Supporting Information for

Ruthenium complexes with triazenide ligands bearing an *N*-heterocyclic moiety, and their catalytic properties in the reduction nitroarenes

Christian Romero-Soto,^{a‡} Ana L. Iglesias,^{b‡} Amor Velázquez-Ham,^a Juan P. Camarena-Díaz,^a Erick Correa-Ayala,^a Jessica L. Gomez-Lopez,^a Daniel Chávez,^aAdrián Ochoa-Terán,^a Gerardo Aguirre,^a Arnold L. Rheingold,^c Douglas B. Grotjahn,^{d#} Miguel Parra-Hake,^a and Valentín Miranda-Soto^{*a}

^aTecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química. Blvd. Alberto Limón Padilla S/N, Otay Mesa, 22454 Tijuana, B. C. México.

^bFacultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario No. 1000. Valle de las Palmas, 21500 Tijuana, B. C. México.

^cDepartment of Chemistry and Biochemistry, University of California at San Diego. La Jolla, CA 92093-0385, USA. ^dDepartment of Chemistry and Biochemistry, San Diego State University. 5500 Campanile Drive San Diego, CA 92182-1030, USA.

[‡]These authors contributed equally to the work.

[†]Deceased.

TABLE OF CONTENTS	
NMR, FTIR and HRMS spectra of triazenes 1, 2, 3, 4, and 9.	S2
NMR and HRMS spectra of complexes 5, 6, 7, and 8.	S19
NMR, EIMS and HRMS spectra of complex 11 , 12 , and 13 .	S46
Table S1. Crystallographic data for complex 5.	S54
Table S2. Crystallographic data for complex 6.	S55
Table S3. Crystallographic data for complex 7.	S56
Table S4. Crystallographic data for complex 12.	S57
Figure S98. X-ray structure of complex 13.	S58
Table S5. Crystallographic data for complex 13.	S59
Table S6. Screening of complexes 5-10 in the reduction of 4-aminonitrobenzene.	S60
GC-MS data of the catalytic hydrogenation of nitrobenzene (Table 1).	S61
GC-MS data of the catalytic hydrogenation of 4-aminonitrobenzene (Table S6).	S68
GC-MS data of the catalytic hydrogenation of nitroarenes (Table 2).	S75
Figure S155 . ¹ H NMR data of hydrogenation product of entry 9, Table 2 in DMSO- <i>d</i> ₆ .	S83
Figure S156 . ¹ H NMR data of hydrogenation product of entry 10, Table 2 in DMSO- <i>d</i> ₆ .	S83
Table S7. Reduction of <i>p</i> -nitrotoluene without NaBH ₄ .	S89
GC-MS Data of the Oxyazo intermediate in the reduction of <i>p</i> -nitrotoluene	S89
GC-MS Data of the Azo intermediate in the reduction of <i>p</i> -nitrotoluene	S91
Figures S177-S179. ¹ H NMR of Ru-hydride intermediates.	S92
Chart 1. Reutilization of the catalytic system.	S94

Figure S1. ¹H NMR spectrum of 1 in CDCI₃ (400 MHz).

Figure S2. Partial ¹H NMR spectrum of 1 in CDCl₃ (400 MHz).

Figure S3. ¹³C {¹H} NMR spectrum of 1 in $CDCI_3$ (100 MHz).

Figure S4. ¹³C {¹H} NMR-APT spectrum of **1** in CDCl₃ (100 MHz).

Figure S5. ¹³C NMR ¹H-coupled spectrum of **1** in CDCl₃ (100 MHz).

Figure S6. Comparison of ¹H-decoupled and ¹H-coupled ¹³C NMR spectra of **1** in CDCl₃.

Figure S7. Partial ¹H-¹H gCOSY spectrum of **1** in CDCl₃.

Figure S8. ¹H-¹³C HSQC spectrum of **1** in CDCl₃ (400 MHz).

Figure S9. $^{1}H^{-13}C$ HMBC of 1 in CDCl₃ (400 MHz).

Figure S10. FTIR Spectrum of 1 in KBr.

Figure S12. High Resolution Mass Spectrum (HRMS) of 1.

