Supporting Information Enhanced photocatalytic CO₂ conversion of CdS/Co-BDC nanocomposite via Co (II)/Co (III) redox cycling

^{a,c}Ruina Xuan, ^{a,c}Jieqiong Mo, ^aJiwen Chen, ^aYixin Dou, ^aXiaofang Li, ^bZhuo jiang, ^aBo Chai, ^aChunlei Wang, ^aDeng Ding*, ^aJuntao Yan*, ^aXiaobo Wang*

a College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China

b School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

Corresponding Author: Deng Ding

c These authors contributed equally: Ruina Xuan and Jieqiong Mo.

Address: College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China

E-mail: dingdeng@whu.edu.cn

Phone: 0086-15927216471

Fig. S1. SEM images of CdS (a); Co-BDC (b); 12% CdS/Co-BDC (c); 18% CdS/Co-BDC (d); 23% CdS/Co-BDC (e); 28% CdS/Co-BDC(f); 18% CdS/Co-BDC composite (g-j).

Fig. S2. N₂ The pore size distributions of CdS, Co-BDC and 18% CdS/Co-BDC composite.

Table S1 Specific surface area and pore structure parameters of materials						
Sample	S _{BET}	Pore size	Pore volume			
	$(\mathbf{m}^2 \cdot \mathbf{g}^{-1})$	(nm)	(cm ³ ·g ⁻¹)			
CdS	17.39	14.71	0.05			
18%CdS/Co-BDC	57.42	9.94	0.19			

Fig. S3. CO₂ adsorption curve of CdS, Co-BDC and 18% CdS/Co-BDC composite at 298 K.

composite						
Sample	CO- production (µmmol·g ⁻¹ ·h ⁻ ¹)	CO ₂ - quantity absorbed (cm ³ ·g ⁻¹)	CO-production/CO ₂ - quantity absorbed (µmmol·cm ⁻³ ·h ⁻¹)			
CdS	2.2	3.28	0.67			
18%CdS/Co- BDC	19.6	4.43	4.42			

Table S2 CO₂ adsorption-desorption isotherms of CdS, Co-BDC and 18% CdS/Co-BDC

Table S3 The fitted Rct values of Co-BDC, CdS and 18% CdS/Co-BDC composite

Sample	Rp (Ω)		
CdS	1006		
Co-BDC	1012		
18% CdS/Co-BDC	735.5		

Fig. S4. XPS spectra of survey scan of CdS, Co-BDC and 18% CdS/Co-BDC.

Fig. S5 XRD and FT-IR pattern of fresh and used 18%CdS/Co-BDC nanocomposites.

Fig. S5 XRD and FT-IR pattern of fresh and used 25-Bi₂O₂Se/BiOCl nanocomposites.

Fig. S6. Time-resolved PL spectra of bare CdS, Co-BDC and 18% CdS/Co-BDC.

I							
Samples	τ1/ns	B 1	τ2/ns	B2	τ3/ns	B3	τ/ns
CdS	0.1259	1278.42	2.9512	38.49			3.13
Co-BDC	0.1197	1349.10	3.6401	23.40			3.86
18% CdS/Co-BDC	0.3217	4703.53	2.3166	354.08	31.9336	0.98	4.0

Table S4. Analyses of the time-resolved transient PL decay spectra of the samples.