Synthesis of nicotinimidamides via a tandem CuAAC/ring-cleavage /cyclization/oxidation four-component reaction and its cytotoxicity

Xi Chen^{1,#}, Guanrong Li^{2,#}, Zixin Huang², Qiaoli Luo³, Tao Chen^{1,*} and Weiguang Yang^{2,*}

^aDepartment of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; chenx798@mail2.sysu.edu.cn (X.C.); chentao@mail.sysu.edu.cn (T.C.) ^bSchool of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China; lgr971005@163.com (G.L.); <u>1733687714@qq.com</u> (Z.H.); <u>09ywg@163.com</u> (W.Y.); ^cSchool of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, P. R. China; <u>luoql@lingnan.edu.cn</u> [#] These authors contributed equally to this work

*Correspondence: chentao@mail.sysu.edu.cn (T.C.); 09ywg@163.com (W.Y.).

Table of Contents

1.	General Information
2.	The structures of starting materials 1a-1p , 2a-2d and 3a-3e S3
3.	Copies of NMR Spectra

1. General Information

All melting points were determined on a Yanaco melting point apparatus (Kyoto, Japan) and were uncorrected. IR spectra were recorded as KBr pellets on a Nicolet FT-IR 5DX spectrometer (Waltham, MA, USA). All spectra of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) were recorded on a Bruker AVANCE NEO 400 MHz spectrometer (Berne, Switzerland) in DMSO- d_6 or CDCl₃ (unless otherwise indicated), with TMS used as an internal reference and the J values given in Hz. HRMS were obtained on a Thermo Scientific Q Exactive Focus Orbitrap LC-MS/MS spectrometer (Waltham, MA, USA). Optical rotations are measured on a P-2000, serial number: B209161232, JASCO corporation (Tokyo, Japan).

2. The structures of starting materials 1a-1p, 2a-2c and 3a-3j

Scheme S1 Structures of the starting materials 1a-1p.

Scheme S2 Structures of the starting materials 2a-2d.

Ö

2d

2c

Scheme S3 Structures of the starting materials 3a-3e.

S3

3. Copies of NMR spectra

Figure S1. ¹H NMR of **5a** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5a** (100 MHz, DMSO-*d*₆).

Figure S2. ¹H NMR of 5b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5b (100 MHz, DMSO-*d*₆).

Figure S3. ¹H NMR of 5c (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5c (100 MHz, DMSO-*d*₆).

Figure S4. ¹H NMR of **5d** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5d** (100 MHz, DMSO-*d*₆).

Figure S5. ¹H NMR of **5e** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5e** (100 MHz, DMSO-*d*₆).

Figure S6. ¹H NMR of 5f (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5f (100 MHz, DMSO-*d*₆).

Figure S7. ¹H NMR of **5g** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5g** (100 MHz, DMSO-*d*₆).

Figure S8. ¹H NMR of **5h** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5h** (100 MHz, DMSO-*d*₆).

Figure S9. ¹H NMR of 5i (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5i (100 MHz, DMSO-*d*₆).

Figure S10. ¹H NMR of 5j (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5j (100 MHz, DMSO-*d*₆).

Figure S11. ¹H NMR of 5k (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5k (100 MHz, DMSO-*d*₆).

Figure S12. ¹H NMR of 5I (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5I (100 MHz, DMSO-*d*₆).

Figure S13. ¹H NMR of 5m (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5m (100 MHz, DMSO-*d*₆).

Figure S14. ¹H NMR of 5n (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5n (100 MHz, DMSO-*d*₆).

Figure S15. ¹H NMR of 50 (400 MHz, DMSO-*d*₆) and ¹³C NMR of 50 (100 MHz, DMSO-*d*₆).

Figure S16. ¹H NMR of 5p (400 MHz, DMSO-*d*₆) and ¹³C NMR of 5p (100 MHz, DMSO-*d*₆).

Figure S17. ¹H NMR of **5q** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5q** (100 MHz, DMSO-*d*₆).

Figure S18. ¹H NMR of **5r** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5r** (100 MHz, DMSO-*d*₆).

Figure S19. ¹H NMR of **5s** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5s** (100 MHz, DMSO-*d*₆).

Figure S20. ¹H NMR of **5t** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5t** (100 MHz, DMSO-*d*₆).

Figure S21. ¹H NMR of **5u** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **5u** (100 MHz, DMSO-*d*₆).

Figure S22. ¹H NMR of 6 (400 MHz, DMSO-*d*₆) and ¹³C NMR of 6 (100 MHz, DMSO-*d*₆).