Electronic Supporting Information (ESI)

Strategies for oxidative synthesis of Ntriflyl sulfoximines

Žan Testen and Marjan Jereb*

University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia

Table of contents

Contents

General Information	3
Preparation of N-trifluoromethylthio sulfoximines	4
Characterization of unknown <i>N</i> -trifuoromethylthio sulfoximines 2	4
Preparation of <i>N</i> -triflyl sulfoximines 3	4
General procedure 1 (GP1)	4
General procedure 2 (GP2)	4
General procedure 3 (GP3)	5
Characterization of synthesized <i>N</i> -triflyl sulfoximines 3	5
References:	.4
Post-modification reactions1	.5
Post-modification reaction procedures1	.5
Characterization of post-modification products1	.6
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra1	.9

General Information

Chemicals and solvents were obtained from commercial sources. TLC was performed on Merck-60-F254 plates using mixtures of petroleum ether (PE), hexane, dichloromethane (DCM), diethyl ether, ethyl acetate, and methanol. For flash chromatography, silica gel (63–200µm, 70–230 mesh ASTM; Fluka) was used. Products were characterized by ¹H, ¹³C, and ¹⁹F NMR spectroscopy, IR spectroscopy, HRMS, and melting points of solids. All NMR spectra were recorded in either CDCl₃ using Me₄Si as an internal standard or in DMSO-*d*₆. Chemical shifts are reported in δ (ppm) values relative to δ = 0 ppm (Me₄Si) or 2.50 ppm (DMSO) for ¹H NMR, and to the central line of CDCl₃(δ = 77.16 ppm) for ¹³C NMR. ¹⁹F spectra were referenced to CFCl₃ as an external standard at δ = 0.00 ppm. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded with a Bruker Avance III 500 instrument at 500, 126, and 471 MHz, respectively. IR spectra were recorded with a Bruker FTIR Alpha Platinum spectrophotometer. LC-HRMS analyses were performed on a Shimadzu LCMS-IT-TOF system (Kyoto, Japan), composed of a liquid chromatograph Nexera XR hyphenated to a mass spectrometer with an ion trap and time-of-flight tube equipped with an electrospray ionization (ESI) source. The melting points were determined with an OptiMelt MPA100.

Preparation of N-trifluoromethylthio sulfoximines

Prepared according to a known procedure.¹ A dried flask was charged with sulfoximine **1** and equipped with a septum and argon balloon. Dry MeCN (0.1 M) and *N*-bromosuccinimide (NBS) (1.0 equiv.) were added and the reaction mixture was stirred for 30 min. In another dried flask a solution of AgSCF₃ (0.1 M) was prepared and slowly transferred to the *in-situ* formed *N*-bromo sulfoximine using a syringe. After complete consumption of the reactant (checked with TLC, DCM) the solvent was removed using reduced pressure and the residue was purified using flash chromatography (DCM).

Characterization of unknown N-trifuoromethylthio sulfoximines 2

N-trifluoromethylthio-*S*-(2,4-dimethylphenyl)-*S*-(2-nitrophenyl) sulfoximine (**2ab**). Orange solid (84%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.27 − 8.19 (m, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.83 − 7.75 (m, 3H), 7.22 − 7.16 (m, 1H), 7.12 (s, 1H), 2.43 (s, 3H), 2.39 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ −50.75. ¹³C NMR (126 MHz, Chloroform-*d*) δ 149.30, 145.57, 138.25, 134.99, 134.01, 133.20, 132.46, 132.14, 132.01, 130.63, 130.3 (C-F, ¹*J*_{C-F} = 312.6 Hz), 127.27, 125.49, 21.51, 20.35. IR (neat): v 3094, 2959, 2927, 2860, 1601, 1541, 1440, 1362, 1283, 1228, 1105, 1053, 963, 881, 850, 818, 780, 731, 661, 639, 622 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₄F₃N₂O₃S₂ 391.0392; Found 391.0389. Mp = 56.7 − 58.6 °C.

Preparation of N-triflyl sulfoximines 3

General procedure 1 (GP1)

A flask was charged with *N*-trifluoromethylthio sulfoximine **2a–2j** (0.3 mmol), water (1 mL), NaOCl·5H₂O (2.5 equiv.) and the reaction mixture was stirred at r.t. for 16 h. The reaction mixture was then extracted twice with EtOAc and the organic phase was dried under anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure yielded the product **3a–3j**.

General procedure 2 (GP2)

A flask was charged with *N*-trifluoromethylthio sulfoximine 2k-2u (0.3 mmol), water (0.5 mL), MeCN (0.5 mL), NaOCI·5H₂O (2.5 equiv.) and the reaction mixture was stirred at r.t. for 16 h. The reaction mixture was then extracted twice with EtOAc and the organic phase was dried under anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure yielded the product 3k-3u.

General procedure 3 (GP3)

A flask was charged with *N*-trifluoromethylthio sulfoximine **2v–2ag** (0.3 mmol), DCM (1 mL), *m*-CPBA (2.5 equiv.) and the reaction mixture was stirred at r.t. for 16 h. Saturated NaHCO₃ solution was added to the reaction mixture and stirred until the organic phase became transparent. The product was extracted twice with DCM and the organic phase was dried under anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure yielded the product **3v–3ag**.

Characterization of synthesized N-triflyl sulfoximines 3

N-(triflyl)-*S*-phenyl-*S*-methyl sulfoximine (**3a**).² **2a** (0.3 mmol; 77 mg), 1 mL H₂O, 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP1: White solid (60 mg, 73%). Flash chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.13 – 7.98 (m, 3H), 7.80 (td, *J* = 7.4, 1.4 Hz, 2H), 7.73 – 7.60 (m, 3H), 3.52 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.24. ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.26, 135.53, 130.30, 127.43, 119.33, (C-F, ¹*J*_{C-F} = 321.0 Hz), 46.86. **IR (neat)**: v 3020, 2925, 1582, 1452, 1409, 1354, 1341, 1319, 1254, 1196, 1175, 1134, 1093, 1049, 989, 974, 851, 795, 739, 686, 679, 619 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₈H₉F₃NO₃S₂ 287.997; Found 287.9965. Mp = 77.5 – 80.1 °C.