Figure S13. HRMS of triazene 1 (above) and calculated spectrum (below) with [M+Na]⁺ adduct.

Figure S14. ¹H NMR spectrum of 2 in DMSO-*d*₆ (400 MHz).

Figure S15. Partial ¹H NMR spectrum of **2** in DMSO- d_6 (400 MHz).

Figure S16. Partial ¹³C {¹H} NMR-APT spectrum of 2 in DMSO-*d*₆ (100 MHz).

Figure S17. ¹³C {¹H} NMR-APT spectrum of 2 in DMSO- d_6 (100 MHz).

Figure S18. Partial ¹H-¹H gCOSY NMR spectrum of **2** in DMSO-*d*₆ (400 MHz).

Figure S19. Partial ¹H-¹³C gHSQC NMR spectrum of 2 in DMSO-*d*₆.

Figure S20. Partial ¹H-¹³C gHMBC NMR spectrum of 2 in DMSO-*d*₆.

Figure S21. FTIR spectrum of 2 in KBr.

Figure S22. HRMS of 2.

Figure S23. HRMS of triazene 2 (above) and calculated spectrum (below) with [M+Na]⁺ adduct.

Figure S24. ¹H NMR spectrum of **3** in Acetone- d_6 (400 MHz).

Figure S25. ¹³C {¹H} NMR spectrum of **3** in Acetone- d_6 (100 MHz).

Figure S26. ¹H NMR spectrum of **4** in acetone- d_6 (400 MHz).

Figure S27.¹³C {¹H} NMR spectrum of 4 in CD_2CI_2 (100 MHz).

Figure S28. ¹H NMR spectrum of triazene **9** in Acetone-*d*₆ (400 MHz).

Figure S29. ¹H NMR spectrum of triazene 9 in DMSO- d_6 (400 MHz).

Figure S30.¹³C {¹H} NMR spectrum of triazene 9 in in DMSO- d_6 (100 MHz).

Figure S31. Electron-Ionization Mass Spectrum of 9.

Figure S32. High Resolution Mass Spectrum of 9.

Figure S34. ¹H NMR spectrum of 5 in CDCl₃ (400 MHz).

Figure S35. ¹³C {¹H} NMR spectrum of 5 in $CDCI_3$ (100 MHz).

Figure S36. Partial ¹³C {¹H} NMR-APT spectrum of 5 in CDCI₃ (100 MHz).

Figure S37. Partial ¹H-¹H gCOSY NMR spectrum of 5 in CDCl₃.

Figure S38. Full ¹H-¹H gCOSY NMR spectrum of 5 in CDCl₃.

Figure S40. Partial ¹H-¹³C gHSQC NMR spectrum of 5 in CDCl₃.

Figure S41. ¹H-¹³C HMBC NMR spectrum of 5 in CDCl₃.

Figure S42. Partial ¹H-¹³C HMBC NMR spectrum of 5 in CDCl₃.

Figure S43. a) HRMS of **5**; b) HRMS of complex **5** (above) and simulated spectrum (below) [M+H]⁺.

Figure S44. HRMS for 5 (above) and simulated spectrum (below) [M+Na] adduct.

Figure S45. Partial ¹H NMR spectrum of complex 5 and free triazene 1 in CDCl₃.

Figure S46. ¹H NMR spectrum of **5** in THF-*d*₈ (400 MHz).

Figure S47. ¹³C {¹H} NMR-APT spectrum of 5 in THF- d_8 (100 MHz).

Figure S48. ¹H-¹H gCOSY NMR spectrum of **5** in THF-*d*₈.

Figure S50. Partial ¹H-¹³C gHSQC NMR spectrum of 5 in THF-*d*₈.

Figure S51. Partial ¹H-¹³C HMBC NMR spectrum of 5 in THF-*d*₈.

Figure S52. ¹H NMR spectrum of complex 6 in CD₂Cl₂ (400 MHz).

Figure S53. ¹H NMR spectrum of 6 in CDCl₃ (400 MHz).

Figure S54. ¹³C {¹H} NMR-APT spectrum of complex 6 in CD_2CI_2 (100 MHz).

