Supplementary Information

Facile synthesis of N-doped graphene quantum dots as fluorescent sensor for Cr(VI) and folic acid detection

Chu-Sen Ni,‡^a Wen-Jie Zhang,‡^a Wen-Zhu Bi,*^{a,b} Ming-Xia Wu,*^{a,b} Su-Xiang Feng,*^{b,c,d} Xiao-Lan Chen^e and Ling-Bo Qu^e

^a School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China. E-mail: mxwu711@163.com.

^b Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou, 450046, China.

^c Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China. Email: fengsx221@163.com.

^d Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, China.

^e College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.

‡ These authors contributed equally to this work and should be considered as co-first authors.

Corresponding E-mail: biwenzhu2018@hactcm.edu.cn

Table of Contents

1. Comparison of carbon dots-based fluorescence probes for Cr(VI) detection	S2
2. Comparison of carbon dots-based fluorescence probes for FA detection	S4
3. Materials and instruments	S6
4. Optimization of the hydrothermal reaction conditions for the synthesis of N-GQDs	S6
5. FTIR spectrum of N-GQDs	S7
6. Calculation of fluorescence quantum yield of N-GQDs	S8
7. Thermostability, photostability and reproducibility of N-GQDs	S9
8. General experimental procedure	S9
9. Fluorescence detection of Cr(VI)	S10
10. Response time of N-GQDs to Cr(VI)	S11
11. Photographs of N-GQDs solution with Cr(VI)	S11
12. Fluorescence intensity and standard deviation	S12
13. Fluorescence detection of FA	S12
14. The response time of N-GQDs to FA	S13
15. Photographs of N-GQDs solution with FA	S13
16. Exploration of the quenching mechanism by calculation methods	S14

No.	Carbon Dots	Linear range	Limit of detection	Fluorescence quantum yield	Response time	Reference	
1	EDTA/DMF derived CDs	0-0.1 M	10 µM	/	5 min	Front. Chem., 2020, 8, 595628	
2	MR-CDs	0.2-50 μΜ	20 nM	18%	10 min	Nanomaterials, 2020, 10 , 1924	
3	B,N-CDs	0.3-500 μΜ	0.24 μM	59.01%	8 min	Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2020, 243, 118807	
4	BNCDs	0-100 μΜ	0.41 μM	/	/	Carbon, 2021, 182 , 42	
5	N,P-CDs	0.05-3 μΜ	26 nM	1.8%	10 min	Microchem. J., 2021, 166, 106219	
6	CDs	120 nM-200 μM	37 nM	/	10 min	Microchem. J., 2021, 169, 106552	
7	BH@CD	0-20 µM	66 nM		/	Sens. Actuators B Chem., 2021, 348 , 130662	
8	N,S-CDs	0-120 μΜ	1.04 μM	4.37%	5 min	<i>RSC Adv.</i> 2021, 11 , 35946	
9	af-CDs	0.8-80.0 µM	242 nM	2.3%	1 min	J. Photochem. Photobiol. A Chem., 2021, 417, 113359	
10	NH ₂ - mSiO ₂ @CDs	0.5-9 μΜ	5 nM	/	1 min	J. Hazard. Mater., 2021, 415, 125699	
11	S,N-CDs	0.03-50 μΜ	21.14 nM	17%	3 min	Microchem. J., 2021, 167, 106284	
12	Cs-CDs	1-130 μΜ	0.91 µM	58%	/	Nano, 2021, 16, 2150103	
13	CA/WS-CDs	10-50 mg/L	7.6 mg/L	/	/	Environ. Sci.: Nano, 2021, 8, 3331	
14	PGP-CDs	0.1-100 μΜ	4 nM	15%	1 min	J. Mol. Liq., 2022, 346 , 117088	
15	O-phenylenediamine/ DL-Thioctic acid derived CDs	0-60 μΜ	0.64 μΜ	21.82%	./	Colloids Surf. A Physicochem. Eng. Aspects, 2022, 638, 128164	
16	Single-layered GQDs	3-75 μΜ	0.1 μΜ	23.8%	/	Chem. Eng. J., 2022, 435 , 131833	
17	CNF-TCDs3	0-15 mg/L	0.15 mg/L	/	/	Chem. Eng. J. , 2022, 432 , 134202	