Meo N-(triflyl)-S-(4-methoxyphenyl)-S-methyl sulfoximine (**3b**). **2b** (0.3 mmol; 86 mg), 1 mL H₂O, 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP1: White semi solid (90%). Flash chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 2H), 7.15 – 7.09 (m, 2H), 3.93 (s, 3H), 3.49 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.28. ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.23, 129.85, 127.94, 119.35 (C-F, ¹J_{C-F} = 320.9 Hz), 115.52, 56.15, 47.44. **IR** (neat): v 3034, 2935, 1591, 1496, 1443, 1347, 1324, 1259, 1219, 1174, 1135, 1092, 1038, 1021, 982, 961, 834, 804, 767, 739, 622 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₉H₁₁F₃NO₄S₂ 318.0076; Found 318.0072.

^{OMe} *N*-(triflyl)-*S*-(2-methoxyphenyl)-*S*-methyl sulfoximine (**3c**). **2c** (0.3 mmol; 86 mg), 1 mL H₂O, 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP1: White solid (68 mg, 81%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.74 (ddd, *J* = 8.4, 7.4, 1.7 Hz, 1H), 7.21 (ddd, *J* =

8.3, 7.5, 1.0 Hz, 1H), 7.15 (dd, J = 8.5, 1.0 Hz, 1H), 4.04 (s, 3H), 3.63 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.44. ¹³C NMR (126 MHz, Chloroform-*d*) δ 157.02, 137.70, 130.26, 123.80, 121.44, 119.40 (C-F, ¹*J*_{C-F} = 321.3 Hz), 113.11, 56.78, 44.44. **IR (neat)**: v 3111, 3041, 3019, 2935, 1594, 1576, 1482, 1439, 1338, 1286, 1252, 1185, 1130, 1050, 1009, 968, 803, 769, 714, 669, 616 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₉H₁₁F₃NO₄S₂ 318.0076; Found 318.0053. Mp = 97.6 – 97.8 °C.

0 N-S-CF S 0

^bMe *N*-(triflyl)-*S*-(3-methoxyphenyl)-*S*-methyl sulfoximine (**3d**). **2d** (0.3 mmol; 86 mg), 1 mL H₂O, 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP1: Off white solid (85 mg, 89%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 – 7.55 (m, 1H), 7.53 – 7.46 (m, 1H), 7.31 – 7.27 (m, 1H), 3.91 (d, J = 2.2 Hz, 3H), 3.51 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.19 – (–79.30) (m). ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.63, 138.31, 131.28, 121.73, 119.30, 119.23 ((C-F, ¹J_{C-F} = 321.2 Hz), 111.87, 55.98, 46.80. **IR (neat)**: v 3095, 3076, 3026, 3017, 2988, 2949, 2929, 2844, 1595, 1483, 1432, 1351, 1290, 1248, 1185, 1134, 1076, 1032, 985, 879, 854, 782, 764, 737, 679, 624 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₉H₁₁F₃NO₄S₂ 318.0076; Found 318.0077. Mp = 96.1 – 96.9 °C.

 O_2N N-(triflyl)-S-(4-nitrophenyl)-S-methyl sulfoximine (**3e**). **2e** (0.3 mmol; 90 mg), 1 mL H₂O, 3.5 equiv. of NaOCI·5H₂O (1.05 mmol, 173 mg), GP1: Off white solid (88 mg, 88%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.53 (d, J = 9.0 Hz, 2H), 8.28 (d, J = 9.0 Hz, 2H), 3.59 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -79.06. ¹³C NMR (126 MHz, Chloroform-*d*) δ 151.85, 143.00, 129.28, 125.42, 119.17 (C-F, ¹*J*_{C-F} = 321.0 Hz), 46.54. **IR (neat)**: v 3105, 3034, 3018, 2928, 1605, 1524, 1476, 1400, 1353, 1323, 1256, 1188, 1131, 1089, 1051, 993, 853, 797, 773, 740, 713, 624 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₈H₈F₃N₂O₅S₂ 332.9821; Found 332.982. Mp = 97.2 – 98.6 °C.

F N-(triflyl)-S-(2,4-difluorophenyl)-S-methyl sulfoximine (**3f**). **2f** (0.3 mmol; 87 mg), 1 mL H₂O, 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP1: White solid (86 mg, 89%). Column chromatography (EtoAc:hexane) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.12 – 8.02 (m, 1H), 7.20 (dddd, J = 8.8, 7.4, 2.4, 1.1 Hz, 1H), 7.13 (ddd, J = 10.4, 8.1, 2.4 Hz, 1H), 3.64 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.07 – (–79.49) (m), –94.66 – (–94.90), (–101.91 – (–102.23) (m). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.91 (d, C-F, ¹*J*_{C-F} = 11.9 Hz), 166.82 (d, C-F, ¹*J*_{C-F} = 11.8 Hz), 160.67 (d, C-F, ¹*J*_{C-F} = 13.2 Hz), 158.60 (d, C-F, ¹*J*_{C-F} = 13.3 Hz), 132.41 (d, C-F, ¹*J*_{C-F} = 11.1 Hz), 121.23 – 120.85 (m), 119.09 (C-F, ¹*J*_{C-F} = 321.2 Hz), 115.26, 113.38 (dd, C-F, ¹*J*_{C-F} = 22.3, 3.6 Hz), 106.63 (dd, C-F, ¹*J*_{C-F} = 26.5, 24.3 Hz), 45.56 (d, C-F, ¹*J*_{C-F} = 3.7 Hz). **IR (neat)**: v 3111, 3019, 1601, 1474, 1434, 1340, 1282, 1256, 1189, 1132, 1079, 991, 976, 854, 826, 800, 770, 743, 618 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₈H₇F₅NO₃S₂ 323.9782; Found 323.9781. Mp = 53.2 – 56.7 °C.

CF₃ *N*-(triflyl)-*S*-(3-trifluoromethylphenyl)-*S*-methyl sulfoximine (**3g**). **2g** (0.3 mmol; 97 mg), 1 mL H₂O, 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP1: White solid (93 mg, 87%). ¹H **NMR** (500 MHz, Chloroform-*d*) δ 8.32 – 8.24 (m, 2H), 8.09 – 8.02 (m, 1H), 7.92 – 7.85 (m, 1H), 3.58 (s, 3H). ¹⁹F **NMR** (471 MHz, Chloroform-*d*) δ –63.37 – (-63.46 (m)), –79.06 – (-79.24 (m)). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 138.80 – 138.58 (m), 132.29, 131.33, 130.90, 124.73, 122.78 (C-F, ¹*J*_{C-F} = 273.9 Hz), 119.23 (C-F, ¹*J*_{C-F} = 320.9 Hz), 46.81. **IR (neat)**: v 3078, 3032, 2936, 1609, 1437, 1350, 1326, 1285, 1262, 1198, 1173, 1031, 1106, 1093, 1045, 990, 977, 932, 915, 826, 808, 791, 764, 742, 693, 649, 631, 610 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₉H₈F₆NO₃S₂ 355.9855; Found 355.985. Mp = 81.7 – 83.9 °C.

