Supporting Information

Unlocking the potential of water-soluble gold(I)–NHC complexes: Unveiling the role of carboxylic acid in cycloisomerization of alkynyl amino acid derivatives.

Liddier O. Pérez,^a Tomás A. Dómina,^a Gabriela A. Fernández,^b Gustavo F. Silbestri^{b,*} and Sebastián A. Testero^{a,*}

^aInstituto de Química Rosario - IQUIR (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, S2002LRK, Argentina. E-mail: testero@iquir-conicet.gov.ar

^bINQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, B8000CPB Bahía Blanca, Argentina. E-mail: gsilbestri@uns.edu.ar

Table of Contents

1.	REF	FERENCES FOR KNOWN SUBSTRATES AND CATALYSTS	3
	1.1.	Synthesis of 2-((tert-butoxycarbonyl)amino)hex-4-ynoic acid (1b):	5
	1.1.	1. Diethyl 2- <i>tert</i> -butoxycarbonylaminomalonate (13)	5
	1.1.2	2. Diethyl 2-(but-2-yn-1-yl)-2-((<i>tert</i> -butoxycarbonyl)amino)malonate (14)	6
	1.1.	3. 2-((<i>tert</i> -butoxycarbonyl)amino)hex-4-ynoic acid (1b)	6
	1.2.	Synthesis of <i>p</i> -trifluoromethylphenyl derivate 1d and <i>p</i> -methoxyphenyl derivate 1e	6
	1.2.	1. Methyl 2-((<i>tert</i> -butoxycarbonyl)amino)-5-(4-methoxyphenyl)pent-4-ynoate (15a)	6
	1.2.2	2. 2-((<i>tert</i> -Butoxycarbonyl)amino)-5-(4-methoxyphenyl)pent-4-ynoic acid (1d)	7
	1.2.	3. Methyl 2-((<i>tert</i> -butoxycarbonyl)amino)-5-(4-(trifluoromethyl)phenyl)pent-4-ynoate (15b)	7
	1.2.4	4. 2-((<i>tert</i> -Butoxycarbonyl)amino)-5-(4-(trifluoromethyl)phenyl)pent-4-ynoic acid (1e)	7
	1.3.	Time-course of the conversion of 1a into 2a monitored by GC-FID.	8
2.	COI	PIES OF ¹ H AND ¹³ C NMR SPECTRA	9
	2.1.	1,3-bis(2,6-diisopropyl-4-sodiumsulfonatophenyl)imidazol-2-ylidene gold(I) Chloro (C1)	9
	2.2.	1-(2,6-Diisopropylphenyl)-3-(3-sulfonatopropyl)imidazol-2-ylidene gold(I) Chloro (C2)	11
	2.3.	1-Mesityl-3-(3-sulfonatopropyl)imidazol-2-ylidene gold(I) Chloro (C3)	12
	2.4.	1-Methyl-3-(3-sulfonatopropyl)imidazol-2-ylidene gold(I) Chloro (C4).	14
	2.5.	(3-sulfonatepropyl)imidazol-2-ylidene gold(I) Chloro (C5)	15
	2.6.	Diethyl 2-tert-Butoxycarbonylaminomalonate (13).	16
	2.7.	Diethyl 2-(but-2-yn-1-yl)-2-((tert-butoxycarbonyl)amino)malonate (14).	17
	2.8.	2-((tert-butoxycarbonyl)amino)hex-4-ynoic acid (1b)	18
	2.9.	tert-Butyl (5-methylene-2-oxotetrahydrofuran-3-yl)carbamate (2a)	19
	2.10.	tert-Butyl (Z)-(5-ethylidene-2-oxotetrahydrofuran-3-yl)carbamate (2b).	20

2.11.	tert-Butyl (6-methyl-2-oxo-3,4-dihydro-2H-pyran-3-yl)carbamate (2b endo) 20
2.12.	tert-Butyl (Z)-(5-benzylidene-2-oxotetrahydrofuran-3-yl)carbamate (2c)
2.13.	Methyl 2-((tert-butoxycarbonyl)amino)-5-(4-methoxyphenyl)pent-4-ynoate (15a)
2.14.	2-((tert-Butoxycarbonyl)amino)-5-(4-methoxyphenyl)pent-4-ynoic acid (1d)
2.15.	tert-butyl (Z)-(5-(4-methoxybenzylidene)-2-oxotetrahydrofuran-3-yl)carbamate (2d)
2.16.	2-((tert-butoxycarbonyl)amino)-5-(4-methoxyphenyl)-4-oxopentanoic acid (2d-Hydration) 24
2.17.	Methyl 2-((tert-butoxycarbonyl)amino)-5-(4-(trifluoromethyl)phenyl)pent-4-ynoate (15b)
2.18.	2-((tert-Butoxycarbonyl)amino)-5-(4-(trifluoromethyl)phenyl)pent-4-ynoic acid (1e)
2.19.	<i>tert</i> -Butyl (Z)-(2-oxo-5-(4-(trifluoromethyl)benzylidene)tetrahydrofuran-3-yl) carbamate (2e): 28
2.20.	Methyl 2-acetamido-4-oxopentanoate (4)
3. RE	USE PROCESS OF CATALYSTS C1 – C5
4. KIN	NETIC STUDY ON THE FORMATION OF ENOL-LACTONE 2a MONITORED BY GC-FID 60
4.1.	Kinetic 1:
4.1. FIE	1. Comparison of chromatograms of samples taken from kinetics 1 for the product in the GC- 60
Figure	S9. Time-resolved GC-FID chromatograms of the formation of product 2a (kinetic 1)
4.2.	Kinetic 2:
4.2. FIE	1. Comparison of chromatograms of samples taken from kinetics 2 for the product in the GC- 61
Figure	S11. Time-resolved GC-FID chromatograms of the formation of product 2a (kinetic 2)
4.3.	Kinetic 3:
4.3. FIE	1. Comparison of chromatograms of samples taken from kinetics 3 for the product in the GC- 62
Figure	S13. Time-resolved GC-FID chromatograms of the formation of product 2a (kinetic 3)
4.4.	Comparison of the three kinetics
4.4	1. Graph of calculated average and error in the gold-catalyzed conversion of 1a into 2a
5 RE	FERENCES 64

1. REFERENCES FOR KNOWN SUBSTRATES AND CATALYSTS.

Figure S1. Catalysts C1-5 were synthesized according to reference 1.