Figure S58. ¹H-¹³C HMBC NMR spectrum of **6** in CD₂Cl₂.

Figure S59. Partial ¹H-¹³C HMBC NMR spectrum of 6 in CD₂Cl₂.

Figure S60. ¹H NMR spectrum of 6 in DMSO-*d*₆ (400 MHz).

Figure S61. Partial ¹H NMR spectrum of free triazene **2** (red) and complex **6** (blue) in DMSO- d_6 .

Figure S62. ¹³C {¹H} NMR spectrum of **6** in DMSO- d_6 (100 MHz).

Figure S63. ¹H-¹H gCOSY NMR spectrum of 6 in DMSO-*d*₆.

Figure S64. ¹H-¹³C HSQC NMR spectrum of 6 in DMSO-*d*₆.

Figure S65. Partial ¹H-¹³C HSQC NMR spectrum of 6 in DMSO-*d*₆.

Figure S66. ¹H-¹³C HMBC NMR spectrum of 6 in DMSO-*d*₆.

Figure S67. HRMS for 6 (above) and simulated spectrum (below) [M+H]⁺.

Figure S68. HRMS for 6 (above) and simulated spectrum (below) [M+Na]⁺ adduct.

Figure S69. ¹H NMR spectrum of **7** in acetone- d_6 (400 MHz).

Figure S70. ¹³C {¹H} NMR-APT spectrum of **7** in acetone- d_6 (100 MHz).

Figure S71. ¹H-¹H gCOSY NMR spectrum of **7** in acetone- d_6 .

Figure S72. ¹H-¹³C HSQC NMR spectrum of **7** in acetone- d_6 .

Figure S73. ¹H-¹³C HMBC NMR spectrum of 7 in acetone-*d*₆.

Figure S74: HRMS for complex 7 (above) and simulated spectrum (below) [M+H]⁺.

Figure S75. ¹H NMR spectrum of **8** in acetone- d_6 (400 MHz).

Figure S76. ¹³C {¹H} NMR-APT spectrum of **8** in acetone- d_6 (100 MHz).

Figure S77. ¹H-¹H gCOSY NMR spectrum of **8** in acetone- d_6 .

Figure S78. ¹H-¹³C HSQC NMR spectrum of 8 in acetone- d_6 .

Figure S79. ¹H-¹³C HMBC NMR spectrum of 8 in acetone-*d*₆.

Figure S81. HRMS for 8 (above) and simulated spectrum (below) [M+H]⁺.

NMR, EIMS and HRMS spectra of complexes 10, 12, and 13

Figure 83. Partial ¹H NMR spectrum of complex **10** in acetone-*d*_{6.}

Figure S84. ¹³C {¹H} NMR spectrum of complex **10** in acetone-*d*₆ (100 MHz).

Figure S85. a) HRMS of **11**; b) HRMS of complex **10** (above) and simulated spectrum (below) [M+Na]⁺ adduct.

Figure S86. ¹H NMR spectrum of **12** in THF-*d*₈ (400 MHz).

Figure S87. ¹³C {¹H} NMR-APT spectrum of **12** in THF-*d*₈ (100 MHz).

Figure S88. ¹H-¹H gCOSY NMR spectrum of **12** in THF-*d*₈.

Figure S89. ¹H-¹³C HSQC NMR spectrum of **12** in THF-*d*₈.

Figure S90. ¹H-¹³C HMBC NMR spectrum of **12** in THF-*d*₈.

Figure S91. Electron Ionization-Mass spectrum of 12.

Figure S92. ¹H NMR spectrum of **13** in CD₂Cl₂ (400 MHz).

Figure S94. Full ¹³C {¹H} NMR-APT spectrum of **13** in CD₂Cl₂ (100 MHz).

Figure S95. Full ¹H-¹H gCOSY NMR spectrum of **13** in CD₂Cl₂.

Figure S96. Full ¹H-¹³C gHSQC NMR spectrum of **13** in CD₂Cl₂.

Figure S97. Full ¹H-¹³C HMBC NMR spectrum of **13** in CD₂Cl₂.