N-(triflyl)-*S*-(2-pyridyl)-*S*-methyl sulfoximine (**3h**). **2h** (0.3 mmol; 77 mg), 1 mL H₂O, 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP1: Off white solid (83 mg, 96%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.80 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 8.25 (dt, *J* = 8.0, 1.0 Hz, 1H), 8.09 (td, *J* = 7.8, 1.7 Hz, 1H), 7.70 (ddd, *J* = 7.8, 4.7, 1.1 Hz, 1H), 3.66 (s, 3H). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ –79.24. ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 155.21, 150.68, 139.08, 128.93, 122.97, 119.26 (C-F, ¹*J*_{C-F} = 321.2 Hz), 41.58. **IR (neat)**: v 3022, 2936, 1580, 1454, 1425, 1346, 1322, 1251, 1193, 1155, 1133, 1084, 1047, 987, 801, 765, 749, 698, 611 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₇H₈F₃N₂O₃S₂ 288.9923; Found 288.9924. Mp = 70.4 – 71.5 °C.

0 N - S - CF₃ N-(triflyl)-*S*, *S*-dimethyl sulfoximine (**3i**).³ **2i** (0.3 mmol; 58 mg), 1 mL H₂O, 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP1: Off white solid (52 mg, 77%). ¹H NMR (500 MHz, Chloroform-*d*) δ 3.46 (s, 6H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -79.17. ¹³C NMR (126 MHz, Chloroform-*d*) δ 119.31 (C-F, ¹*J*_{C-F} = 320.8 Hz), 44.50. IR (neat): v 3034, 2936, 1421, 1392, 1337, 1316, 1250, 1173, 1134, 1057, 1027, 947, 784, 751, 676, 624 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₃H₇F₃NO₃S₂ 225.9814; Found 225.9812. Mp = 56.0 – 57.5 °C.

N-(triflyl)-*S*-phenyl-*S*-cyclopropyl sulfoximine (**3j**). **2j** (0.3 mmol; 84 mg), 1 mL H₂O, 3.5 equiv. of NaOCI·5H₂O (1.05 mmol, 173 mg), GP1: White solid (78 mg, 83%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (dd, *J* = 8.3, 1.5 Hz, 2H), 7.77 (t, *J* = 7.4 Hz, 1H), 7.67 (t, *J* = 7.8 Hz, 2H), 2.87 –

2.78 (m, 1H), 1.80 – 1.71 (m, 1H), 1.46 – 1.31 (m, 2H), 1.22 – 1.12 (m, 1H). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ –79.27. ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 137.89, 135.12, 130.13, 127.58, 119.35 (C-F, ¹J_{C-F} = 321.0 Hz), 35.71, 7.93, 7.10. **IR (neat)**: v 3074, 1446, 1341, 1253, 1189, 1130, 1037, 902, 880, 837, 785, 757, 728, 687, 622 (cm⁻¹). **HRMS (ESI-TOF)** *m*/*z*: [M + H]⁺ Calcd for C₁₀H₁₁F₃NO₃S₂ 314.0127; Found 314.0123. Mp = 87.8 – 89.3 °C.

N-(triflyl)-*S*-phenyl-*S*-(*sec*-butyl) sulfoximine (**3k**). **2k** (0.3 mmol; 94 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP2: White solid (84 mg, 85%). ¹H **NMR** (500 MHz, Chloroform-*d*) δ 8.02 – 7.94 (m, 2H), 7.82 – 7.75 (m, 1H), 7.71 – 7.65 (m, 2H), 3.47 – 3.32 (m, 1H), 2.27 – 1.94 (m, 1H), 1.65 – 1.46 (m, 1H), 1.45 – 1.28 (m, 3H), 1.07 – 0.97 (m, 3H). ¹⁹F **NMR** (471 MHz, Chloroform-*d*) δ –79.30 – (–79.34) (m). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 135.24, 134.27, 129.92, 129.02, 128.98, 119.18 (C-F, ¹*J*_{C-F} = 321.1 Hz), 65.20, 64.97, 22.09, 21.87, 12.03, 11.90, 10.88. **IR (neat)**: v 2982, 2944, 2884, 1449, 1352, 1250, 1186, 1137, 1091, 1045, 997, 789, 753, 721, 686, 621 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₁H₁₅F₃NO₃S₂ 330.044; Found 330.0443. Mp = 41.5 – 41.9 °C.

N-(triflyl)-*S*-(*p*-tolyl)-*S*-ethyl sulfoximine (**3I**). **2I** (0.3 mmol; 90 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP2: White solid (77 mg, 82%). ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 3.62 (dq, J = 14.7, 7.4 Hz, 1H), 3.51 (dq, J = 14.6, 7.3 Hz, 1H), 2.50 (s, 3H), 1.34 (t, J = 7.3 Hz, 3H). ¹⁹F **NMR** (471 MHz, Chloroform-*d*) δ –79.34. ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 147.05, 131.87, 130.83, 128.31, 119.30 (C-F, ¹*J*_{C-F} = 321.1 Hz), 53.74, 21.86, 7.18. **IR (neat)**: v 2989, 2955, 1591, 1346, 1259, 1192, 1134, 1093, 1050, 1012, 819, 777, 728, 622 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₀H₁₃F₃NO₃S₂ 316.0283; Found 316.0279. Mp = 79.5 – 80.3 °C.

N-(triflyl)-*S*-(4-chlorophenyl)-*S*-cyclopropylmethyl sulfoximine (**3m**). **2m** (0.3 mmol; 99 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP2: White solid (99 mg, 91%). Flash chromatography for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 2H), 7.70 – 7.62 (m, 2H), 3.61 – 3.47 (m, 2H), 1.07 – 0.94 (m, 1H), 0.74 – 0.59 (m, 2H), 0.25 (ddq, *J* = 58.8, 10.4, 5.1 Hz, 2H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.29. ¹³C NMR (126 MHz, Chloroform-*d*) δ 142.51, 134.02, 130.30, 129.91, 119.13 (C-F, ¹*J*_{C-F} = 321.0 Hz), 64.34, 4.74, 4.55, 4.29. **IR (neat)**: v 3096, 3021, 2980, 2927, 1574, 1472, 1400, 1357, 1249, 1217, 1188, 1135, 1057, 1008, 976, 919, 828, 766, 620 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₁H₁₂ClF₃NO₃S₂ 361.9894; Found 361.9893. Mp = 86.5 – 87.4 °C.