1,3-bis(2,6-diisopropyl-4-sodiumsulfonatophenyl)imidazol-2-ylidene gold(I) Chloro (C1). White solid (0.465 g, 0.57 mmol, 95%); mp > 300 °C. The complex is soluble in water, methanol, tert-butanol, isopropanol and DMSO, and insoluble in tetrahydrofuran, diethyl ether and acetone; Water solubility at 25 °C: 111 g/L; ¹H NMR (300 MHz, D₂O): δ 7.76 (s, 4H, Ar), 7.67 (s, 2H, Imz), 2.57 (h, ³*J*H-H = 7.0 Hz, 4H, CHMe₂), 1.28 (d, ³*J*H-H = 7.0 Hz, 12H, CHMe₂), 1.20 (d, ³*J*HH= 7.0 Hz, 12H, CHMe₂); ¹H NMR (300 MHz, DMSO-d₆): δ 8.00 (s, 2H, Imz), 7.58 (s, 4H, Ar), 2.17 (h, ³*J*H-H = 6.0 Hz, 4H, CHMe₂), 1.22 (t, ³*J*H-H = 6.5 Hz, 24H, CHMe₂); ¹³C NMR (75 MHz, D₂O): δ 171.6 (s, Imz C2), 147.4 (s, Ar C3), 144.7 (s, Ar C4), 136.1 (s, Ar C2), 124.3 (s, Ar C1), 121.4 (s, Imz C4,5), 28.8 (s, CHMe₂), 23.5 (s, CHMe₂), 22.9 (s, CHMe₂); ¹³C NMR (75 MHz, DMSO-d₆): δ 173.0 (s, Imz C2), 149.8 (s, Ar C4), 144.8 (s, Ar C2) 134.0 (s, Ar C1), 124.6 (s, Ar C3), 121.1 (s, Imz C4,5), 28.4 (s, CHMe₂), 23.9 (s, CHMe₂), 23.5 (s, CHMe₂).

1-(2,6-Diisopropylphenyl)-3-(3-sulfonatopropyl)imidazol-2-ylidene gold(I) Chloro (C2). Brown solid (0.332 g, 0.55 mmol, 92%); mp 240-243 °C. Complex C2 is soluble in water, methanol, tertbutanol and DMSO, partially soluble in isopropanol, and insoluble in tetrahydrofuran, diethyl ether and acetone. Water solubility at 25 °C: 80 g/L; ¹H NMR (300 MHz, D₂O): δ 7.79 (s, 1H, Imz), 7.68 (s, 1H, Imz), 7.51 (m, 1H, Ar H4), 7.40 (m, 2H, Ar H3), 4.39 (t, ³JH-H = 6.0 Hz, 2H, NCH₂), 2.90 (t, ³JH-H = 6.0 Hz, 2H, CH₂S), 2.21 (h, ³JH-H = 6.0 Hz, 2H, CH₂CH₂CH₂), 1.92 (q, 2H, CH₂CH₂CH₂), 1.09 (t, ³JH-H = 6.0 Hz, 12H, CHMe₂); ¹H NMR (300 MHz, DMSO-d₆): δ 6.95 (s, 1H, Imz), 6.75 (s, 1H, Imz), 6.63 (t, ³JH-H = 7.7 Hz, 1H, Ar H4), 6.46 (d, ³JH-H = 7.6 Hz, 2H, Ar H3), 3.41 (t, ³JH-H = 6.2 Hz, 2H, NCH₂), 1.61 (t, ³JH-H = 6.5 Hz, 2H, CH₂S), 1.39 (h, ³JH-H = 6.5 Hz, 2H, CHMe₂), 1.29 (q, ³JH-H = 6.5 Hz, 2H, CH₂CH₂CH₂), 0.21 (d, ³JHH = 6.7 Hz, 6H, CHMe₂); ¹³C NMR (75 MHz, DMSO-d₆): δ 170.7 (s, Imz C2), 144.4 (s, Ar C1), 134.9 (s, Ar C2), 130.2 (s, Ar C4), 125.5 (s, Ar C3), 124.4 (s, Imz C4), 120.6 (s, Imz C5), 52.2 (s, NCH₂), 49.3 (s, SCH₂), 30.1 (s, CHMe₂), 26.5 (s, CH₂CH₂CH₂), 22.3 (s, CHMe₂), 22.0 (s, CHMe₂).

1-Mesityl-3-(3-sulfonatopropyl)imidazol-2-ylidene gold(I) Chloro (C3). White solid (0.302 g, 0.54 mmol, 90%); mp 197-199 °C. Complex **C3** is soluble in water, methanol, tert-butanol and DMSO, partially soluble in isopropanol, and insoluble in tetrahydrofuran, diethyl ether and acetone.

Water solubility at 25 °C: 180 g/L; ¹H NMR (300 MHz, D₂O): δ 7.57 (d, ³*J*H-H = 2.0 Hz, 1H, Imz), 7.06 (s, 2H, Ar), 7.03 (d, ³*J*H-H = 2.0 Hz, 1H, Imz), 4.40 (t, ³*J*H-H = 6.0 Hz, 2H, NCH₂), 2.91 (t, ³*J*H-H = 6.0 Hz, 2H, CH₂S), 2.26 (s, 3H, *p*-MeAr), 2.08 (q, 2H, CH₂CH₂CH₂), 1.98 (s, 6H, *o*-MeAr); ¹H NMR (300 MHz, DMSO-d₆): δ 7.81 (s, 1H, Imz), 7.47 (s, 1H, Imz), 7.07 (s, 2H, Ar), 4.29 (t, ³*J*H-H = 6.0 Hz, 2H, NCH₂), 2.41 (t, ³*J*H-H = 6.0 Hz, 2H, CH₂S), 2.31 (s, 3H, Ar *p*-Me), 2.15 (q, 2H, CH₂CH₂CH₂), 1.95 (s, 6H, Ar *o*-Me); ¹³C NMR (75 MHz, DMSO-d₆): δ 169.7 (s, Imz C2), 138.5 (s, Ar C1), 134.2 (s, Ar C2), 134.1 (s, Ar C4), 128.7 (s, Ar C3), 122.5 (s, Imz C4), 122.0 (s, Imz C5), 49.4 (s, NCH₂), 47.8 (s, SCH₂), 27.1 (s, CH₂CH₂CH₂), 20.3 (s, *p*-MeAr), 16.9 (s, *o*-MeAr).