Formula	$C_{21}H_{22}CI_2N_4Ru$	
<i>M</i> _w (g mol ⁻¹)	502.40	
Crystal size (mm ³)	0.28 x 0.12 x 0.08	
Crystal system	Orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁	
<i>a</i> (Å)	7.6210(14)	
b (Å)	10.7471(18)	
<i>c</i> (Å)	24.768(4)	
α/°	90	
β /°	90	
γ/°	90	
V (Å ³)	2028.6(6)	
Ζ	4	
ρ _{calc} (g cm ⁻³)	1.645	
λ (Å)	0.71073	
Temp (K)	100(2)	
$2\theta_{\max}$ (grados)	26.42	
Reflections collected	13185	
Independent reflections	4182 [R(int) = 0.0487]	
No. de parámetros	256	
wR2 [I>2σ(I)]	R1 = 0.0329, wR2 = 0.0578	
R1 (all data)	R1 = 0.0409, wR2 = 0.0601	
Goof (F ²)	1.037	

 Table S1. Crystallographic data for complex 5.

Empirical formula	C25H24N4Cl2Ru	
Formula weight	552.45	
Temperature/K	293.4(3)	
Crystal system	orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁	
a/Å	7.96150(10)	
b/Å	11.85520(10)	
c/Å	25.7291(2)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å3	2428.45(4)	
Z	4	
pcalcg/cm3	1.511	
µ/mm 1	7.401	
F(000)	1120.0	
Crystal size/mm3	0.301 × 0.145 × 0.123	
Radiation	CuKα (λ = 1.54184)	
2O range for data collection/°	6.872 to 141.616	
Index ranges	-9 ≤ h ≤ 7, -14 ≤ k ≤ 14, -30 ≤ l ≤ 31	
Reflections collected	12917	
Independent reflections	4509 [Rint = 0.0330, Rsigma = 0.0340]	
Data/restraints/parameters	4509/0/292	
Goodness-of-fit on F2	1.043	
Final R indexes [I>=2σ (I)]	R1 = 0.0309, wR2 = 0.0779	
Final R indexes [all data]	R1 = 0.0321, wR2 = 0.0787	
Largest diff. peak/hole / e Å-3	0.38/-0.67	

Table S2. Crystallographic data for complex 6.

Empirical formula	$C_{21}H_{27}CIN_5Ru$	
Formula weight	486.00	
Temperature/K	293.1(10)	
Crystal system	monoclinic	
Space group	P2 ₁ /n	
a/Å	12.9896(4)	
b/Å	13.2753(4)	
c/Å	14.0569(4)	
α/°	90.000(2)	
β/°	116.179(3)	
γ/°	90.000(3)	
Volume/Å ³	2175.33(13)	
Z	4	
ρ _{calc} g/cm ³	1.4839	
µ/mm ⁻¹	0.860	
F(000)	991.9	
Crystal size/mm ³	0.185 × 0.123 × 0.062	
Radiation	Μο Κα (λ = 0.71073)	
2O range for data collection/°	3.56 to 59.18	
Index ranges	-17 ≤ h ≤ 17, -18 ≤ k ≤ 17, -19 ≤ l ≤ 19	
Reflections collected	26543	
Independent reflections	5732 [R _{int} = 0.0298, R _{sigma} = 0.0254]	
Data/restraints/parameters	5732/0/258	
Goodness-of-fit on F ²	1.032	
Final R indexes [I>=2σ (I)]	R ₁ = 0.0296, wR ₂ = 0.0667	
Final R indexes [all data]	R ₁ = 0.0398, wR ₂ = 0.0721	

 Table S3. Crystallographic data for complex 7.