0,0 0,N-S-CF SC12H25

N-(triflyl)-*S*-phenyl-*S*-dodecyl sulfoximine (**3n**). **2n** (0.3 mmol; 123 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP2: White solid (76 mg, 57%). Column chromatography for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.04 – 7.98 (m, 2H), 7.82 – 7.76 (m, 1H), 7.72 – 7.66 (m, 2H), 3.59 (ddd, *J* = 14.1, 11.2, 5.1 Hz, 1H), 3.45 (ddd, *J* = 14.1, 11.1, 5.0 Hz, 1H), 1.84 – 1.62 (m, 2H), 1.42 – 1.14 (m, 18H), 0.87 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.30. ¹³C NMR (126 MHz, Chloroform-*d*) δ 135.90, 135.39, 130.19, 128.19, 119.30 (C-F, ¹*J*_{C-F} = 321.1 Hz), 58.76, 32.02, 29.68, 29.64, 29.50, 29.43, 29.25, 28.96, 27.87, 22.81, 22.33, 14.25. IR (neat): v 2917, 2850, 1471, 1451, 1347, 1241, 76, 1186, 1136, 1091, 1044, 806, 772, 742, 681, 631 (cm⁻¹). HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₉H₃₁F₃NO₃S₂ 442.1692; Found 442.1692. Mp = 53.0 – 55.8 °C.

0_N-S-CF3

N-(triflyl)-*S*-naphthalenyl-*S*-methyl sulfoximine (**3o**). **2o** (0.3 mmol; 92 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP2: White solid (74 mg, 73%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.64 (d, *J* = 2.0 Hz, 1H), 8.12 (d, *J* = 8.8 Hz, 1H), 8.06 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.99 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.94 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.77 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 7.71 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 3.59 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -79.16. ¹³C NMR (126 MHz, Chloroform-*d*) δ 135.97, 133.82, 132.20, 130.93, 130.67, 130.04, 129.85, 128.73, 128.33, 121.10, 119.40 (C-F, ¹*J*_{C-F} = 321.1 Hz), 47.01. IR (neat): v 3056, 3020, 2930, 1503, 1349, 1317, 1271, 1255, 1191, 1125, 1080, 1054, 981, 942, 926, 860, 799, 761, 746, 704, 641, 628, 616 (cm⁻¹). HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₂H₁₁F₃NO₃S₂ 338.0127; Found 338.0123. Mp = 104.1 – 104.7 °C.

(1:1), 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP2: White solid (87 mg, 83%). Flash chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.06 – 8.00 (m, 4H), 7.72 – 7.67 (m, 2H), 7.64 – 7.58 (m, 4H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.40. ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.93, 134.89, 130.12, 127.67, 119.27 (C-F, ¹*J*_{C-F} = 321.0 Hz). IR (neat): v 3069, 1579, 1474, 1450, 1358, 1250, 1216, 1189, 1134, 1086, 1049, 995, 792, 760, 727, 677, 628 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₁F₃NO₃S₂ 350.0127; Found 350.0128. Mp = 67.7 – 70.0 °C.

N-(triflyl)-*S*-phenyl-*S*-(2-pyridyl) sulfoximine (**3q**). **2q** (0.3 mmol; 95 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP2: White solid (85 mg, 81%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.72 – 8.67 (m, 1H), 8.36 – 8.30 (m, 1H), 8.16 (ddd, *J* = 8.5, 2.5, 1.2 Hz, 2H), 8.02 (td, J = 7.8, 1.7 Hz, 1H), 7.77 – 7.70 (m, 1H), 7.63 (td, J = 7.9, 7.4, 1.4 Hz, 2H), 7.56 (ddd, J = 7.7, 4.6, 1.1 Hz, 1H).¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ –79.31. ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 156.81, 151.02, 138.88, 135.37, 135.28, 129.81, 129.21, 128.14, 123.22, 119.28 (C-F, ¹ J_{C-F} = 321.1 Hz). **IR (neat)**: v 3097, 3061, 3014, 1582, 1557, 1453, 1427, 1348, 1256, 1193, 1118, 1087, 1054, 992, 798, 740, 729, 701, 681, 636 (cm⁻¹). **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₁₂H₁₀F₃N₂O₃S₂ 351.0079; Found 351.0075. Mp = 90.6 – 91.1 °C.

N-(triflyl)-*S*-(phenyl)-*S*-(2-thienyl) sulfoximine (**3r**). **2r** (0.3 mmol; 107 mg), 1 mL H₂O/MeCN (1:1), 3.5 equiv. of NaOCI·5H₂O (1.05 mmol, 173 mg), GP2: White solid (88 mg, 83%). ¹H **NMR** (500 MHz, Chloroform-*d*) δ 8.11 – 8.06 (m, 2H), 7.83 (ddd, *J* = 5.4, 4.4, 1.4 Hz, 2H), 7.73 – 7.68 (m, 1H), 7.64 – 7.59 (m, 2H), 7.18 (dd, *J* = 5.0, 3.9 Hz, 1H). ¹⁹F **NMR** (471 MHz, Chloroform-*d*) δ –79.37. ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 139.70, 138.96, 136.80, 135.32, 134.84, 130.00, 128.81, 127.20, 119.09 (C-F, ¹*J*_{C-F} = 321.1 Hz). **IR (neat)**: v 3107, 1449, 1397, 1358, 1252, 1189, 1136, 1089, 1047, 855, 786, 724, 679, 627 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₁H₉F₃NO₃S₃ 355.9691; Found 355.9693. Mp = 48.2 – 51.3 °C.

N-(triflyl)-dibenzo[b,d]thienyl sulfoximine (**3**s). **2**s (0.3 mmol; 95 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP2: White solid (93 mg, 89%). ¹H **NMR** (500 MHz, Chloroform-*d*) δ 8.15 (ddt, *J* = 8.3, 3.2, 1.6 Hz, 2H), 7.89 – 7.85 (m, 2H), 7.78 (tdt, *J* = 7.7, 2.6, 1.2 Hz, 2H), 7.63 (tdt, *J* = 7.7, 3.0, 1.4 Hz, 2H). ¹⁹F **NMR** (471 MHz, Chloroform-*d*) δ –78.80. ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 135.98, 135.86, 132.73, 131.38, 125.28, 122.25, 119.45 (C-F, ¹*J*_{C-F} = 321.7 Hz). **IR (neat)**: v 3096, 2921, 1590, 1578, 1482, 1451, 1351, 1287, 1251, 1184, 1124, 1068, 1034, 954, 795, 760, 743, 705, 686, 625 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₃H₉F₃NO₃S₂ 347.997; Found 347.9974. Mp = 137.6 – 140.5 °C.