1-Methyl-3-(3-sulfonatopropyl)imidazol-2-ylidene gold(I) Chloro (C4). White solid (0.106 g, 0.22 mmol, 89%); mp 143-145 °C. The complex is soluble in water, methanol, tert-butanol and DMSO, partially soluble in isopropanol, and insoluble in tetrahydrofuran, diethyl ether and acetone. Water solubility at 25 °C: 645 g/L (lit: 680 g/l); ¹H NMR (300 MHz, D₂O): δ 7.15 (d, ³*J*H-H = 1.4, 1H, Imz), 7.09 (d, ³*J*H-H = 1.4, 1H, Imz), 4.16 (t, ³*J*H-H = 7.0, 2H, NCH₂), 3.67 (s, 3H, NCH₃), 2.82 (t, ³*J*H-H = 7.5, 2H, CH₂S), 2.17 (m, 2H, CH₂CH₂CH₂); ¹³C NMR (75 MHz, D₂O): δ 167.7 (s, Imz C2), 122.8 (s, Imz C5), 121.2 (s, Imz C4), 49.3 (s, NCH₂), 47.9 (s, SCH₂), 37.8 (s, NCH₃), 26.1 (s, CH₂CH₂CH₂).

(3-sulfonatepropyl)imidazol-2-ylidene gold(I) Chloro (C5). White solid (0.119 g, 0.24 mmol, 80%); mp 153-155 °C. The complex is soluble in methanol, tert-butanol and DMSO, partially soluble in isopropanol, and insoluble in tetrahydrofuran, diethyl ether and acetone. ¹H NMR (300 MHz, DMSO-d₆): δ 7.82 (s, 1H, NH), 7.25 (d, ³*J*H-H = 1.4, 1H, Imz), 6.99 (d, ³*J*H-H = 1.4, 1H, Imz), 4.10 (t, ³*J*H-H = 7.0, 2H, NCH₂), 2.36 (t, ³*J*H-H = 7.5, 2H, CH₂S), 1.99 (q, 2H, CH₂CH₂CH₂); ¹³C NMR (75 MHz, DMSO-d₆): δ 164.2(s, Imz C2), 123.0 (s, Imz C5), 121.7 (s, Imz C4), 48.4 (s, NCH₂), 45.9 (s, SCH₂), 27.6 (s, CH₂CH₂CH₂).

Figure S2. *N***-Boc-Propargylglycine (1a), 2-((***tert***-butoxycarbonyl)amino)-5-phenylpent-4-ynoic acid (1c) and methyl 2-acetylamino-4-pentynoate (3) were synthesized in 4, 7 and 3 steps respectively from diethyl acetamidomalonate according to reference ² (Scheme S1).**

Scheme S1. Synthetic sequence for preparation of 1a, 1c and 3.

1.1. Synthesis of 2-((*tert*-butoxycarbonyl)amino)hex-4-ynoic acid (1b):

Scheme S2. Synthetic sequence for preparation of 1b.

1.1.1. Diethyl 2-*tert*-butoxycarbonylaminomalonate (13).³ To a suspension of diethyl aminomalonate (1.25 g, 5.92 mmol) and Et₃N (4 mL, 29.5 mmol) in THF (10 mL) was added a solution of (Boc)₂O (1.93 g, 8.86 mmol) in THF (5 mL), and the solution was stirred overnight at room temperature. After evaporation of the solvent, the residue was taken up in AcOEt and the organic phase was washed with water and brine and dried over Na₂SO₄. filtered and concentrated under reduced pressure. The product was purified by chromatography obtaining 1.13 g (4.2 mmol, 70 %) of **13** as a colorless oil. Rf = 0.64 (hexanes:ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.30$ (t, J = 7.0 Hz, 6H), 1.45 (s, 9H), 4.27 (m, 4H), 4.94 (d, J = 7.6 Hz, 1H), 5.56 (d, J = 6.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.0$, 28.2, 57.5, 62.4, 80.6, 154.8, 166.7.

1.1.2. Diethyl 2-(but-2-yn-1-yl)-2-((*tert*-butoxycarbonyl)amino)malonate (14). 1-bromobut-2yne (0.2 mL, 2.66 mmol) and Cs₂CO₃ (0.6 g, 1.77 mmol) were added to a solution of diethyl 2-tertbutoxycarbonylaminomalonate (13) (0.5 g, 1.77 mmol) in CH₃CN (10 mL). The resulting heterogeneous mixture was stirred at room temp. for 24 h. Then, the reaction mixture was filtered, concentrated, and the residue was dissolved in AcOEt. The organic solution was washed with water, brine and dried with Na₂SO₄. Evaporation of the solvent gave the crude product as a yellowish white solid, which was purified by column chromatography (AcOEt/hexane) to give 0.58 g of 14 as a colorless oil (1.76 mmol, 99.4 %). Rf = 0.46 (hexanes:ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 1.26 (t, *J* = 7.1 Hz, 6H), 1.44 (s, 9H), 1.75 (s, 3H), 3.16 (s, 2H), 4.26 (m, 4H), 6.07 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 3.5, 13.9, 24.7, 28.2, 62.6, 65.8, 72.9, 78.7, 80.4, 153.9, 167.2 ppm. HRMS (ESI): 350.1574 (calc. for C₁₆H₂₅NNaO₆: 350.1574).

1.1.3. 2-((*tert*-butoxycarbonyl)amino)hex-4-ynoic acid (1b).⁴ KOH (0.6 g, 4.5 mmol) was added portion wise to a well-stirred suspension of **14** (0.6 g, 1.8 mmol) in MeOH/H₂O (5:1) (60 mL). The mixture was heated at reflux for 4 h. The solvents were evaporated to dryness, and the residue was dissolved with AcOEt and treated with 1 M HCl to pH = 1. The aqueous phase was extracted with AcOEt, the combined organic layers were dried with Na₂SO₄ and the solvents evaporated to obtain the crude compound which was purified by chromatography obtaining 0.27 g (1.18 mmol, 65 % yield) of the desired *N*-Boc-protected alkynyl amino acid **1b** as a white solid. Rf = 0.43 (hexanes:ethyl acetate = 3:2). ¹H NMR (400 MHz, CDCl₃): δ 1.47 (s, 9H), 1.80 (s, 3H), 2.64 – 2.80 (m, 2H), 4.46 (t, *J* = 4.0 Hz, 1H), 5.31 (s, 1H), 10.75 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 3.57, 22.7, 28.3, 52.0, 72.7, 79.6, 80.5, 155.5, 175.9 ppm.