Empirical formula	$C_{21}H_{22}CI_2N_4Ru$	
Formula weight	502.39	
Temperature/K	293(2)	
Crystal system	orthorhombic	
Space group	Pbca	
a/Å	20.5077(12)	
b/Å	7.6529(3)	
c/Å	26.1253(17)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	4100.2(4)	
Z	8	
ρ _{calc} g/cm ³	1.628	
µ/mm ⁻¹	1.040	
F(000)	2032.0	
Crystal size/mm ³	0.332 × 0.112 × 0.071	
Radiation	Μο Κα (λ = 0.71073)	
2O range for data collection/°	6.728 to 58.978	
Index ranges	-25 ≤ h ≤ 28, -8 ≤ k ≤ 10, -35 ≤ l ≤ 33	
Reflections collected	23842	
Independent reflections	5198 [R _{int} = 0.0476, R _{sigma} = 0.0443]	
Data/restraints/parameters	5198/0/256	
Goodness-of-fit on F ²	1.077	
Final R indexes [I>=2σ (I)]	R ₁ = 0.0425, wR ₂ = 0.0769	
Final R indexes [all data]	R ₁ = 0.0693, wR ₂ = 0.0847	

 Table S4. Crystallographic data for complex 12.

Figure S98. Molecular structure of **13**. Selected bond distances (Å): N(3)-N(4), 1.28(1); N(2)-N(3), 1.30(1); Ru(1)-N(3), 2.055(7); Ru(1)-N(1), 2.109(7); Ru(1)-Cl(1), 2.399(2). Selected bond angles (°): N(3)-Ru(1)-N(1), 75.1(2); N(3)-Ru(1)-Cl(1), 86.1(2); N(1)-Ru(1)-Cl(1), 87.3(2). N(2)-N(3)-N(4), 121.3(7).

Empirical formula	$C_{25}H_{24}N_4Cl_2Ru$	
Formula weight	552.45	
Temperature/K	294.7(7)	
Crystal system	triclinic	
Space group	P-1	
a/Å	9.8885(8)	
b/Å	14.1476(11)	
c/Å	17.6592(11)	
α/°	102.034(6)	
β/°	100.332(7)	
γ/°	94.941(7)	
Volume/Å ³	2357.4(3)	
Z	4	
$ ho_{calc}g/cm^3$	1.557	
µ/mm ⁻¹	0.912	
F(000)	1120.0	
Crystal size/mm ³	0.187 × 0.168 × 0.054	
Radiation	Μο Κα (λ = 0.71073)	
2O range for data collection/°	6.704 to 59.34	
Index ranges	-13 ≤ h ≤ 13, -19 ≤ k ≤ 19, -22 ≤ l ≤ 24	
Reflections collected	51887	
Independent reflections	11636 [R _{int} = 0.1741, R _{sigma} = 0.1640]	
Data/restraints/parameters	11636/0/583	
Goodness-of-fit on F ²	1.022	
Final R indexes [I>=2σ (I)]	R ₁ = 0.0923, wR ₂ = 0.1928	
Final R indexes [all data]	R1 = 0.1921, wR2 = 0.2474	

 Table S5. Crystallographic data for complex 13.

Table S6. Screening of complexes 5-11 in the catalysis of 4-aminonitrobenzene.^a

H ₂ N	NO ₂	RuCat 5-11 (1% mol) NaBH ₄ , ethanol, rt H_2N^2	NH ₂
Entry	Catalyst	Time (min)	Yield (%)
1	5	30	45
2	6	30	34
3	7	30	22
4	8	30	32
5	10	30	22
6	11	30	33
7	5	60	87
8	6	60	76
9	7	60	51
10	8	60	76
11	10	60	56
12	11	60	53
13	5	90	100
14	6	90	96
15	7	90	80
16	8	90	95
17	10	90	84
18	11	90	88

^[a]**Reaction conditions:** nitrobenzene (0.3 mmol), NaBH₄ (1.2 mmol), ethanol (2 mL), room temperature. Yields were determined by GC-MS.

Selected GC-MS data of the catalytic hydrogenation of nitrobenzene (Table 1)

Figure S103. Mass spectrum of the component at 3.82 min identified as aniline.

Figure S104. Chromatogram of the reduction of nitrobenzene (Table 1, entry 3).

Figure S105. Mass spectrum of the component at 2.85 min identified as aniline.

Figure S106. Mass spectrum of the component at 3.60 min identified as nitrobenzene.

Figure S108. Mass spectrum of the component at 2.85 min identified as aniline.

Figure S109. Mass spectrum of the component at 3.61 min identified as nitrobenzene.

Figure S110. Chromatogram of the reduction of nitrobenzene (Table 1, entry 8).