 $C_{12}H_{25}$ N-(triflyl)-S-dodecyl-S-methyl sulfoximine (**3t**). **2t** (0.3 mmol; 104 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP2: White solid (86 mg, 76%). Column chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 3.50 – 3.32 (m, 5H), 2.00 – 1.86 (m, 2H), 1.53 – 1.45 (m, 2H), 1.40 – 1.20 (m, 13H), 0.88 (t, *J* = 6.9 Hz, 3H).¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.15. ¹³C NMR (126 MHz, Chloroform-*d*) δ 119.35 (C-F, ¹*J*_{C-F} = 321.0 Hz) 56.96, 41.78, 32.03, 29.71, 29.67, 29.55, 29.45, 29.30, 29.03, 28.07, 22.82, 22.40, 14.26. IR (neat): v 3022, 2953, 2873, 2852, 2921, 1468, 1344, 1240, 1185, 1140, 1067, 973, 806, 769, 727, 691, 618 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₉F₃NO₃S₂ 380.1535; Found 380.1536. Mp = 68.6 – 69.7 °C.

0,0 0,N-S-CF₃

C₈H₁₇ C₈H₁₇ N-(triflyl)-*S*,*S*-dioctyl sulfoximine (**3u**). **2u** (0.3 mmol; 125 mg), 1 mL H₂O/MeCN (1:1), 2.5 equiv. of NaOCl·5H₂O (0.75 mmol, 123 mg), GP2: Colorless oil (115 mg, 91%). Flash chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 3.55 – 3.26 (m, 4H), 1.91 (dtd, *J* = 13.6, 8.4, 7.9, 5.5 Hz, 4H), 1.54 – 1.43 (m, 4H), 1.40 – 1.23 (m, 16H), 0.91 – 0.85 (m, 6H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.11. ¹³C NMR (126 MHz, Chloroform-*d*) δ 119.22 (C-F, ¹*J*_{C-F} = 321.1 Hz), 54.15, 31.61, 28.87, 28.85, 28.05, 22.56, 22.17, 14.04. IR (neat): v 2956, 2927, 2858, 1405, 1349, 1188, 1138, 1058, 790, 723, 616 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₃₅F₃NO₃S₂ 422.2005; Found 422.201.

Br N-(triflyl)-*S*-(2-bromophenyl)-*S*-methyl sulfoximine (**3v**). **2v** (0.3 mmol; 100 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: White solid (106 mg, 96%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.31 – 8.25 (m, 1H), 7.88 (dd, J = 7.5, 1.6 Hz, 1H), 7.67 – 7.59 (m, 2H), 3.76 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.15. ¹³C NMR (126 MHz, Chloroform-*d*) δ 136.57, 136.43, 136.28, 131.63, 120.47, 119.23 (C-F, ¹J_{C-F} = 320.9 Hz), 44.08. IR (neat): v 3108, 3028, 3012, 2878, 1570, 1446, 1348, 1261, 1183, 1126, 1051, 979, 791, 758, 746, 2, 704, 641, 614 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺Calcd for C₈H₈BrF₃NO₃S₂ 365.9076; Found 365.9073. Mp = 107.3 – 107.8 °C.

^{CI} *N*-(triflyl)-*S*-(4-chlorophenyl)-*S*-methyl sulfoximine (**3w**). **2w** (0.3 mmol; 87 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: White semi solid (81 mg, 84%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 (d, J = 8.8 Hz, 2H), 7.67 (d, J = 8.7 Hz, 2H), 3.53 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.19. ¹³C NMR (126 MHz, Chloroform-*d*) δ 142.74, 135.65, 130.69, 128.99, 119.25 (C-F, ¹*J*_{C-F} = 320.9 Hz), 46.97. **IR (neat)**: v 3034, 2937, 1579, 1476, 1397, 1351, 1253, 1209, 1187, 1133, 1085, 1055, 1010, 970, 836, 826, 793, 775, 754, 725, 623 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₈H₈ClF₃NO₃S₂ 321.9581; Found 321.9578. Mp = 91.5 – 93.0 °C.

Br N-(triflyl)-S-(4-bromophenyl)-S-methyl sulfoximine (**3x**).³ **2x** (0.3 mmol; 100 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: White solid (91 mg, 83%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 – 7.89 (m, 2H), 7.85 – 7.81 (m, 2H), 3.52 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.18. ¹³C NMR (126 MHz, Chloroform-*d*) δ 136.25, 133.69, 131.38, 128.96, 119.24 (C-F, ¹J_{C-F} = 321.0 Hz), 46.92. IR (neat): v 3025, 2931, 1571, 1392, 1351, 1253, 1208, 1188, 1134, 1091, 1055, 1007, 969, 823, 792, 772, 750, 712, 624 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₈H₈BrF₃NO₃S₂ 365.9076; Found 365.9079. Mp = 113.1 – 114.7°C.

NC N-(triflyl)-S-(4-cyanophenyl)-S-methyl sulfoximine (**3y**).³ **2y** (0.3 mmol; 84 mg), 1 mL DCM, 3.5 equiv. of *m*-CPBA (1.05 mmol, 182 mg), GP3: White solid (58 mg, 62%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.29 (d, J = 1.7 Hz, 4H), 4.00 (s, 3H).¹⁹F NMR (471 MHz, DMSO- d_6) δ -78.76. ¹³C NMR (126 MHz, DMSO- d_6) δ 141.47, 133.95, 128.37, 118. 28 (C-F, ¹J_{C-F} = 321.5 Hz), 117.56, 117.30, 44.14. IR (neat): v 3095, 3046, 3026, 2937, 2240, 1523, 1393, 1341, 1253, 1188, 1130, 1087, 1055, 990, 840, 801, 733, 622 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₉H₈F₃N₂O₂S₂ 312.9923; Found 312.9925. Mp = 180.0 – 180.5 °C.