1.2. Synthesis of *p*-trifluoromethylphenyl derivate 1d and *p*-methoxyphenyl derivate 1e.

Scheme S3. Synthetic sequence for preparation of 1d and 1e.

1.2.1. Methyl 2-((*tert*-butoxycarbonyl)amino)-5-(4-methoxyphenyl)pent-4-ynoate (15a). To a solution of *N*-protected methyl propargyl glycinate **11** (0.036 g, 0.16 mmol) in dimethylformamide (DMF) (2 mL), 1-iodo-4-methoxybenzene (0.066 g, 0.28 mmol), triethylamine (0.045 mL, 0.32 mmol), and Pd(PPh₃)₄ (0.023 g, 0.02 mmol) were added. The light brown solution quickly turned dark upon addition of copper(I) iodide (0.011 g, 0.06 mmol). The reaction mixture was stirred at room temperature under a nitrogen atmosphere overnight. The solvent was evaporated and the reaction crude was purified by column chromatography obtaining 0.045 g (0.13 mmol, 85 % yield) of **15a** as a yellow solid. Rf = 0.56 (hexanes:ethyl acetate = 3:2). ¹H NMR (400 MHz, CDCl₃): δ 1.45 (s, 9H), 2.86-2.99 (m, 2H), 3.792 (s, 3H), 3.798 (s, 3H), 4.54 (q, *J* = 4.4 Hz, 1H), 5.39 (d, *J* = 8.4 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 8.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 23.9, 28.3, 52.3, 52.6, 55.2, 80.1, 82.2, 83.4, 113.8, 115.0, 133.1, 135.2, 155.1, 159.4, 171.4 ppm. HRMS (ESI): calcd. for C₁₈H₂₃NNaO₅ [M + Na]⁺ 356.1460, found 356.1468.

1.2.2. 2-((*tert*-Butoxycarbonyl)amino)-5-(4-methoxyphenyl)pent-4-ynoic acid (1d). The methyl ester derivative 15a (0.064 g, 0.19 mmol) was dissolved in THF/H₂O (6 mL, 2:1) and cooled to 0 °C. Then, a 1 M solution of LiOH (0.35 mL, 0.35 mmol) was added. The mixture was stirred at room temperature, and the reaction was monitored by TLC. After complete conversion, the reaction mixture was poured into a beaker with ice, and a solution of HCl (1 M) was added until the pH was acidic. The aqueous solution was extracted with EtOAc, and the combined organic layers were dried with Na₂SO₄ and concentrated in vacuo and obtaining 0.061 g (0.19 mmol, 99.5 % yield) of the desired *N*-Boc-protected alkynyl amino acid 1d as a yellow solid. The product was used in the next step without further purification.

1.2.3. Methyl 2-((*tert***-butoxycarbonyl)amino)-5-(4-(trifluoromethyl)phenyl)pent-4-ynoate (15b).** To a solution of *N*-protected methyl propargyl glycinate **11** (0.098g, 0.43 mmol) in dimethylformamide (DMF) (5 mL), were added 1-bromo-4-(trifluoromethyl)benzene (0.150 g, 0.65 mmol), diisopropylamine (0.10 mL, 0.64 mmol), and Pd(PPh₃)₄ (0.054 g, 0.047 mmol). The light brown solution quickly turned dark upon addition of copper(I) iodide (0.022 g, 0.12 mmol). The reaction mixture was stirred at room temperature under a nitrogen atmosphere overnight. The solvent was evaporated and the reaction crude was purified by column chromatography obtaining 0.1 g (0.26 mmol, 64 % yield) of **15b** as a yellow solid. Rf = 0.50 (hexanes:ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): δ 1.46 (s, 9H), 2.97 (d, *J* = 4.8 Hz, 2H), 4.58 (m, *J* = 4.5 Hz,1H), 5.38 (d, *J* = 8.1 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 8.3 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 28.3, 52.1, 52.7, 80.3, 82.3, 86.7, 122.5, 126.8, 129.7, 130.0, 131.9, 155.0, 171.2 ppm. HRMS (ESI): 394.1252 (calc. for C₁₈H₂₀F₃NNaO₄: 394.1237).

1.2.4. 2-((*tert*-**Butoxycarbonyl)amino**)-**5-**(**4-**(trifluoromethyl)phenyl)pent-**4-**ynoic acid (1e). The methyl ester derivative **15b** (0.11 g, 0.29 mmol) was dissolved in THF/H₂O (6 mL, 2:1) and cooled to 0 °C. Then, a 1 M solution of LiOH (0.44 mL, 0.44 mmol) was added. The mixture was stirred at room tempature, and the reaction was monitored by TLC. After complete conversion, the reaction mixture was poured into a beaker with ice, and a solution of HCl (1 M) was added until the pH was acidic. The aqueous solution was extracted with EtOAc, and the combined organic layers were dried with Na₂SO₄ and concentrated in vacuo obtaining 0.10 g (0.29 mmol, 99 % yield) of the desired carboxylic acid **1e** as a yellow solid. The product was used in the next step without further purification.

1.3. Time-course of the conversion of 1a into 2a monitored by GC-FID. To determine the concentration of the enol-lactone 2a in each vial, the mass of the standard (MSV) in each vial is calculated as follows:

$$M_{SV} = \left(\frac{\text{Initial standard mass}}{\text{Toluene volume x 1000}}\right) \times V_{\text{Injected aliquot}}$$

As 1 μ L is injected into the equipment, the mass of the standard injected (MS) is equal to MSV/1000. The mass of the product present in each vial is determined using the following equation:

$$M_{P} = M_{S} \cdot \left(\frac{Product \ area}{Standard \ area}\right) \cdot \left(\frac{Product \ molecular \ weight}{Standard \ molecular \ weight}\right)$$

2. COPIES OF ¹H AND ¹³C NMR SPECTRA

2.1. 1,3-bis(2,6-diisopropyl-4-sodiumsulfonatophenyl)imidazol-2-ylidene gold(I) Chloro (C1).

