Supporting Information

Molecular Insight into Oil Displacement by CO₂ Flooding in the

Water Cut Dead-end Nanopore

Pengfei Lu^a, Zichen Yan^a, Jiawen Lai^a, Keke Wang^{b, *}

^a Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry

and Chemical Engineering, Suzhou University, Suzhou 234000, China

^b School of Information Engineering, Suzhou University, Suzhou 234000, China

Atom type	€ (kJ/mol)	$\sigma(\text{nm})$	<i>q</i> (e)
OB(O at SiO ₂ bulk)	6.50629×10 ⁻¹	0.3166	-1.050
OS(O at SiO ₂ surface)	6.50629×10 ⁻¹	0.3166	-0.950
Si	7.70581×10 ⁻⁶	0.3302	2.100
H(at SiO ₂ surface)	0.000	0.000	0.425
$H(H_2O)$	0.000	0.000	0.417
$O(H_2O)$	0.6364	0.315	-0.834
$C(CO_2)$	0.234	0.280	0.6516
$O(CO_2)$	0.6682	0.3028	-0.3258
CH_2	0.3808	0.393	0.000
CH ₃	0.8647	0.391	0.000

Table S1. Lennard-Jones parameters employed in the simulations ¹.

Fig. S1. Snapshots of the systems with different water film thicknesses under 1 MPa during displacing process.

Fig. S2. Number density distribution of CO_2 and C10 perpendicular to the displacement direction in the groove with different water film thicknesses under the pressure of 1 MPa.

Fig. S3. The evolution of water film rupture at 4 MPa.

Fig. S4. The evolution of water film rupture at 1 MPa.

Fig. S5. The evolution of w–r H–bond number (a) and w–w H–bond number (b) during the simulations under the pressure of 1 MPa.

Fig. S6. The change of oil molecule number during the displacing process for different cases.

Fig. S7. Oil recovery for the cases with different water contents under 1 MPa and the corresponding fitting curves.

References

1 P. Lu, T. Mo, Y. Wei, Z. Guo and G. Feng, J. Supercrit. Fluid., 2022, 181, 105507.