MeO N-(triflyl)-S-(5-acetyl-4-methoxy-2-methylphenyl)-S-methyl sulfoximine (**3z**). **2z** (0.3 mmol; 102 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: White solid (91 mg, 81%). Column chromatography for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.42 (s, 1H), 6.99 (s, 1H), 4.04 (s, 3H), 3.55 (s, 3H), 2.79 (s, 3H), 2.62 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -79.24. ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.65, 163.03, 144.30, 132.74, 127.30, 126.95, 119.26 (C-F, ¹J_{C-F} = 321.2 Hz), 116.80, 56.59, 45.87, 31.79, 21.35. **IR (neat)**: v 3024, 3007, 2923, 2852, 1678, 1594, 1547, 1486, 1473, 1416, 1388, 1345, 1331, 1262, 1247, 1229, 1187, 1137, 1086, 1042, 974, 924, 862, 794, 769, 735, 709, 639, 611 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₂H₁₅F₃NO₅S₂ 374.0338; Found 374.0334. Mp = 163.9 – 167.7 °C (decomposition).

N-(triflyl)-*S*-phenyl-*S*-(3-furyl) sulfoximine (**3aa**). **2aa** (0.3 mmol; 92 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: Colourless oil (88 mg, 95%). Flash chromatography (DCM) for purification. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.18 (dd, *J* = 1.6, 0.9 Hz, 1H), 8.09 – 8.02 (m, 2H), 7.77 – 7.71 (m, 1H), 7.68 – 7.61 (m, 2H), 7.56 (t, *J* = 1.8 Hz, 1H), 6.68 (dd, *J* = 2.1, 0.9 Hz, 1H). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ –79.38. ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 147.80, 146.25, 138.74, 135.17, 130.16, 127.45, 126.92, 119.24 (C-F, ¹*J*_{C-F} = 321.0 Hz), 108.46. **IR (neat)**: v 3150, 1543, 1498, 1449, 1355, 1263, 1189, 1134, 1050, 945, 870, 788, 726, 682, 643 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₁H₉F₃NO₄S₂ 339.992; Found 339.9922.

N-(triflyl)-*S*-(2,4-dimethylphenyl)-*S*-(2-nitrophenyl) sulfoximine (**3ab**). **2ab** (0.3 mmol; 117 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: Brown solid (108 mg,

85%). Column chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.59 – 8.54 (m, 1H), 8.03 – 7.89 (m, 4H), 7.29 – 7.26 (m, 1H), 7.16 – 7.13 (m, 1H), 2.43 (s, 3H), 2.40 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.21. ¹³C NMR (126 MHz, Chloroform-*d*) δ 147.86, 146.96, 137.89, 136.05, 134.32, 133.14, 132.37, 132.28, 132.23, 130.40, 127.65, 126.30, 119.08 (C-F, ¹*J*_{C-F} = 321.1 Hz), 21.54, 20.03. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₄F₃N₂O₅S₂ 423.0291; Found 423.0286. Mp = 106.9 – 107.5°C.

N-(triflyl)-*S*-benzyl-*S*-methyl sulfoximine (**3a**c). **2ac** (0.3 mmol; 81 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: White solid (57 mg, 63%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.54 – 7.42 (m, 5H), 4.84 – 4.66 (m, 2H), 3.17 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.09. ¹³C NMR (126 MHz, Chloroform-*d*) δ 131.25, 130.62, 129.67, 125.19, 119.22 (C-F, ¹*J*_{C-F} = 321.1 Hz), 63.11, 39.85. **IR (neat)**: v 3033, 3004, 2979, 2924, 1412, 1347, 1248, 1187, 1135, 1072, 984, 929, 885, 774, 729, 698, 664, 616 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₉H₁₁F₃NO₃S₂ 302.0132; Found 302.0129. Mp = 99.0 – 99.8 °C.

N-(triflyl)-*S*-(4-chlorophenyl)-*S*-benzyl sulfoximine (**3ad**). **2ad** (0.3 mmol; 110 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: White solid (106 mg, 89%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.61 – 7.57 (m, 2H), 7.52 – 7.47 (m, 2H), 7.42 – 7.37 (m, 1H), 7.30 (dd, *J* = 8.5, 7.0 Hz, 2H), 7.07 – 7.03 (m, 2H), 4.81 (dd, *J* = 87.2, 14.0 Hz, 2H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -79.16. ¹³C NMR (126 MHz, Chloroform-*d*) δ 142.68, 132.47, 131.57, 130.41, 130.27, 130.06, 129.22, 125.05, 119.26 (C-F, ¹*J*_{C-F} = 321.2 Hz), 65.61. **IR (neat)**: v 3109, 3065, 2983, 2931, 1568, 1495, 1471, 1396, 1347, 1248, 1194, 1126, 1088, 1056, 1007, 822, 761, 739, 693, 627. (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₄H₁₂ClF₃NO₃S₂ 397.9894; Found 397.9885. Mp = 133.7 – 134.9 °C.

N-(triflyl)-*S*-(benzo[*d*]thiazol-2-yl)-*S*-methyl sulfoximine (**3ae**). **2ae** (0.22 mmol; 70 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.55 mmol, 95 mg), GP3: Off white solid (67 mg, 87%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.28 – 8.23 (m, 1H), 8.08 – 8.03 (m, 1H), 7.74 – 7.65 (m, 2H), 3.86 (s, 3H). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ –78.93. ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 162.83, 152.44, 137.75, 129.24, 128.49, 125.98, 122.58, 119.21 (C-F, ¹*J*_{C-F} = 321.1 Hz), 44.38. **IR (neat)**: v 3045, 3007, 2914, 1552, 1463, 1415, 1358, 1320, 1252, 1211, 1186, 1138, 1090, 1065, 1025, 973, 857, 793, 764, 724, 696, 621 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₉H₈F₃N₂O₃S₃ 344.9644; Found 344.9645. Mp = 106.1 – 107.6 °C.

N-(triflyl)-*S*-(benzo[*b*]thienyl) sulfoximine (**3af**). **2af** (0.3 mmol; 80 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: Colorless oil (72 mg, 85%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 7.6 Hz, 1H), 7.70 (dtd, *J* = 32.6, 7.6, 1.1 Hz, 2H), 7.52 (ddd, *J* = 20.9, 7.0, 1.0 Hz, 2H), 7.24 (d, *J* = 6.7 Hz, 1H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –78.78. ¹³C NMR (126 MHz, Chloroform-*d*) δ 135.76, 135.70, 135.05, 132.02, 131.94, 129.42, 126.44, 124.38, 119.37 (C-F, ¹*J*_{C-F} = 321.5 Hz). IR (neat): v 3118, 3095, 1548, 1464, 1354, 1296, 1251, 1186, 1129, 1082, 1031, 870, 795, 760, 684, 607 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₉H₇F₃NO₃S₂ 297.9801; Found 297.9805.

