Supporting Information

ZnCo₂O₄@g-C₃N₄@Cu as a new and highly efficient heterogeneous photocatalyst for visible light-induced cyanation and Mizoroki-Heck cross-coupling reactions

Roya Jahanshahi,^b Hadis Hosseini Moghadam,^b Sara Sobhani^{*a,b} and Jose' Miguel Sansano^c

Author addresses:

^a Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.

^bDepartment of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.

*Email address of the corresponding author: ssobhani@birjand.ac.ir

^cDepartamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080-Alicante, Spain.

Experimental

Materials and instruments

All chemicals and solvents were purchased from Merck chemical company and were used directly without further treatment. The purity of the products and the progress of the reactions were monitored using TLC on silica-gel Polygram SILG/UV254 plates. FT-IR spectra were recorded with a JASCO FT-IR 460 plus spectrophotometer within the 400-4000 cm⁻¹ range using KBr disc at room temperature. X-ray photoelectron spectroscopy (XPS) analyses were carried out using a VG-Microtech Multilab 3000 spectrometer, equipped with an Al anode. The deconvolution of the spectra was carried out by using Gaussian Lorentzian curves. X-ray powder diffraction (XRD) was carried out on an Xpert Pro Panalytical diffractometer (PW1730, PHILIPS company) with Cu Ka radiation (λ = 1.540 Å). Energy-dispersive X-ray spectroscopy (EDS) and elemental mapping were performed using a TESCAN MIRA3 instrument. Transmission electron microscopy (TEM) was done using the TEM microscope JEOL JEM-1400 Plus. FESEM microscopy is performed in a Hitachi model S3000N. The content of copper in the catalyst was determined by OPTIMA 7300DV ICP-OES analyzer. UV-vis diffuse reflectance spectroscopy (DRS) was conducted using a Shimadzu spectrophotometer (UV-2550 model). The NMR spectra were provided by Brucker Avance 300 and 400 MHz instruments in $CDCl_3$ and $DMSO-d_6$, in the presence of tetramethylsilane as the internal standard and the coupling constants (J values) are given in Hz.

Figure S1. FT-IR spectra of (a) $g-C_3N_4$ and (b) $ZnCo_2O_4@g-C_3N_4@Cu$.

Figure S2. (a) EDS analysis and elemental mapping images of (b) oxygen (red), (c) nitrogen (purple), (d) carbon (cyan), (e) zinc (blue), (f) cobalt (yellow), (g) copper (green) and (h) the overlapping of O, N, C, Zn, Co and Cu elements in $ZnCo_2O_4@g-C_3N_4@Cu$.

Figure S3. (a) XPS analysis of ZnCo₂O₄@g-C₃N₄@Cu, (b) C 1s, (c) O 1s, (d) N 1s, (e) Zn 2p, (f) Co 2p and (g) Cu 2p.

Figure S4. XRD patterns of (a) $ZnCo_2O_4@g-C_3N_4$ and (b) $ZnCo_2O_4@g-C_3N_4@Cu$.

Figure S5. Tauc plot of $ZnCo_2O_4@g-C_3N_4@Cu$ for the estimation of band gap energy.

¹H NMR and ¹³C NMR spectra of benzonitrile

¹H NMR (300 MHz, CDCl₃): δ 7.59-7.67 (m, 3 H), 7.48 (t, *J* = 7.8 Hz, 2 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 132.8, 132.0, 129.1, 118.8, 112.2 ppm.

¹H NMR and ¹³C NMR spectra of 4-iodobenzonitrile

¹H NMR (300 MHz, CDCl₃): δ 7.89 (d, *J* = 8.4 Hz, 2 H), 7.40 (d, *J* = 8.4 Hz, 2 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 135.2, 132.4, 130.8, 128.8, 125.0 ppm.

