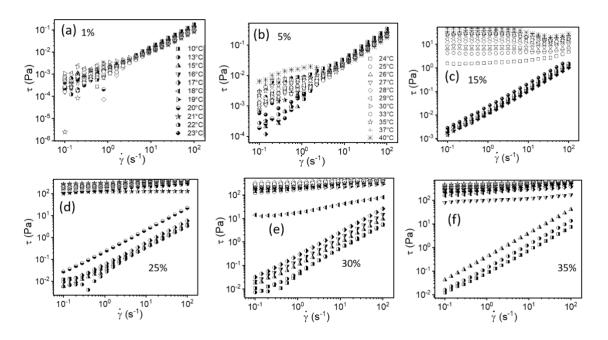
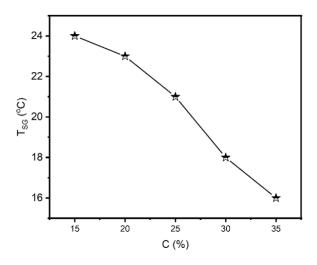
Supplementary Information


Temperature-dependent yield stress and wall slip behaviour of thermoresponsive Pluronic F127 hydrogels

Surya Narayana Sangitra and Ravi Kumar Pujala*

Soft and Active Matter group, Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati Yerpedu, Tirupati - 517619, Andhra Pradesh, India.


Corresponding author's E-mail address: pujalaravikumar@iisertirupati.ac.in

S1. Flow curves of PF127 solutions at different temperatures

Figure S1. (a)-(f) Flow curves of PF127 at different temperatures varying from 20 °C to 30 °C with 1 °C intervals for 1%, 5%, 15%, 25%, 30% and 35%, respectively.

The flow curves, i.e. Shear stress (τ) Vs. Shear rate ($\dot{\gamma}$), for different concentrations at different temperatures is shown in Figure S1. One can observe the yield stress behavior after 15% PF127; the transition temperature decreases as a function of concentrations. As per observation, for 15%, the T_{SG} is 24 °C, and for 20%, 25%, 30%, and 35% are, 23 °C, 21 °C, 18 °C and 16 °C, respectively.

Figure S2: Sol-gel transition temperature (T_{SG}) is plotted as a function of different concentrations(C %(w/v)) of PF127.

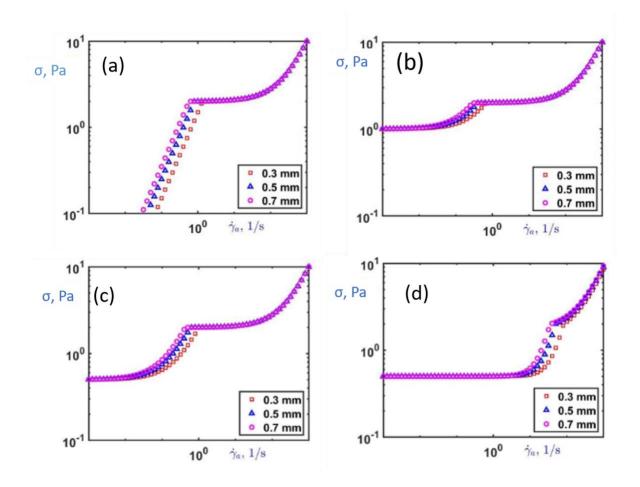
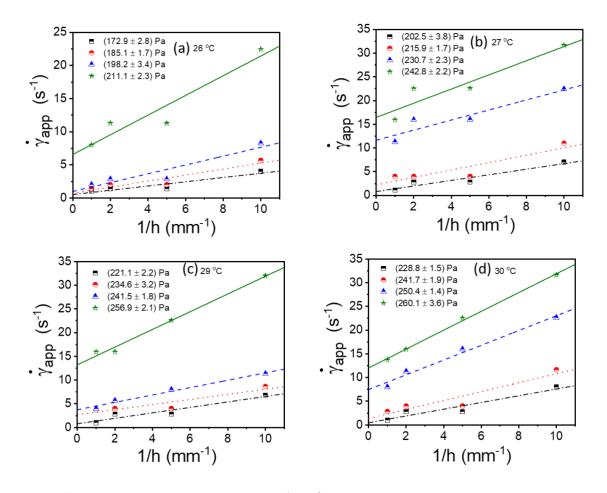
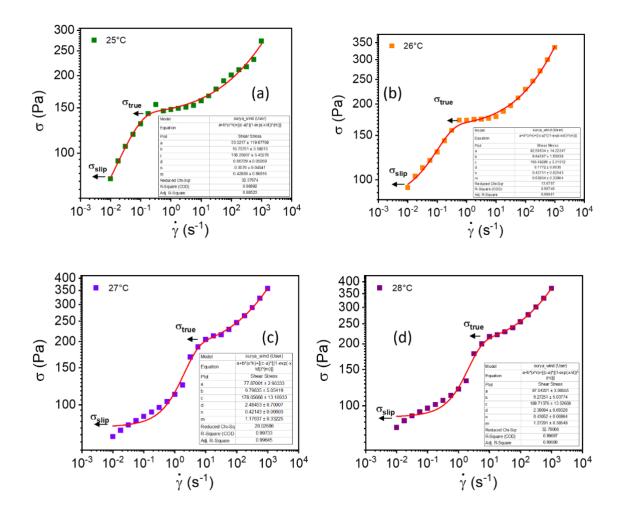




Figure S3: shows (a) and (b) represents flow curves (shear stress (σ) vs. shear rate ($\dot{\gamma}$)) generated numerically for HB fluids in case of with the yield stress (σ_y) = 2Pa, slip exponent (s) = 1, and slip-coefficient (β) = 1.10⁴ Pa.^s/m^s, flow index (*n*) =1, and consistency index (*k*)=

 $8 \cdot 10^{-3}$ Pa·sⁿ for different the slip yield stress $\sigma_s = 0$ and $\sigma_s = 1$ Pa respectively and (c) and (d) shows variation on the flow curve with $\sigma_s = 0.5$ Pa, $\sigma_y = 2$ Pa, $\beta = 1 \cdot 10^4$ Pa·s^s /m^s, n = 1 and k = $8 \cdot 10^3$ Pa·sⁿ: with different slip exponents s = 1 and s = 2, respectively. The Figures are adapted and reproduced with permission from Ref.⁴⁷.

Figure S4: (a)-(d) represents Mooney's plots for PP-40 geometries between apparent shear $(\dot{\gamma}_{app})$ rate and reciprocal of the gap between two parallel plates (*1/h*) for different shear stress at different temperatures from 26 °C – 30 °C, respectively.

Figure S5: (a)-(d) represents the Windhab model (equation 15) fitting with flow curve data for 20% PF127 at temperatures at temperatures varying from 25 °C – 28 °C, respectively (for data set, 0.01 to 1000 s⁻¹).