Supporting Information

Drug Molecules Beyond Chemical Biology: Fluorescence and DFT-Based Investigation for Fluoride Ion Sensing and Traces Detection of Chloroform

Sohail Anjum Shahzad^{a,*}, Tayyeba Javid^a, Mohammed A. Assiri^{b,c}, Aqsa Pervaiz^a, Hasher Irshad^a, Fu-She Han^d, Di Demi He^e

^a Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan

^b Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

^c Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, 61413, Saudi Arabia

^d Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renming Street, Changchun, Jilin, 200032, China

^e State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

* **Corresponding author:** Sohail Anjum Shahzad, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.

E-mail address: sashahzad@cuiatd.edu.pk (S. A. Shahzad)

Table of Contents

SI-1. Instruments and reagents
Figure S1: (a) DLS analysis of sensor ECX before addition of water and (b) after addition of
water
Figure S2: Lippert-Mataga plot of sensor ECX in different solvents
Figure S3: SV plot of ECX for increasing volume percentage of chloroform4
Figure S4: (a) DLS analysis of sensor ECX before addition and (b) after addition of F ⁻ 5
Figure S5: UV-Vis. absorbance spectrum of ECX-F ⁻ complex
Figure S6: Job's plot of sensor ECX-F ⁻ complex in DMF:water (1:4, v/v)
Figure S7: The emission response of sensor ECX towards F ⁻ before and after addition of 100
μM of common interferences, cations and single molecules
Figure S8: Effect of pH on the relative enhancement efficiency of sensor ECX towards F ⁻ 7
Figure S9: Effect of temperature on the relative enhancement efficiency of sensor ECX
towards F ⁻ 7
Figure S10: Photostability test of sensor ECX and ECX-F ⁻ complex
Figure S11: Effect of time on relative enhancement efficiency of sensor ECX towards F ⁻ 8
Figure S12: ECX-F ⁻ complex interaction sites (a) I and (b) II9
Figure S13: Changes in relative emission intensity of sensor ECX in the presence of various
building materials9
Figure S14: (a) Detection of F ⁻ in toothpaste and (b) detection of F ⁻ in water10
Table 1 Comparison of probe ECX with previously reported sensors
Table 2. Spike and recovery experiment for estimation of moisture in raw fly ash and sensing
of fluoride in water by sensor ECX11
NMR and Mass spectra13

SI-1. Instruments and reagents

The fluorescence measurements of sensor **ECX** were executed by spectrofluorometer "Fluoromax-Plus-P-C" Horiba Scientific, USA while sensor **ECX** UV-*Vis*. absorption spectrum was recorded at UV-Vis. spectrophotometer. All chemicals and reagents including *N*,*N*-dimethylformamide (DMF), ethyl acetate (EtOAc), methanol (MeOH), tetrahydrofuran (THF), dimethyl sulfoxide(DMSO), dichloromethane (DCM), chloroform (CHCl₃), toluene and acetonitrile (ACN) were purchased from Daejung Chemicals & Metals (Korea), Alfa Aesar (UK), and Sigma Aldrich (USA), and utilized without purification.

Figure S1: (a) DLS analysis of sensor ECX before addition of water and (b) after addition of

water

Figure S2: Lippert-Mataga plot of sensor ECX in different solvents

Figure S3: SV plot of ECX for increasing volume percentage of chloroform

Figure S4: (a) DLS analysis of sensor ECX before addition and (b) after addition of F⁻

Figure S5: UV-Vis. absorbance spectrum of ECX-F⁻ complex

Figure S6: Job's plot of sensor ECX-F⁻ complex in DMF:water (1:4, v/v)

Figure S7: The emission response of sensor ECX towards F^- before and after addition of 100 μ M of common interferences, cations and single molecules

Figure S8: Effect of pH on the relative enhancement efficiency of sensor ECX towards F⁻

Figure S9: Effect of temperature on the relative enhancement efficiency of sensor **ECX** towards F⁻

Figure S10: Photostability test of sensor ECX and ECX-F⁻ complex

Figure S11: Effect of time on relative enhancement efficiency of sensor ECX towards F⁻

Figure S12: ECX-F⁻ complex interaction sites (a) I and (b) II

Figure S13: Changes in relative emission intensity of sensor ECX in the presence of various building materials

Figure S14: (a) Detection of F^- in toothpaste and (b) detection of F^- in water

S.No	Type of probes	Limit of Detection	References
1	Zr-based coordination polymer	$1.55 \times 10^{-6} \text{ mol } \text{L}^{-1}$	1
2	Quinoxaline-based chemosensor	3.1 µM	2
3	Thiosemicarbazone-based chemosensor	$6.3 \times 10^{-7} \text{ M}$	3
4	Loutonin-based probe	$8.62 \times 10^{-7} \text{ M}$	4
5	Tetraphenylethylene derived sensor	$1.66 \times 10^{-7} \text{ M}$	5
6	Protonated hemicryptophane capsule	570 nM	6
7	Biphenolic-dansyl derived sensor	18 μΜ	7
8	Fluorescent carbon dots (CDs)	49 μΜ	8
9	Curcumin coupled carbon dots	0.39 μΜ	9
10	Etoricoxib	20 nM	This Study

Table 1 Comparison of probe **ECX** with previously reported sensors

Fly Ash			Spiked Fluoride in Water		
Spiked H ₂ O	Recovery (%)	RSD	Spiked	Recovery (%)	RSD
%			(µM)		
0	00	00	0	00	00
2	97.2	1.62	10	99.5	1.54
4	96.9	1.80	20	99.3	1.43
6	97.5	1.36	30	98.8	1.78
8	97.1	1.23	40	99.2	1.34
10	96.9	1.36	50	99.1	1.48

Table 2. Spike and recovery experiment for estimation of moisture in raw fly ash and sensing of fluoride in water by sensor **ECX**

References

- 1. L. Wang, X. Liu, Y. Zhu, J. Zhang and L. Zhu, *Polym. Bull.* 2024, **81**, 335-350.
- G. A. Zalmi, S. E. Jadhav, H. A. Mirgane, B. R. Madje and S. V. Bhosale, ChemistrySelect. 2023, 8, e202203380.
- L. Yang, M. Li, S. Ruan, X. Xu, Z. Wang and S. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 255, 119718.
- D. Mohanasundaram, G. G. V. Kumar, S. K. Kumar, B. Maddiboyina, R. P. Raja, J. Rajesh and G. Sivaraman, *J. Mol. Liq.* 2020, **317**, 113913.
- Y.-T. Zeng, S.-Y. Gao, K. Traskovskis, B. Gao and X.-K. Ren, *Dyes Pigments*, 2021, 193, 109491.
- 6. Y. Lin, K. Du, M. R. Gau and I. J. Dmochowski, *Chem. Sci.* 2023, 14, 291-297.
- S. Mongkholkaew, A. Songsasen, W. Sirisaksoontorn and B. Wannalerse, *Supramol. Chem.* 2021, 33, 151-159.
- 8. S. Liu, Z. Liu, Q. Li, H. Xia, W. Yang, R. Wang, Y. Li, H. Zhao and B. Tian, *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 2021, **246**, 118964.
- 9. X. Zhang, X. Tan and Y. Hu, J. Hazard. Mater. 2021, 411, 125184.

Complete reference for Gaussian 09

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.