¹H NMR, D₂O

¹³C NMR, DMSO-d₆

2.2. 1-(2,6-Diisopropylphenyl)-3-(3-sulfonatopropyl)imidazol-2-ylidene gold(I) Chloro (C2). $^1{\rm H}$ RMN, DMSO-d_6

¹³C RMN, DMSO-d₆

2.3. 1-Mesityl-3-(3-sulfonatopropyl)imidazol-2-ylidene gold(I) Chloro (C3). $^1\mathrm{H}$ RMN, $\mathrm{D_2O}$

¹H RMN, DMSO-d₆

2.5. (3-sulfonate propyl)imidazol-2-ylidene gold(I) Chloro (C5). ¹H NMR, DMSO-d₆

2.7. Diethyl 2-(but-2-yn-1-yl)-2-((*tert*-butoxycarbonyl)amino)malonate (14).

2.9. *tert*-Butyl (5-methylene-2-oxotetrahydrofuran-3-yl)carbamate (2a).² Rf = 0.33 (hexanes:ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 1.45 (s, 9H) 2.87 (t, *J* = 12.8 Hz, 1H), 3.27 (q, *J* = 8.25 Hz, 1H), 4.41 (br. s, 2H) 4.81 (br. s, 1H) 5.14 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 28.2, 33.3, 50.5, 80.9, 90.3, 152.3, 155.2, 173.1 ppm. HRMS (ESI): 236.08967 (calc. for C₁₁H₁₇NO₄Na: 236.08933).

2.10. *tert*-Butyl (*Z*)-(5-ethylidene-2-oxotetrahydrofuran-3-yl)carbamate (2b).⁴ 2b and 2b *endo* form a non-separable mixture; Rf = 0.53 (hexanes:ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃): δ = 1.45 (s, 9H) 1.67 (dd, *J* = 2.8 Hz, 3H) 2.78 (t, *J* = 12.5 Hz, 1H) 3.21 (t, *J* = 11.9 Hz, 1H) 4.72 (d, *J* = 6.7 Hz, 1H) 5.21 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 10.1, 28.2, 33.6, 50.5, 80.8, 101.0, 144.8, 149.7, 173.3 ppm. HRMS (ESI): 250.1040 (calc. for C₁₁H₁₇NNaO₄: 250.1050).

2.11. *tert*-Butyl (6-methyl-2-oxo-3,4-dihydro-2H-pyran-3-yl)carbamate (2b *endo*). 2b and 2b *endo* form a non-separable mixture; Rf = 0.51 (hexanes:ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.45$ (s, 9H) 1.90 (s, 3H) 2.26 (q, J = 24.4 Hz, 1H), 5.02 (d, J = 6.7 Hz, 1H), 5.36 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.3, 28.2, 29.7, 48.9, 80.3, 99.5, 144.8, 149.7, 155.2, 169.2 ppm. HRMS (ESI): 250.1040 (calc. for C₁₁H₁₇NNaO₄: 250.1050).

2.12. *tert*-Butyl (**Z**)-(5-benzylidene-2-oxotetrahydrofuran-3-yl)carbamate (2c).² Rf = 0.46 (hexanes:ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 1.46 (s, 9H), 3.05 (t, *J* = 12.7 Hz, 1H), 3.38 (q, *J* = 8.38 Hz, 1H), 4.50 (d, *J* = 6.8 Hz, 1H), 5.20 (s, 1H), 5.61 (s, 1H), 7.20 – 7.54 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 1.5, 28.6, 33.9, 49.9, 80.2, 105, 127.4, 129.2, 129.3, 135.5, 147.6, 156.2, 174.0 ppm. HRMS (ESI): [M+Na]⁺ 312.12063 (calc. for C₁₆H₁₇NNaO₄, 312.12065).

2.13. Methyl 2-((*tert*-butoxycarbonyl)amino)-5-(4-methoxyphenyl)pent-4-ynoate (15a).

2.14. 2-((*tert*-Butoxycarbonyl)amino)-5-(4-methoxyphenyl)pent-4-ynoic acid (1d).

Rf = 0.14 (hexanes:ethyl acetate = 3:2). ¹H NMR (400 MHz, CDCl₃): δ 1.45 (s, 9H), 2.91-3.04 (m, 2H), 3.79 (s, 3H), 4.57 (t, *J* = 4.0 Hz, 1H), 5.37 (d, *J* = 8.3 Hz, 1H), 6.79 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 7.3 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 23.5, 28.2, 52.1, 52.2, 80.5, 81.8, 83.7, 113.8, 114.9, 133.1, 155.4, 159.4, 175.4 ppm.

2.15. *tert*-butyl (*Z*)-(5-(4-methoxybenzylidene)-2-oxotetrahydrofuran-3-yl)carbamate (2d). Rf = 0.43 (hexanes:ethyl acetate = 3:2). ¹H NMR (400 MHz, CDCl₃): δ 1.46 (s, 9H), 3.02 (q, *J* = 8.7 Hz, 1H), 3.36 (q, *J* = 8.2 Hz, 1H), 3.80 (s, 3H), 4.50 (d, *J* = 6.1 Hz, 1H), 5.23 (s, 1H), 5.55 (s, 1H), 6.86 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 28.2, 34.7, 49.8, 55.2, 81.0, 105.8, 113.8, 126.0, 129.8, 142.9, 155.1, 158.5, 173.1 ppm. HRMS (ESI): calcd. for C₁₇H₂₁NNaO₅ [M + Na]⁺ 342.1312, found 342.1315.

2.16. 2-((*tert*-butoxycarbonyl)amino)-5-(4-methoxyphenyl)-4-oxopentanoic acid (2d-Hydration). Rf = 0.11 (hexanes:ethyl acetate = 3:2). ¹H NMR (400 MHz, CDCl₃): δ 1.40 (s, 9H), 2.11 (d, J = 6.4 Hz, 1H), 2.32 (d, J = 6.5Hz, 1H), 3.13 (t, J = 19.6 Hz, 1H), 3.86 (s, 3H), 4.33 (s, 1H), 5.45 (s, 1H), 6.91 (d, J = 8.0 Hz, 2H), 7.93 (d, J = 8.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 28.2, 55.4, 63.1, 80.2, 142.9, 158.5, 175.8, 198.3 ppm. HRMS (ESI): calcd. for C₁₇H₂₃NNaO₆ [M + Na]⁺ 360.1418, found 360.1422.