MeO N-(triflyl)-S-(4-methoxyphenyl)-S-trifluoromethyl sulfoximine (**3ag**). **2ag** (0.3 mmol; 102 mg), 1 mL DCM, 2.5 equiv. of *m*-CPBA (0.75 mmol, 130 mg), GP3: Colorless oil (89 mg, 80%). Column chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.09 – 8.04 (m, 2H), 7.23 – 7.18 (m, 2H), 3.99 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –76.81, –79.11. ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.67, 133.47, 120.02 (C-F, ¹J_{C-F} = 327.5 Hz), 119.05 (C-F, ¹J_{C-F} = 320.5 Hz), 118.48, 116.33, 56.49. **IR (neat)**: v 3108, 2952, 2906, 2804, 1588, 1496, 1464, 1443, 1374, 1277, 1198, 1165, 1128, 1089, 1045, 837, 809, 785, 752, 678, 658, 630 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₉H₈F₆NO₄S₂ 371.9793; Found 371.979.

N-(tosyl)-*S*-phenyl-*S*-methyl sulfoximine (**7**).⁴ **6** (0.3 mmol; 83 mg), 1 mL H₂O, 2.5 equiv. of NaOCI·5H₂O (0.75 mmol, 123 mg), GP1: White solid (86 mg, 92%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 – 7.97 (m, 2H), 7.88 – 7.82 (m, 2H), 7.73 – 7.67 (m, 1H), 7.63 – 7.57 (m, 2H), 7.28 – 7.23 (m, 2H), 3.43 (s, 3H), 2.40 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.02, 140.73, 138.47, 134.51, 129.83, 129.41, 127.61, 126.77, 46.77, 21.65. IR (neat): v 3020, 2921, 1597, 1479, 1448, 1403, 1313, 1226, 1145, 1087, 1060, 980, 809, 790, 742, 705, 683, 652 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₆NO₃S₂ 310.0566; Found 310.0563. Mp = 96.4 – 98.1 °C.

References:

1) C. Bohnen and C. Bolm, Org. Lett., 2015, 17, 3011–3013.

2) D. Craig, N. J. Geach, C. J. Pearson, A. M. Z. Slawin, A. J. P. White and D. J. Williams, Tetrahedron 1995, **51**, 6071-60983.

3) M. Ochiai, M. Naito, K. Miyamoto, S. Hayashi and W. Nakanishi, *Chem. Eur. J.*, 2010, **16**, 8713–8718.

4) G. Y. Cho and C. Bolm, Org. Lett., 2005, 7, 4983.

Post-modification reactions

Post-modification reaction procedures

A round bottom flask was charged with *N*-(trifluoromethylsulfaneylidene)-*S*-(4- bromophenyl)-*S*methyl sulfoximine (3x) (183 mg, 0.5 mmol), 4-methylphenyl boronic acid (1.33 equiv.) and K₂CO₃ (3 equiv.). Water (15 mL) was added along with palladium on carbon (tip of the spatula) and the reaction mixture was stirred under reflux for 2 h. After 2 h the reaction mixture was cooled to room temperature and extracted with EtOAc. The solvent was removed under reduced pressure and the residue was purified by column chromatography (DCM) yielding **3ah** (165 mg, 88%).

A dried flask was charged with *N*-(trifluoromethylsulfaneylidene)-*S*-(4-bromophenyl)- *S*-methyl sulfoximine (**3x**) (73 mg, 0.2 mmol) and Et₃N (2 mL). To this solution PdCl₂(PPh₃)₂ (4 mg, 3 mol%) and Cul (1 mg, 3 mol%) were added and the reaction mixture was stirred for 5 min under an inert atmosphere, followed by addition of phenylacetylene (26 μ L, 1.2 equiv.). The resulting mixture was then heated under an inert atmosphere at 80 °C for 18 h. The mixture was cooled to room temperature, and solvent removed under reduced pressure. The crude product was purified by column chromatography yielding **3ai** as an off white solid (64 mg, 83%).

To a flask charged with *N*-(triflyl)-*S*-(4-methoxyphenyl)-*S*-methyl sulfoximine (**3b**) (32 mg, 0.1 mmol) was added 1 mL of a mixture of aqueous HNO₃ (68%) and H₂SO₄ (98%) (2:1 (V/V)). The reaction mixture was heated to 60 °C and stirred for 16 h. The acid was neutralised by addition of saturated aqueous NaHCO₃ solution and extracted with DCM. The organic phase was dried and the solvent was removed under reduced pressure and the residue was purified using flash chromatography (EtOAc and hexane 1/1) yielding **3aj** as a colorless semi solid (28 mg, 78%).

To a flask charged with *N*-(triflyl)-*S*-(4-methoxyphenyl)-*S*-methyl sulfoximine (**3b**) (40 mg, 0.13 mmol) was added 1 mL of a mixture aqueous HNO₃ (68%) and H₂SO₄ (98%) (1:2 (V/V)). The reaction mixture was heated to 60 °C and stirred for 16 h. The acid was neutralised by addition of saturated aqueous

NaHCO₃ solution and extracted with EtOAc. The organic phase was dried and the solvent was removed under reduced pressure and the residue was purified using flash chromatography (DCM) yielding **3ak** as a yellow solid (33 mg, 65%).

A flask was charged with *N*-trifluoromethylthio-*S*-(4-bromophenyl)-*S*-methyl sulfoximine (2x) (100 mg, 0.3 mmol), water (0.5 mL), MeCN (0.5 mL), NaOCl·5H₂O (4 equiv.) and the reaction mixture was stirred at r.t. for 2 h. The reaction mixture was then extracted twice with EtOAc and the organic phase was dried under anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure yielded the product **5x** as a white solid (98 mg, 97%). Some minor impurities are present which could not be removed due to the decomposition of the product during chromatography separation.