¹H NMR and ¹³C NMR spectra of terephthalonitrile

¹H NMR (300 MHz, CDCl₃): *δ* 7.83 (s, 4 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 132.8, 117.0, 116.7 ppm.

 $^1{\rm H}$ NMR and $^{13}{\rm C}$ NMR spectra of 4-methoxybenzonitrile

¹H NMR (300 MHz, CDCl₃): δ 7.60 (d, *J* = 9 Hz, 2 H), 6.97 (d, *J* = 9 Hz, 2 H), 3.88 (s, 3 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 162.8, 133.8, 119.2, 114.7, 103.6, 55.5 ppm.

¹H NMR and ¹³C NMR spectra of 4-nitrobenzonitrile

¹HNMR (300 MHz, CDCl₃): δ 8.40 (d, *J* = 8.7 Hz, 2 H), 7.92 (d, *J* = 8.7 Hz, 2 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 135.2, 132.4, 130.8, 128.8, 125.0 ppm.

¹H NMR and ¹³C NMR spectra of 4-methylbenzonitrile

¹H NMR (300 MHz, CDCl₃): δ 7.58 (d, *J* = 8.1 Hz, 2 H), 7.31 (d, *J* = 6.6 Hz, 2 H), 2.46 (s, 3 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 135.2, 130.8, 128.8, 127.3, 125.0, 26.4 ppm.

¹H NMR and ¹³C NMR spectra of 4-fluorobenzonitrile

¹H NMR (300 MHz, CDCl₃): δ 7.74 (d, *J* = 9 Hz, 2 H), 7.56 (d, *J* = 9.3 Hz, 2 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 165.1 (d, *J*_{C-F}= 195 Hz), 134.6 (d, *J*_{C-F}= 7.5 Hz), 118.1, 116.9 (d, *J*_{C-F}= 22.5 Hz), 108.6 (d, *J*_{C-F}= 3.7 Hz) ppm.

¹H NMR and ¹³C NMR spectra of nicotinonitrile

¹H NMR (300 MHz, DMSO-*d*₆): δ 8.96 (s, 1 H), 8.82 (d, *J* = 5.1 Hz, 1 H), 8.25 (d, *J* = 8.1 Hz, 1 H), 7.56-7.60 (m, 1 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 152.9, 152.3, 139.2, 123.6, 116.5, 109.9 ppm.

¹H NMR and ¹³C NMR spectra of 4-cyanobenzaldehyde

¹H NMR (300 MHz, DMSO-*d*₆): δ 10.12 (s, 1 H), 8.09 (d, *J* = 7.8, 2 H), 7.99 (d, *J* = 7.8, 2 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 190.6, 138.7, 132.9, 129.9, 117.7 ppm.

¹H NMR and ¹³C NMR spectra of (E)-n-butyl cinnamate

¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, 1H, ³*J* = 16.4 Hz), 7.43-7.45 (m, 2H), 7.29-7.30 (m, 3H), 6.36 (d, 1H, ³*J* = 16.0 Hz), 4.13 (t, 2H, ³*J* = 6.8 Hz), 1.59-1.62 (m, 2H), 1.34-1.36 (m, 2H), δ 0.88 (t, 3H, ³*J* = 7.6 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 144.4, 134.4, 130.1, 128.8, 128.0, 118.2, 64.3, 30.8, 19.2, 13.7 ppm.

¹H NMR and ¹³C NMR spectra of (E)-methyl cinnamate

¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, 1H, ³*J* = 16.4 Hz), 7.45-7.47 (m, 2H), 7.31-7.33 (m, 3H), 6.38 (d, 1H, ³*J* = 16.4 Hz), 3.74 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 144.8, 134.3, 130.3, 128.9, 128.1, 117.7, 51.6 ppm.