2.17. Methyl 2-((*tert*-butoxycarbonyl)amino)-5-(4-(trifluoromethyl)phenyl)pent-4-ynoate (15b).

2.18. 2-((*tert*-Butoxycarbonyl)amino)-**5-**(**4**-(trifluoromethyl)phenyl)pent-4-ynoic acid (1e). Rf = 0.13 (hexanes:ethyl acetate = 3:2). ¹H NMR (400 MHz, CDCl₃): δ 1.45 (s, 9H), 2.98 (d, *J* = 15.8 Hz, 2H), 4.60 (s, 1H), 5.38 (d, *J* = 7.7 Hz, 1H), 7.46 (d, *J* = 7.8 Hz, 2H), 7.51 (d, *J* = 7.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 23.6, 28.2, 52.0, 80.7, 82.5, 86.4, 122.5, 125.1, 126.7, 132.0, 155.3, 175.1 ppm.

2.19. *tert*-Butyl (Z)-(2-oxo-5-(4-(trifluoromethyl)benzylidene)tetrahydrofuran-3-yl) carbamate (2e): Rf = 0.43 (hexanes:ethyl acetate = 3:2). ¹H NMR (400 MHz, CDCl₃): δ 1.46 (s, 9H), 3.12 (m, *J* = 4.0 Hz, 1H), 3.39 (q, *J* = 8.5 Hz, 1H), 4.48 (d, *J* = 6.1 Hz, 1H), 5.23 (s, 1H), 5.63 (s, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8.1 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 28.2, 29.7, 49.6, 81.3, 86.4, 104.9, 122.7, 125.34, 125.38, 128.6, 132.0, 136.8, 146.8, 155.1, 172.6 ppm. HRMS (ESI): calcd. for C₁₇H₁₈F₃NNaO₄ [M + Na]⁺ 380.1080, found 380.1084.

2.20. Methyl 2-acetamido-4-oxopentanoate (4).⁵ Rf = 0.55 (hexanes:ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): δ 1.94 (s, 3H), 2.09 (s, 3H), 2.93 (dd, *J* = 7.5 Hz, 1H), 3.15 (dd, *J* = 7.5 Hz, 1H), 3.66 (s, 3H), 4.68 – 4.72 (m, 1H), 6.45 (d, *J* = 6.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 22.1, 28.8, 43.8, 46.9, 51.7, 168.8, 170.4, 206.0 ppm. HRMS (ESI): 188.0924 (calc. for C₈H₁₄NO₄: 188.0917).

3. REUSE PROCESS OF CATALYSTS C1 – C5.

Cycle	Substrate (mg)	Product (mg)	Isolated Yield %	Ratio (Product/Substrate)	Conversion by ¹ H NMR %
1	39.7	32.3	81.4	43:2	95.5
2	39.0	37.2	95.0	40:2	95.2
3	39.9	37.2	93.2	37:2	94.8
4	38.6	37.1	96.0	46:2	95.8
5	39.4	37.3	94.6	30:2	93.7
6	38.9	37.4	96.0	28:2	93.3
7	39.9	35.5	88.9	40:2	95.2
8	39.6	33.8	85.0	32:2	94.1
9	39.4	34.3	87.0	35:2	94.5
10	39.7	38.6	97.0	28:2	93.3
11	39.6	37.2	90.3	33:2	94.2
12	39.7	29.6	74.5	34:2	94.4
13	39.4	36.4	87.2	38:2	95.0
14	39.7	37.5	94.4	41:2	95.3
15	39.8	37.6	94.4	25.6:2	92.7

 Table S1. C1 (1 mol%) catalyst reuse cycles

Cycle 15 cumentos/Liddier/Doctorado/Proyecto/Espectros/LPH/nmr	In the man of the man	LPH-1-So 1 LC:\Documentor\Lrmitier\Doctorado\Proyecto\Especialos\LPH\mmr
Cycle 14	Am	LPH-1-5n 1 1 C:\Documenter\Liddier\Doctorado\Proyecto\Espectros\LPH\mmr
Cycle 13	A	LFH-1-5m 1 C:\Documenter\Lideier\Doctorado\Proyecto\Espectros\LFH\mmr
Cycle 12	America A	LFH-1-51 1 C:\Documenth\Lfddier\Doctorado\Proyecto\Espectros\LFH\mmr
Cycle 11	And make and	LFH-175k 1 C:\Document\\Lphiter\Doctorado\Proyecto\Espectros\LPH\mmr
Cycle 10	America A	LPH-1-5j 1 C:\Documentin\Lightier\Doctorado\Proyecto\Espectros\LPH\mmc
Cycle 9	Anna I. A	LPH-1-51 1 1 C:\Documentor\Liddier\Doctorado\Proyecto\Espectros\LPH\mmc
Cycle 8		LFH-1-Bh 1 1 C:\Documenter\Liddier\Doctorado\Proyecto\Especthos\LFH\mmr
Cycle 7		LPH-1-5g 1 1 C:\Documenter\Liddier\Doctorado\Proyecto\Espectsos\LPH\nmr
Cycle 6	A second	LFH-1-5f 1 1 C:\DocumenterLideier\Doctorado\Proyecto\Espectres\LFH\mmr
Cycle 5	America M	A LFH-1-Se 1 C:\Documenter\Lfddier\Doctorado\Froyecto\Espectros\LFH\mmr
Cycle 4	America A	LFH-1-5d 1 C:\Documenter\Lfddier\Doctorado\Proyecto\Espectaos\LFH\mmr
Cycle 3	America A	LPH-1-5c 1 C:\Documentst\Lifdier\Doctorado\Proyecto\Espectfos\LPH\nmr
Cycle 2	Anna	LFH-1-5b 1 1 C:\Documenth\Lfddler\Doctorado\Froyecto\Espectaos\LFH\mmr
Cycle 1	And A	LPH-1-4 1 C:\Documentar\Lfddier\Doctorado\Proyecto\Espectaos\LPH\mmr
6	4	2 0 [ppm]

Figure S3. Comparison of reuse cycles of C1, ¹H NMR spectra obtained after 1 h at room temperature.