Characterization of post-modification products

P^{-Tolyl} N-(triflyl)-S-(4'-methyl-[1,1'-biphenyl]-4-yl)-S-methyl sulfoximine (**3ah**). **2y** (0.5 mmol; 183 mg), 1.33 equiv. 4-methylphenyl boronic acid (0.665 mmol, 90 mg), 3 equiv. K₂CO₃ (1.5 mmol, 207 mg), catalytic amount of Pd/C: White solid (165 mg, 88%). Flash chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.11 – 8.04 (m, 2H), 7.88 – 7.82 (m, 2H), 7.57 – 7.50 (m, 2H), 7.35 – 7.29 (m, 2H), 3.55 (s, 3H), 2.43 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -79.20. ¹³C NMR (126 MHz, Chloroform-*d*) δ 148.63, 139.66, 135.54, 135.11, 130.16, 128.51, 128.02, 127.45, 119.36 (C-F, ¹*J*_{C-F} = 321.1 Hz), 47.16, 21.38. **IR (neat)**: v 3020, 2931, 1589, 1484, 1396, 1347, 1251, 1190, 1133, 1095, 1049, 969, 849, 810, 792, 771, 752, 724, 630 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₅H₁₄F₃NO₃S₂ 378.044; Found 378.0437. Mp = 153.0 – 153.4 °C.

N-(triflyl)- *S*-(4-(phenylethynyl)phenyl)-*S*-methyl sulfoximine (**3ai**). **2y** (0.2 mmol; 73 mg), 1.2 equiv. phenylacetylene (0.24 mmol, 24 mg), 3 mol% PdCl₂(PPh₃)₂ (0.006 mmol, 4 mg), 3 mol% Cul (0.006 mmol, 1 mg): Off white solid (64 mg, 83%). Flash chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 – 7.97 (m, 2H), 7.81 – 7.75 (m, 2H), 7.60 – 7.54 (m, 2H), 7.45 – 7.37 (m, 3H), 3.54 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.17. ¹³C NMR (126 MHz, Chloroform-*d*) δ 135.89, 133.02, 132.09, 131.36, 129.65, 128.73, 127.53, 121.94, 119.32 (C-F, ¹*J*_{C-F} = 321.0 Hz), 95.37, 87.16, 46.98. **IR (neat)**: v 3030, 2933, 2219, 1585, 1493, 1442, 1399, 1347, 1257, 1221, 1202, 1183, 1136, 1088, 1043, 1013, 989, 957, 838, 795, 763, 750, 720, 693, 629 (cm⁻¹). **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₁₆H₁₃F₃NO₃S₂ 388.0283; Found 388.0282. Mp = 150.8 - 151.8 °C.

^{NO2} *N*-(triflyl)-*S*-(4-methoxy-3-nitrophenyl)-*S*-methyl sulfoximine (**3aj**). **3b** (0.1 mmol; 32 mg), 1 mL HNO₃ (68%): Colorless semi solid (28 mg, 78%). Flash chromatography (DCM) for purification ¹H NMR (500 MHz, Chloroform-*d*) δ 8.49 (d, *J* = 2.5 Hz, 1H), 8.21 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.38 (d, *J* = 9.0 Hz, 1H), 4.12 (s, 3H), 3.56 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –79.13. ¹³C NMR (126 MHz, Chloroform-*d*) δ 157.99, 139.82, 133.35, 128.62, 125.91, 119.20 (C-F, ¹*J*_{C-F} = 321.1 Hz), 115.25, 57.73, 47.18. **IR (neat)**: v 3028, 2932, 1605, 1573, 1534, 1492, 1463, 1441, 1350, 1289, 1254, 1184, 1135, 1051, 1005, 980, 889, 824, 798, 764, 738, 681, 618 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₉H₁₀F₃N₂O₆S₂ 362.9927; Found 362.9921.

 $\underset{\mathbf{S}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}} \overset{\mathsf{II}}{\overset{\mathsf{II}}{\overset{\mathsf{S}}}} - \mathsf{CF}_3$

^{NO2} *N*-(triflyl)-*S*-(4-methoxy-3,5-dinitrophenyl)-*S*-methyl sulfoximine (**3ak**). **3b** (0.13 mmol; 40 mg), 1 mL (HNO₃ (68%):H₂SO₄ (98%) = 1:2): Yellow solid (33 mg, 65%). Flash chromatography (DCM) for purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.64 (s, 2H), 4.20 (s, 3H), 3.64 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –78.88. ¹³C NMR (126 MHz, Chloroform-*d*) δ 152.62, 145.35, 132.54, 128.19, 118.92 (C-F, ¹*J*_{C-F} = 320.9 Hz), 65.40, 46.69. IR (neat): v 3033, 2941, 1613, 1544, 1478, 1342, 1292, 1255, 1191, 1136, 1095, 1065, 969, 921, 884, 809, 787, 764, 740, 714, 683, 618 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₉H₉F₃N₃O₈S₂ 407.9778; Found 407.9785. Mp = 127.4 – 129.0 °C.

N-(trifluoromethylsulfaneylidene)-*S*-phenyl-*S*-methyl sulfoximine (**4a**). **2a** (0.3 mmol; 86 mg), 1 mL EtOAc, 1.1 equiv. of NaOCl·5H₂O (0.3 mmol, 49 mg): Colorless oil (92%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.09 – 7.97 (m, 2H), 7.79 – 7.62 (m, 3H), 3.47 – 3.36 (m, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ –80.54, –80.89. ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.39, 137.83, 135.21, 135.00, 130.23, 130.09, 128.32, 127.54, 124.08 (C-F, ¹*J*_{C-F} = 333.8 Hz), 47.46, 47.16. IR (neat): v 3067, 3015, 1582, 1448, 1405, 1325, 1231, 1175, 1151, 1090, 1030, 1013, 993, 786, 738, 683 (cm⁻¹). HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₈H₉F₃NO₂S₂ 272.0021; Found 272.0016.

Br S-(4-bromophenyl)-S-trichloromethyl sulfoximine (**5x**). **2x** (0.3 mmol; 199 mg), 1 mL H₂O, 4 equiv. of NaOCI·5H₂O (1.2 mmol, 197 mg), GP1: White solid (98 mg, 97%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 – 8.00 (m, 2H), 7.80 – 7.76 (m, 2H). Unknown minor impurities are present due to decomposition and the inability to purify the product with chromatographic means. ¹³C NMR (126 MHz, Chloroform-*d*) δ 132.94, 132.84, 132.15, 128.93, 127.82. **IR (neat)**: v 3094, 1579, 1393, 1352, 1324, 1298, 1202, 1168, 1136, 1088, 1067, 1012, 820, 786, 754, 727, 700, 643 (cm⁻¹). **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₇H₆BrCl₃NOS 335.8414; Found 335.8415. Mp = 168.7 – 171.9 °C (decomposition – changes to a dark-brown solid).

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S24

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S30

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S36

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S60

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S70

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S93

!0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S109

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S120

S130

S139