¹H NMR and ¹³C NMR spectra of (E)-ethyl cinnamate

¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, 1H, ³*J* = 16.0 Hz), 7.41-7.42 (m, 2H), 7.27-7.28 (m, 3H), 6.35 (d, 1H, ³*J* = 16.0 Hz), 4.19 (q, 2H, ³*J* = 8.0 Hz), 1.43 (t, 3H, ³*J* = 8.0 Hz) ppm.¹³C NMR (100 MHz, CDCl₃): δ 166.6, 144.3, 134.3, 130.1, 128.7, 127.9, 118.2, 60.0, 14.2 ppm.

¹H NMR and ¹³C NMR spectra of (E)-methyl 2-methyl-3-phenylacrylate

¹H NMR (300 MHz, CDCl₃): δ 7.74 (s, 1H), 7.22-7.47 (m, 5H), 3.86 (s, 3H), 2.16 (s, 3H) ppm.¹³C NMR (100 MHz, CDCl₃): δ 169.1, 138.9, 135.8, 129.6, 127.9, 52.0, 14.1 ppm.

¹H NMR and ¹³C NMR spectra of (E)-n-butyl 3-(4-methoxyphenyl) acrylate

¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, 1H, ³*J* = 16.0 Hz), 7.39 (d, 3H, ³*J* = 4.2 Hz), 6.24 (d, 1H, ³*J* = 16.0 Hz), 4.13 (m, 2H, ³*J* = 7.0 Hz), 3.72 (s, 3H), 1.60-1.62 (m, 2H), 1.35-1.40 (m, 2H), 0.91 (t, 3H, ³*J* = 7.0 Hz) ppm.¹³C NMR (100 MHz, CDCl₃): δ 167.1, 161.2, 144.0, 129.5, 127.0, 115.5, 114.1, 64.0, 55.0, 30.7, 19.1, 13.6 ppm.

¹H NMR and ¹³C NMR spectra of (E)-n-butyl 3-(4-chlorophenyl) acrylate

¹H NMR (300 MHz, CDCl₃): δ 7.65 (d, 1H, ³*J* = 16.0 Hz), 7.47 (d, 2H, ³*J* = 8.5 Hz), 7.37 (d, 2H, ³*J* = 8.5 Hz), 6.43 (d, 1H, ³*J* = 16.0 Hz), 4.24 (t, 2H, ³*J* = 6.6 Hz), 1.40-1.52 (m, 2H), 1.67-1.76 (m, 2H), 0.99 (t, 3H, ³*J* = 7.3 Hz) ppm.¹³C NMR (100 MHz, CDCl₃): δ 166.7, 143.0, 136.0, 132.9, 129.4, 129.1, 118.8, 64.4, 30.7, 19.2, 13.7 ppm.

¹H NMR and ¹³C NMR spectra of (E)-n-butyl 3-(4-nitrophenyl) acrylate

¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, 2H, ³*J* = 8.0 Hz), 7.63-7.68 (m, 3H), 6.53 (d, 1H, ³*J* = 16.0 Hz), 4.17-4.24 (m, 2H), 1.62-1.69 (m, 2H), 1.35-1.44 (m, 2H), 0.92 (t, 3H, ³*J* = 7.2 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 148.3, 141.5, 140.5, 128.6, 124.0, 122.5, 64.7, 30.6, 19.1, 13.6 ppm.

¹H NMR and ¹³C NMR spectra of (E)-n-butyl 3-(4-cyanophenyl) acrylate

¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, 2H, ³*J* = 8.0 Hz), 7.57 (d, 1H, ³*J* = 15.2 Hz), 7.54 (d, 2H, ³*J* = 8.4 Hz), 6.45 (d, 1H, ³*J* = 16.0 Hz), 4.14 (t, 2H, ³*J* = 6.8 Hz), 1.57-1.64 (m, 2H), 1.30-1.38 (m, 2H), 0.77 (t, 3H, ³*J* = 7.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 141.8, 138.4, 132.4, 128.3, 121.6, 118.1, 113.0, 64.4, 30.5, 19.0, 13.5 ppm.