Cycle	Substrate (mg)	Product (mg)	Isolated Yield %	Ratio (Product/Substrate)	Conversion by ¹ H NMR %
1	31.9	28.7	89.9	6.2:1	86.6
2	30.6	26.3	85.9	2.7:1	73.1
3	30.6	28.9	94.4	2.4:1	71.3
4	30.2	30.4	100.0	2.1:1	67.7
5	30.5	32.4	100.0	3.1:1	75.8
6	30.1	31.5	100.0	1.3:1	56.5

 Table S2. C2 (1 mol%) catalyst reuse cycles

Figure S4. Comparison of reuse cycles of C2, ¹H NMR spectra obtained after 1 h at room temperature.

Cycle	Substrate (mg)	Product (mg)	Isolated Yield %	Ratio (Product/Substrate)	Conversion by ¹ H NMR %
1	50.04	41.4	82.7	35:2	94.6
2	50.00	47.6	95.0	36:2	94.0
3	50.20	40.5	80.0	7:2	77.7
4	49.50	26.7	53.9	5:2	71.4
5	49.50	40.2	75.0	3.4:2	62.9
6	50.50	47.2	93.4	3:2	60.0

Table S3. C3 (1 mol%) catalyst reuse cycles

LPH-1-6 1 1 D:\Lie	ddier\Doctorado\Proyecto	\Espectros\LPH\nmr	LPH-1-6g 1 1 D:\Liddier\Doc	torado\Proyecto\Espectros\LPH\Htt
Cycle /		L_ml_m_k		N L Martin
Cycle 6	l.	1	LPH-1-6f 1 1 D:\Liddier\Doc	storado\Proyecto\Espectros\LPH\mrr
Cycle o	~~ A		n nh	A
0 1 5			LPH-1-6e 1 1 D:\Liddier\Doo	torado\Provecto\Espectros\LPH\mur
Cycle 5		_ A	٨	Λ.
Cycle 4	Į.	A	LPH-1-6d 1 1 D:\Liddier\Doc	ctorado\Proyecto\Espectros\LPH\mr
	l		······································	
Cycle 3	ł	ł	LPH-1-6c l l D:\Liddier\Doc	ctorado\Proyecto\Espectros\LPH\mer
- ,		السر	A Mag	
Carala 2			LDH-1-5b 10 1 D:\Liddier\Doc	
Cycle 2	~)		In Tob To T D. (Madel),560	
			······································	·
Cycle 1		1	LPH-1-6 1 1 D:\Liddier\Doo	storado/Proyecto/Espectros/LPH/mar
		A		
6	<u> </u>	4	3	2 [ppm]

Figure S5. Comparison of reuse cycles of C3, ¹H NMR spectra obtained after 1 h at room temperature.

Cycle	Substrate (mg)	Product (mg)	Isolated Yield %	Ratio (Product/Substrate)	Conversion by ¹ H NMR %
1	29.8	29.3	98.3	1:0	99.0
2	29.7	29.0	97.6	1:0	99.0
3	29.6	29.0	97.9	18:2	90.0
4	30.2	27.5	91.0	4.3:2	68.2
5	29.8	27.8	93.2	6.9:2	77.8
6	29.8	27.6	92.6	11.6 : 2	85.6
7	30.5	26.3	86.2	3.5 : 2	63.6

Table S4. C4 (1 mol%) catalyst reuse cycles

Figure S6. Comparison of reuse cycles of C4, ¹H NMR spectra obtained after 1 h at room temperature.

Cycle	Substrate (mg)	Product (mg)	Isolated Yield %	Ratio (Product/Substrate)	Conversion by ¹ H NMR %
1	30.1	26.1	86.7	1:0	99.9
2	30.0	28.8	96.0	11.4:1	91.5
3	30.5	29.5	96.7	5.5:1	84.6
4	30.3	24.6	81.2	8.1:1	89.0
5	30.9	27.6	89.3	6:1	85.7
6	30.3	31.0	100	3.6:1	78.4
7	30.0	29.3	97.6	2.3:1	70.0
8	30.1	31.2	100	3.2:1	77.3
9	30.5	31.1	100	1.8:1	64.9

 Table S5. C5 (1 mol%) catalyst reuse cycles

LPH-2-81 1 1 C:\Documentos\Liddier\Doctorado\Pr	oyecto\Espectros\LPH\nmr			LPH-2-811 1 1 0	:\Documentos\Liddier\Doctora	do\Proyecto\Espectros\LPH\nmr	[rel]
				n_LL			0.6
Cycle 8		1		LPH-2-81h 1 1 0	:\Documentos\Liddier\Doctora	do\Proyecto\Espectros\LPH\nmr	
w^			^	n L.h			0.5
Cycle 7		l I		LPH-2-81g 1 1 0	:\Documentor\Liddier\Doctora	do\Proyecto\Espectros\LPH\mmr	
			~	n Lik			4
Cycle 6				LPH-2-81f 1 1 0	:\Documentcs\Liddier\Doctora	do\Proyecto\Espectros\LPH\nmr	Ö
u			^	n l.h	ln		
Cycle 5				LPH-2-81e 1 1 0	:\Documentc:\Liddier\Doctora	do\Proyecto\Espectros\LPH\nmr	0.3
			^	\sim l			
Cycle 4				LPH-2-81d 1 1 0	:\Documentcs\Liddier\Doctora	do\Proyecto\Espectros\LPH\nmr	0
hr				~			0
Cycle 3				LPH-2-81c 1 1 0	:\Documentcs\Liddier\Doctora	do\Proyecto\Espectros\LPH\nmr	
un			^	~l_ı			0.1
Cycle 2				LPH-2-81b 1 1 0	:\Documentcs\Liddier\Doctora	do\Proyecto\Espectros\LPH\nmr	
				~	_ lu		0.0
Cycle 1				LPH-2-81 1 1 0	:\Documentor\Liddier\Doctora	do\Proyecto\Espectros\LPH\nmr	-
			M		lu		
6		4		2		0 [ppm]	

Figure S7. Comparison of reuse cycles of C5, ¹H NMR spectra obtained after 1 h at room temperature.

4. KINETIC STUDY ON THE FORMATION OF ENOL-LACTONE 2a MONITORED BY GC-FID.

4.1. Kinetic 1:

			1 7	5	
Vial	Time	Standard (mg)	Product concentration (mg P/ mL)	Product Area	Standard Area
1	1	10	1,242433718	16090	181445
2	2	10	1,811438046	48684	376552
3	3	10	1,999589561	22854	160134
4	4	10	2,516996986	28120	156529
5	5	10	3,189450807	30961	136007
6	10	10	5,668895147	68903	170295
7	20	10	6,186182507	81582	184771
8	30	10	6,109503101	81899	187817
9	45	10	6,204860531	75289	170005
10	50	10	6,17497284	106294	241177

Table S6. Peak area values of samples analyzed by GC-FID.