Figure S111. Mass spectrum of the component at 2.85 min identified as aniline.

Figure S112. Mercury drop test in the reduction of nitrobenzene (Table 1, entry 12).

Figure S113. Mass spectrum of the component at 3.91 min identified as aniline.

Figure S114. Chromatogram of the reduction of nitrobenzene with 0.5% mol of 5 (Table 1, entry 13).

Figure S115. Mass spectrum of the component at 3.93 min identified as aniline.

Figure S116. Mass spectrum of the component at 10.30 min identified as azobenzene.

Selected GC-MS data of the catalytic hydrogenation of 4-aminonitrobenzene (Table S6)

Figure S117. Chromatogram of the reduction of 4-aminonitrobenzene (Table S6, entry 1).

Figure S119. Mass spectrum of the component at 7.32 min identified as 4-aminonitrobenzene.

Figure S120. Chromatogram of the reduction of 4-aminonitrobenzene (Table S6, entry 2).

Figure S121. Mass spectrum of the component at 4.83 min identified as 4-aminoaniline.

Figure S122. Mass spectrum of the component at 7.32 min identified as 4-aminonitrobenzene.

Figure S123. Chromatogram of the reduction of 4-aminonitrobenzene (Table S6, entry 7).

Figure S124. Mass spectrum of the component at 4.84 min identified as 4-aminoaniline.

Figure S125. Mass spectrum of the component at 7.31 min identified as 4-aminonitrobenzene.

Figure S126. Chromatogram of the reduction of 4-aminonitrobenzene (Table S6, entry 13).

Figure S127. Mass spectrum of the component at 4.84 min identified as 4-aminoaniline.

Figure S128. Chromatogram of the reduction of 4-aminonitrobenzene (Table S6, entry 14).

Figure S129. Mass spectrum of the component at 4.84 min identified as 4-aminoaniline.

Figure S130. Mass spectrum of the component at 7.30 min identified as 4-aminonitrobenzene.

Figure S131. Chromatogram of the reduction of 4-aminonitrobenzene (Table S6, entry 17).

Figure S132. Mass spectrum of the component at 5.41 min identified as 4-aminoaniline.

Figure S133. Mass spectrum of the component at 6.74 min identified as 4-aminonitrobenzene.

Figure S134. Chromatogram of the reduction of 4-aminonitrobenzene (Table S6, entry 18).

Figure S135. Mass spectrum of the component at 5.42 min identified as 4-aminoaniline

Figure S136. Mass spectrum of the component at 6.74 min identified as 4-aminonitrobenzene.

Figure S137. Chromatogram of the reduction of 4-nitrotoluene (Table 2, entry 1).

Figure S138. Mass spectrum of the component at 4.57 min identified as 4-aminotoluene.

Figure S139. Chromatogram of the reduction of 4-nitrophenol (Table 2, entry 2).

Figure S140. Mass spectrum of the component at 4.82 min identified as of 4-aminophenol.

Figure S141. Mass spectrum of the component at 6.71 min identified as 4-nitrophenol.

Figure S142. Chromatogram of the reduction of 4-nitrobenzyl alcohol (Table 2, entry 3).

Figure S143. Mass spectrum of the component at 7.45 min identified as of 4-aminobenzyl alcohol.

Figure S144. Chromatogram of the reduction of 1-lodo-4-nitrobenzene (Table 2, entry 4).

Figure S145. Mass spectrum of the component at 6.03 min identified as of 4-lodo-aniline.

Figure S146. Chromatogram of the reduction of 2,6-diiodo-4-nitroaniline (Table 2, entry 5).

Figure S147. Mass spectrum of the component at 8.65 min identified as 2,6-diiodo-4-aminoaniline.

Figure S148. Mass spectrum of the component at 6.96 min identified as 2-iodo-4-aminoaniline (dehalogenation product).

Figure S149. Chromatogram of the reduction of 4-nitrobenzaldehyde (Table 2, entry 6).

Figure S150. Mass spectrum of the component at 5.64 min identified as (4-aminophenyl)methanol.

Figure S152. Mass spectrum of the component at 6.42 min identified as (4-amino-3methoxyphenyl)methanol.

