓO m/z

Elemental composition search on mass 438.07237

m/z= 433.07237-443.07237 m/z Theo. Mass Delta RDB Composition (ppm) equiv. 438.07237 438.07304 -1.52 11.5 C₁₈ H₁₈ O₄ N₅ Cl₂

# 3,4-Dichloro-5-methyl-*N*-(2-(2-methylmorpholino)-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (22f)

ZMP-49 #21-41 RT: 0.09-0.18 AV: 21 NL: 6.71E7 T: FTMS + c ESI Full ms [100.0000-750.0000]





m/z= 447.	08846-457.08	846				
m/z	Theo. Mass	Delta	RDB	Composition		
		(ppm)	equiv.			
452.08846	452.08869	-0.50	11.5	C19 H20 O4 N5 Cl2		

### 3,4-Dichloro-*N*-(2-(2,6-dimethylmorpholino)-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-5-methyl-1*H*-pyrrole-2-carboxamide (22g)

ZMP-35 #20-40 RT: 0.09-0.17 AV: 21 NL: 1.67E7 T: FTMS + c ESI Full ms [100.0000-750.0000]



Elemental composition search on mass 466.10399

m/z= 461.1	.0399-471.10	399					
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition			
466.10399	466.10434	-0.74	11.5	C ₂₀ H ₂₂ O ₄ N ₅ Cl ₂			

# 4-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperazin-1-ium chloride (23a)

ZMP-50 #9-25 RT: 0.04-0.11 AV: 17 NL: 5.25E8 T: FTMS + c ESI Full ms [100.0000-750.0000]



Elemental composition search on mass 437.08880

m/z= 432.08880-442.08880 m/z Theo. Mass Delta RDB Composition (ppm) equiv. 437.08880 437.08902 -0.50 11.5 C₁₈ H₁₉ O₃ N₆ Cl₂
## (*S*)-1-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)pyrrolidin-3-aminium chloride (23b)

NUR-10



#### Elemental composition search on mass 437.08899

m/z= 432.08899-442.08899								
m/z	Theo. Mass	Delta	RDB	Composition				
		(ppm)	equiv.					
437.08899	437.08902	-0.07	11.5	C18 H19 O3 N6 Cl 2				

### (*S*)-1-(2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)piperidin-3-aminium chloride (23c)

### **Elemental Composition Report**

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 989 formula(e) evaluated with 10 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-20 O: 0-20 Cl: 2-2 NBH 12 30 (1.219) Cm (29:30) 1: TOF MS ES-

100-							4	49.1	1	2.81e+004
%-								451.1		
69.0 <u>89.0</u> 75	92.9 121.0 134.9 1		⁸ 212.1 2:	33.2 265.1 28	0.1300.1 341.1	361.1 377.1 397.1	415.1	452.1 454.1	485.1	497.1
Minimum: Maximum:	100 125 150	5.0	10.0	-1.5 50.0	300 325	350 375 400	425	450 4	75 5	00
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (No	rm) Form	nula		
449.0890	449.0923 449.0896	-3.3 -0.6	-7.3 -1.3	11.5 12.5	173.1 177.3	0.0 4.2	C23 C19	H23 H19	05 N6	C12 03 / M-H-
	449.0864 449.0882	2.6 0.8	5.8 1.8	20.5	178.6 178.9	5.5 5.8	C12 C30 C18	H19 H23	Cl2 N2	07
	449.0869	2.1	4.7	13.5	179.9	6.8	C12 C15	H15	N12	0
	449.0855	3.5	7.8	8.5	181.0	7.9	C14 C12	H19	N8	05
	449.0928	-3.8	-8.5	4.5	183.9	10.8	C8	H19	N12	06
	449.0914	-2.4	-5.3	-0.5	184.2	11.1	C7	H23	N8 (	010
	449.0901	-1.1	-2.4	5.5	185.4	12.3	C4 C12	H15 1	N18	04
	449.0887	0.3	0.7	0.5	185.9	12.8	C3 C12	H19 1	N14	08

Page 1

# 4-((2-(3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxamido)-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)amino)piperidin-1-ium chloride (23d)



Elemental composition search on mass 451.10401

m/z= 446.10401-456.10401							
m/z	Theo. Mass	Delta	RDB	Composition			
		(ppm)	equiv.				
451.10401	451.10467	-1.46	11.5	C 19 H 21 O 3 N 6 Cl 2			

## 4,5-Dibromo-*N*-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (27a)

ZMP52 #48-73 RT: 0.21-0.32 AV: 26 NL: 3.40E7 T: FTMS - c ESI Full ms [100.0000-750.0000]



Elemental composition search on mass 450.07394

m/z= 445.07394-455.07394

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
450.07394	450.07413	-0.43	12.5	C ₁₉ H ₁₈ O ₄ N ₅ Cl ₂
	450.07173	4.92	9.5	C17 H19 O4 N5 Cl2 Na

### 3,4-Dichloro-*N*,5-dimethyl-*N*-(2-morpholino-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (27b)

ZMP-38 #31-58 RT: 0.14-0.25 AV: 28 NL: 4.83E6 T: FTMS + c ESI Full ms [100.0000-750.0000]



Elemental composition search on mass 511.95626

m/z= 506.95626-516.95626 m/z Theo. Mass Delta RDB Composition (ppm) equiv. 511.95626 511.95636 -0.19 11.5 C₁₇ H₁₆O₄ N₅ Br₂

### Methyl 4-(N-benzyl-3,4-dichloro-5-methyl-1H-pyrrole-2-carboxamido)benzoate (31)



Elemental composition search on mass 417.07615

m/z= 412.07615-422.07615 m/z Theo. Mass Delta RDB Composition (ppm) equiv. 417.07615 417.07672 -1.38 12.5 C₂₁ H₁₉O₃ N₂ Cl₂ 417.07249 8.78 14.5 C₂₀ H₁₅O₃ N₄ Cl Na

### *N*-Benzyl-3,4-dichloro-*N*-(4-(hydrazinecarbonyl)phenyl)-5-methyl-1*H*-pyrrole-2-carboxamide (32)



Elemental composition search on mass 417.08769

m/z= 412.0	8769-422.08	769		
m/z	Theo. Mass	Delta	RDB	Composition
		(ppm)	equiv.	
417.08769	417.08796	-0.64	12.5	C ₂₀ H ₁₉ O ₂ N ₄ Cl ₂

## *N*-Benzyl-3,4-dichloro-5-methyl-*N*-(4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-1*H*-pyrrole-2-carboxamide (33)



#### Elemental composition search on mass 443.06693

m/z= 438.0	6693-448.06	5693			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
443.06693	443.06722	-0.66	14.5	C 21 H 17 O 3 N 4 CL 2	$\checkmark$

## *N*-(2-(Benzyloxy)-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamide (39)



Elemental composition search on mass 457.0478

m/z= 452.0	478-462.047	8		
m/z	Theo. Mass	Delta	RDB	Composition
		(ppm)	equiv.	
457.04776	457.04758	0.39	15.5	C ₂₁ H ₁₅ O ₄ N ₄ Cl ₂
	457.04801	-0.55	12.0	C19H18O2N5Cl2K
	457.04695	1.78	8.5	C ₁₉ H ₂₁ O ₃ N ₂ Cl ₂ KNa