Figure S9. Time-resolved GC-FID chromatograms of the formation of product 2a (kinetic 1).

4.2. Kinetic 2:

	Tuble 5777 cuk ulcu vidues of the sumples unaryzed by Ge THE for kinetic 2.							
Vial	Time	Standard (mg)	Product concentration (mg P/ mL)	Product Area	Standard Area			
1	1	10	0,25604795	3784	207058			
2	2	10	1,031370424	14500	196977			
3	3	10	1,882066273	21971	163560			
4	4	10	2,725647266	39231	201661			
5	5	10	3,527555948	56506	224431			
6	10	10	5,679940517	94643	233457			
7	20	10	5,363590237	93533	244327			
8	30	10	5,640462358	95360	236872			
9	45	10	5,913303147	82149	194641			
10	50	10	5,458645227	88371	226823			

Table S7. Peak area values of the samples analyzed by GC-FID for kinetic 2.

Figure S10. Time course of formation of enol-lactone 2a monitored by GC-FID (kinetic 2).

4.2.1. Comparison of chromatograms of samples taken from kinetics 2 for the product in the GC-FID.

Figure S11. Time-resolved GC-FID chromatograms of the formation of product 2a (kinetic 2).

4.3. Kinetic 3:

Table 50. Feak area values of the samples analyzed by Ge-11D for killene 5.											
Vial	Time	Standard (mg)	Product concentration (mg P/ mL)	Product Area	Standard Area						
1	1	10	1,920340885	52861	385673						
2	2	10	2,658957292	53581	282333						
3	3	10	3,138531122	64003	285717						
4	4	10	3,719363842	89478	337062						
5	5	10	4,196990406	89488	298737						
6	10	10	4,377943098	80590	257913						
7	20	10	4,36298502	86065	276379						
8	30	10	4,305315027	90052	293056						
9	45	10	4,155594834	81301	274110						
10	50	10	4,502624137	78529	244358						

Table S8. Peak area values of the samples analyzed by GC-FID for kinetic 3.

Figure S12. Time course of formation of enol-lactone 2a monitored by GC-FID (kinetic 3).

4.3.1. Comparison of chromatograms of samples taken from kinetics 3 for the product in the GC-FID.

Figure S13. Time-resolved GC-FID chromatograms of the formation of product 2a (kinetic 3).

4.4. Comparison of the three kinetics

Time	Standard (mg)	Conversion k1 (mg/mL)	Conversion k2 (mg/mL)	Conversion k3 (mg/mL)	Average (mg/mL)	Standard deviation	Error
1	10	1,242433718	0,25604795	1,920340885	1,139607518	0,836897643	0,483183079
2	10	1,811438046	1,031370424	2,658957292	1,833921921	0,814026349	0,469978332
3	10	1,999589561	1,882066273	3,138531122	2,340062319	0,693986494	0,400673289
4	10	2,516996986	2,725647266	3,719363842	2,987336031	0,642481339	0,370936774
5	10	3,189450807	3,527555948	4,196990406	3,637999053	0,512769218	0,296047446
10	10	5,668895147	5,679940517	4,377943098	5,242259587	0,748540410	0,432170007
20	10	6,186182507	5,363590237	4,36298502	5,304252588	0,913045994	0,527147350
30	10	6,109503101	5,640462358	4,305315027	5,351760162	0,936101154	0,540458253
45	10	6,204860531	5,913303147	4,155594834	5,424586171	1,108605289	0,640053562
60	10	6,17497284	5,458645227	4,502624137	5,378747401	0,839032355	0,484415556

Table S9. Average of kinetics 1, 2 and 3 and standard deviation.

Figure S14. Average of kinetics.

4.4.1. Graph of calculated average and error in the gold-catalyzed conversion of 1a into 2a.

Figure S15. Progress of the conversion in relation to time of **1a** (0.14 mmol) into **2a** using toluene:water (2 mL:2 mL) as a medium at room temperature with 1 mol% of **C1**. Fit to equation $f=a^*(1-exp(-b^*x))$ (Exponential Rise to Maximum, Single, 2 Parameter; using program SigmaPlot

5. REFERENCES

1. (a) Fernández, G. A.; Picco, A. n. S.; Ceolín, M. R.; Chopa, A. B.; Silbestri, G. F., Synthesis and Structural Characterization of Water-Soluble Gold(I) N-Heterocyclic Carbene Complexes. An X-ray Absorption Fine Structure Spectroscopy (XAFS) Study. *Organometallics* **2013**, *32* (21), 6315-6323; (b) Fernández, G. A.; Chopa, A. B.; Silbestri, G. F., A structure/catalytic activity study of gold(i)–NHC complexes, as well as their recyclability and reusability, in the hydration of alkynes in aqueous medium. *Catal. Sci. Technol.* **2016**, *6* (6), 1921-1929.

2. Medran, N. S.; Villalba, M.; Mata, E. G.; Testero, S. A., Gold-Catalyzed Cycloisomerization of Alkyne-Containing Amino Acids: Controlled Tuning of C–N vs. C–O Reactivity. *Eur. J. Org. Chem.* **2016**, *2016* (22), 3757-3764.

3. Suzuki, N.; Suzuki, T.; Ota, Y.; Nakano, T.; Kurihara, M.; Okuda, H.; Yamori, T.; Tsumoto, H.; Nakagawa, H.; Miyata, N., Design, Synthesis, and Biological Activity of Boronic Acid-Based Histone Deacetylase Inhibitors. *J. Med. Chem.* **2009**, *52* (9), 2909-2922.

4. Mindt, T. L.; Schibli, R., Cu(I)-catalyzed intramolecular cyclization of alkynoic acids in aqueous media: A "Click Side Reaction". *J. Org. Chem.* **2007**, *72* (26), 10247-10250.

5. Zvilichovsky, G.; Gurvich, V., Ozonolysis of (cyclohexa-1,4-dienyl)-L-alanine. An approach to the synthesis of new unnatural amino acids. X-Ray molecular structure of 2-hydroxy-7-methyl-3-phenylpyrazolo[1,5-a]pyrimidine. *J. Chem. Soc., Perkin Trans. 1* **1995,** (19), 2509-2515.