

Fig.1S (a) TEM morphology of $Mo@V-VO_{0.2}$ based 80AMSCs3 and the corresponding element mapping of (b) V, (c) Mo, and (d) O, (e) EDX spectrum, (f) SAED pattern.

Fig.2S EDS element mapping for (a)Mo, (b)V and (c)O.

Fig. 3S EPR spectra of the 80AMSCs3.

Fig.4S Electric potential distribution of (a) 60AMSCs1 and (b) 60AMSCs2, (c) and 60AMSCs3, electric field intensity distribution of (d) 60AMSCs1 and (e) 60AMSCs2 and (f) 60AMSCs3.

Fig.5S CVs at low scan rates of 1, 2 and 10 mV s⁻¹ for (a) 70AMSCs3 and (b) 90AMSCs3, and (c) areal capacitance of 60AMSCs3, 70AMSCs3, 80AMSCs3, 90AMSCs3 and 100AMSCs3 at different scan rates.

Devices	Electrodes	Materials used for	Current	Capacitance	References
	Fabricated	Electrodes	collectors	$(mF cm^{-2})$	
	Techniques Used	Fabrication			
PANI/V ₂ O ₅	Electrodeposition	VCl ₃ , p–	FTO	12.3	[1]
	Spray coating	benzenedicarboxylic	prepared by		
	Solvothermal	acid, ethanol, N ₂ gas,	coating		
	method,	Ar–H ₂ gas,			
	Centrifugation,	dimethylformamide,			
	Pyrolysis,	isopropanol, aniline,			
	Annealing,	$H_2SO_4,$			
	Dispersing	SnO ₂ : F (FTO)			
rGO/V ₂ O ₅	Spray coating,	N_2 gas, NH_4VO_3 ,	Au/Cr	24	[2]
	Sputtering,	Ammonium	current		
	Modified Hummer's	hydroxide, C ₂ H ₅ NS,	collectors		
	method, Annealing,	ethanol,	fabricated		
	Stirring,	dimethylformamide,	by		
	Ultrasonication,	graphite powder,	Sputtering		
	Filtering	H_2SO_4 , ice, KMnO ₄ ,			
		H_2O_2 ,			
		HC1			
Graphene-	Mask-assisted spray	Graphite foil, N ₂ gas,	Integrated	5.4	[3]
PEDOT-	deposition,	H_2SO_4 , 2–propanol,	electrodes		
PSS	Electrochemically	PEDOT, PSS,			
	exfoliating,	platinum			
	Stirring,				
	Heating,				
	Sonication				
MXene	Laser machining	Ti_3AlC_2 , HF,	Integrated	23	[4]
	Spray–coating,	LiF, HCl	electrodes		
	Etching,				
	Stirring,				
	Centrifugation,				
	Filtering				
	Suria and the	CNT ₂ 1 ¹ / ₂ / ₂	Tuto a sector 1	6.1	[6]
	Spin coating,	UN IS, Chitosan,	Integrated	0.1	[3]
	Liltragoniantian	acetic acid, ammonia,	electrodes		
	Ourasonication,	iormain, photoresist,			
	Surring,	S1/S1O ₂ water, N ₂ gas			
	Centritugation,				
	Drying,				
	Pyrolysis				

Table.1S Comparison of MSCs fabricated by different processing methods

	baking				
Activated carbon	Inkjet printing, Photolithography, Chemical vapour deposition, Evaporation, Etching	Activated carbon powder, polytetrafluoroethyle ne binder, Triton X100, ethylene glycol, titanium, gold	Gold current collector	5.1	[6]
Carbon onions	Electrophoretic deposition, Photolithography, Etching, Thermal growing, Annealing, Heating	Nanodiamond, titanium, gold, HClO ₄ , ethanol– water, silicon dioxide, MgCl ₂	Gold current collector	1.7	[7]
Graphene	Spin coating, Lithography, O ₂ plasma treatment, CH ₄ plasma treatment	Graphene oxide, O ₂ , CH ₄ , photoresist, Au, KI/I ₂ solution	Gold current collector	0.08	[8]
Graphene	Laser–scribing, Modified Hummer's method, Stirring, Drop–cast	Graphite powder, H ₂ SO ₄ , K ₂ S ₂ O ₈ , P ₂ O ₅ , KMnO ₄ , H ₂ O ₂ , HCl	Integrated electrodes	2.3	[9]
rGO	Laser radiation, Vacuum filtration, Modified Hummer's method, Stirring, Filtering, Washing, Heating	Graphite powder, H ₂ SO ₄ , K ₂ S ₂ O ₈ , P ₂ O ₅ , ice, KMnO ₄ , H ₂ O ₂ , HCl	Carbon– coated aluminium foils	0.51	[10]
Mo@VO _{0.2}	WEDM	Vanadium metal sheet, Molybdenum wire	Integrated electrodes	25.2	This work

Fig. 6S The GCD images of 60AMSCs3, 80AMSCs3 and 100AMSCs3.

References

[1] A. Dewan, R. Narayanan, M. O. Thotiyl, A multi–chromic supercapacitor of high coloration efficiency integrating a MOF–derived V_2O_5 electrode, Nanoscale 14(46) (2022) 17372–17384.

[2] B. D. Boruah, S. Nandi, A. Misra, Layered assembly of reduced graphene oxide and vanadium oxide heterostructure supercapacitor electrodes with larger surface area for efficient energy–storage performance, ACS Applied Energy Materials 1(4) (2018) 1567–1574.

[3] Z. Liu, Z. S. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene, Advanced Materials 28(11) (2016) 2217–2222.

[4] Q. Jiang, C. Wu, Z. Wang, A. C. Wang, J. H. He, Z. L. Wang, H. N. Alshareef, MXene electrochemical micro–supercapacitor integrated with triboelectric nanogenerator as a wearable self–charging power unit, Nano Energy 45 (2018) 266–272.

[5] Y. Yang, L. He, C. Tang, P. Hu, X. Hong, M. Yan, Y. Dong, X. Tian, Q. Wei, L. Mai, Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro–supercapacitors, Nano Research 9 (2016) 2510–2519.

[6] D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, Elaboration of a microstructured inkjet–printed carbon electrochemical capacitor, Journal of Power Sources 195(4) (2010) 1266–1269.

[7] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Ultrahigh–power micrometre–sized supercapacitors based on onion–like carbon, Nature nanotechnology 5(9) (2010) 651–654.

[8] Z. S. Wu, K. Parvez, X. Feng, K. Müllen, Graphene–based in–plane micro– supercapacitors with high power and energy densities, Nature communications 4(1) (2013) 2487.

[9] M. F. El–Kady, R. B. Kaner, Scalable fabrication of high–power graphene micro– supercapacitors for flexible and on–chip energy storage, Nature communications 4(1) (2013) 1475.

[10] W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P.M. Ajayan, Direct laser writing of micro–supercapacitors on hydrated graphite oxide films, Nature nanotechnology 6(8) (2011) 496–500.