High adsorption to methylene blue based on Fe₃O₄-N-bananapeel biomass charcoal

Zhu-Xiang Gong^a, Mfitumucunguzi Steven^a, Yan-Ting Chen^a, Li-Zhu Huo^a, Hao Xu^a,

Chao-Fei Guo^a, Xue-Juan Yang^a, Yu-Xuan Wang^{a,*}, Xi-Ping Luo^{a,b,*}

a College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China;

b Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Hangzhou 311300, China

* Corresponding authors.

E-mail addresses: 20190050@zafu.edu.cn (Y.-X. Wang), luoxiping@zafu.edu.cn (X.-P. Luo).

L ₉ (4 ³)	Factors						
orthogonal	(A) holding	(B) carbonization	(C) activator				
test design	Temperature (min)	temperature (°C)	ratio (C/KOH)				
1	A ₁ 60	B ₁ 600	C ₁ 1: 1				
2	A ₁ 60	B ₂ 700	C ₂ 1: 2				
3	A ₁ 60	B ₃ 500	C ₃ 1: 3				
4	A ₂ 90	$B_1 600$	C ₃ 1: 3				
5	A ₂ 90	B ₂ 700	$C_1 1: 1$				
6	A ₂ 90	B ₃ 500	C ₂ 1: 2				
7	A ₃ 120	$B_1 600$	C ₂ 1: 2				
8	A ₃ 120	B ₂ 700	C ₃ 1: 3				
9	A ₃ 120	B ₃ 500	C ₁ 1: 1				

Table S1. Orthogonal design table

Figure S1. Methylene blue UV absorption spectrum

Figure S2. Methylene blue dye standard curve diagram

$L_9(4^3)$		Factors		
orthogonal test design	(A) holding Temperature (min)	(B) carbonization temperature (°C)	(C) activator ratio (C/KOH)	
1	A ₁ 60	$B_{1}600$	C ₁ 1: 1	
2	A ₁ 60	B ₂ 700	C ₂ 1: 2	
3	A ₁ 60	B ₃ 500	C ₃ 1: 3	
4	A ₂ 90	B ₁ 600	C ₃ 1: 3	
5	A ₂ 90	B ₂ 700	C ₁ 1: 1	
6	A ₂ 90	B ₃ 500	C ₂ 1: 2	
7	A ₃ 120	B ₁ 600	C ₂ 1: 2	
8	A ₃ 120	B ₂ 700	C ₃ 1: 3	
9	A ₃ 120	B ₃ 500	C ₁ 1: 1	
K _{il}	185.56	173.29	158.71	
K _{i2}	193.42	295.03	205.62	
K _{i3}	184.04	94.70	198.69	
k _{i1}	61.85	57.76	52.90	
k _{i2}	64.47	98.34	68.54	
k _{i3}	61.35	31.57	66.23	
R _i	3.13	66.78	15.64	
Primary and secon	dary sequence	B>C>A		
Excellent level	A ₂	B ₂	C ₂	
Optimal combinati	on	$A_2B_2C_2$		

 Table S2. Orthogonal experimental arrangements

Sample	BET surface area $(m^2 g^{-1})$	Pore volume $(cm^3 g^{-1})$	Average pore width (nm)	
BC	1,827.9321	0.5198	2.7058	
N-BC	1,616.3728	0.2416	3.1968	
Fe ₃ O ₄ -N-BC	481.5964	0.097	3.6767	

Table S3. Surface area and pore parameters of biochar.

Table S4. Kinetics and intraparticle diffusion model parameters of MB adsorption on Fe₃O₄-

Model and parameters	pseud d)-first-order pseudo-second-order /namics dynamics			intra-j	particle diff	usion	
-		-		-		Ι	II	III
	\mathbb{R}^2	0.8316	\mathbb{R}^2	0.9929	R ²	0.9778	5.7575	0.9779
Parameters	\mathbf{K}_1	0.0397	K_2	0.000113	K _p	27.7533	5.7575	1.5598
	q_e	618.158	q_e	656.086	С	309.40	527.26	607.82

Table S5. Parameters of isotherm models for MB adsorption onto Fe₃O₄-N-BC.

Langmuir			Freundlich			Temkin			
T/K	q_{max}	K	D 2	V	1/n	р2	В	А	D ²
	(mg g ⁻¹)	(L mg ⁻¹)	K-	K	1711	K-	(J mol ⁻¹)	(L mg ⁻¹)	K-
298	651.47	0.20169	0.9957	479.77	0.053	0.3649	32.84	1280.45	0.3652
308	721.14	0.14459	0.9912	460.69	0.078	0.5135	52.32	3.183	0.5142
318	785.26	0.13621	0.9942	466.50	0.092	0.6219	66.10	0.515	0.6230

 Table S6.
 Thermodynamic fitting parameters.

Thermodynamic	$\Delta \mathrm{H}^{\mathrm{0}}$	ΔS^0	$\Delta G^0 (kJ mol^{-1})$		1)
parameter	(kJ mol ⁻¹)	(J mol ⁻¹ K ⁻¹)	298(K)	303(K)	313(K)
MB	11.184	44.623	-2.1136	-2.5598	-3.0061