Figure S153. Chromatogram of the reduction of 2,3-dimethoxy-5-nitrobenzaldehyde (Table 2, entry 8).

Figure S154. Mass spectrum of the component at 7.14 min identified as (5-amino-2,3dimethoxyphenyl)methanol.

Products of entries 9 and 10 were isolated and identified by NMR.

Figure S155. ¹H NMR data of the hydrogenation product of entry 9, Table 2 in DMSO-d₆.

Figure S156. ¹H NMR data of the hydrogenation product of entry 10, Table 2 in DMSO-*d*₆.

Figure S157. Chromatogram of the reduction of ethyl 4-nitrobenzoate (Table 2, entry 11).

Figure S158. Mass spectrum of the component at 5.81 min identified as (4-aminophenyl)methanol.

Figure S160. Chromatogram of the reduction of *N*-hexyl-4-nitrobenzamide (Table 2, entry 12).

Figure S161. Mass spectrum of the component at 9.36 min identified as 4-amino-*N*-hexylbenzamide.

Figure S162. Mass spectrum of the component at 9.54 min identified as N-hexyl-4-nitrobenzamide.

Figure S163. Chromatogram of the reduction of 4-(2-fluoro-4-nitrophenyl)morpholine (Table 2, entry 13).

Figure S164. Mass spectrum of the component at 8.01 min identified as 3-fluoro-4-morpholinoaniline.

Figure S165. Mass spectrum of the component at 9.14 min identified as 4-(2-fluoro-4nitrophenyl)morpholine.

Figure S169. Mass spectrum of the component at 6.51 min identified as (4-nitrophenyl)methanimine.

Figure S170. Chromatogram of the reduction of 4-nitrobenzonitrile after 16 h (Table 2, entry 14).

NO2 RuCat 5 (1% mol) NH2 Base, ethanol Base, ethanol										
Entry	Time	Temp °C	Base (10% mol)	% conversion ^[a]						
1	2H	50		< 1%						
2	16H	50		< 1%						
3	2H	70		< 1%						
4	16H	70		< 1%						
5	2H	70	КОН	< 1%						
6	16H	70	КОН	< 1%						
7	2H	70	KOtBu	< 1%						
8	16H	70	KOtBu	< 1%						

Table S7. Reduction of *p*-nitrotoluene without NaBH₄.^a

[a] Reactions were also run in methanol and isopropanol yielding the same results; no reduction of the *p*-nitrotoluene was detected by GC-MS.

Figure S171. Chromatogram of the reduction of *p*-nitrotoluene in presence of a mercury drop (Eq. 1).

Figure S172. Mass spectrum of the component at 7.79 min, which was identified as the oxyazo intermediate.

Figure S173. Mass spectrum of the component at 4.54 min, which was identified as 4-methylaniline.

Figure S174. Chromatogram of the reduction of *p*-nitrotoluene in the presence of a mercury drop (Eq. 2).

Figure S175. Mass spectrum of the component at 7.77 min, which was identified as the azo intermediate.

Abundance			Scan 168 (4.527 min): CHRISTIAN337.D\data.ms						106.1				
6500	000												
6000	000												
5500	000												
5000	000												
4500	000											1	
4000	000												
3500	000												
3000	000												
2500	000												
2000	000												
1500	000							77 1					
1000	000				1.12.12								
500	000		39.1	45.5	52.1	63.1	70.9	1 840	91.1	99.0		1	1151
m/z->	0 25	30	35 40	45	50 55	60 65	70	75 80 85	90 9	15 100	105	110	

Figure S176. Mass spectrum of the component at 4.52 min, which was identified as 4-methylaniline.

Figure S177. ¹H NMR spectrum for the equimolar reaction of 5 with NaBH₄ in CD₃OD (400 MHz).

Figure S178. ¹H NMR spectrum for the reaction of **5** with four equivalents of NaBH₄ in CD₃OD (400 MHz).

Figure S179. ¹H NMR spectrum for the formation of Ru-hydride for 5 in THF-*d*₈ (400 MHz).

Chart S1. Reutilization of the catalytic system.