1. Table S1 Comparison of carbon dots-based fluorescence probes for Cr(VI) detection

18	CF-CDs	5-50 μM	1.7 ppm	/	/	J. Basic Microbiol., 2022, 62 , 455
19	Poria cocos polysaccharide/ethylene diamine derived CDs	1-100 μM	0.25 μΜ	4.82%	25 min	J. Pharm. Anal., 2022, 12 , 104
20	R-CDs	0.3-50 μM/0.03-3 μM	80 nM/9.1 nM	22.96%	10 min	Biosensors, 2022, 12 , 432
21	N-CDs	1-80 µM	00.61 μM	31%	/	Nano., 2022, 17, 2250086
22	N,S-CDs	0-0.588 ppm	0.038 ppm	/	5 min	Chem. Pap., 2022, 76 , 7793
23	L-tartaric acid/citric acid/urea derived CDs	0.8-189 μM	0.16 µM	20.5%	instantaneous	Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2022, 278, 121343
24	N,P-CDs	0.68-87.38 μM	0.18 µM	11.3%	10 min	J. Anal. Test., 2022, 6, 335
25	CD-600	0.1-0.4 nM	0.04 nM	2-3%	/	Chem. Eng. J., 2022, 446 , 137171
26	SNCDs	5 nM-25 μM	5 nM	17.67%	/	J. Lumin., 2022, 244, 118767
27	N,S-doped CDs	3.8-38.9 µM	47.2 nM	16%	/	Anal. Bioanal. Chem., 2022, 414 , 7253
28	N-CQDs	0-15 μΜ	300 nM	18%	4 min	Diam. Relat. Mater., 2022, 126 , 109138
29	banana stem/phosphoric acid derived CDs	10-30 μM	2.4 μM	15.11%	20 sec	Mater. Chem. Phys., 2022, 286 , 126133
30	N-CQDs	0 -100 μM	2.1 μM	22.1%	/	Anal. Chim. Acta, 2022, 1195 , 339478
31	CE-CDs	0-500 μM/0-5 μM	1.56 µM/23 nM	72%	3 min	Ecotox. Environ. Saf., 2022, 244, 114069
32	FW-CDs	0.1-60 μM	0.07 µM	14.8%	30 min	Molecules, 2022, 27 , 1258
33	Citric acid/glutamic acid derived CDSs	0.5-400 μM	0.1 µM	48.41%	1 min	J. Fluoresc., 2022, 32 , 2343
34	Arg-L-CQDs	0-400 μM	0.8625 μM	/	/	Macromol. Chem. Phys., 2023, 224 , 2200380
35	N,Cl-doped CQDs	5-350 μM/250-600 μM/300-850 μM	0.28 μM/0.87 μM/0.90 μM	3.58%	5 min	Colloids Surf. A Physicochem. Eng. Aspects, 2023, 669, 131471
36	N/S-GQDs	1-100μM/0.5-10 μM	0.01 μM/0.4 μM	22%	10 min	Langmuir, 2023, 39 , 1538

37	N-CQDs	0-40 μΜ	0.16 µM	/	/	J. Fluoresc., 2023, 139 , 1573
38	BCD1	0-220 μM	0.242 μM	8.9%	15 min	ACS Omega, 2023, 8 , 6550
39	CQDs	20-200 μM	1.4 µM	5.6%	/	Packag. Technol. Sci., 2023, 36, 465
40	N,Zn-doped CDs	0.005-0.135 μM	0.47 nM	13.6%	/	Sensors, 2023, 23 , 1632
41	N-CDs-CTAC	0.5-1000 μM	40 nM	44.6%	10 min	Analyst, 2023, 148, 2818
42	ILCDs	1-750 μM	0.5 μΜ	16.34%	35 min	Ind. Eng. Chem. Res., 2023, 62, 10849
43	S-CDs	10-80 nM	20 nM	3%	/	J. Environ. Chem. Eng., 2023, 11, 109438
44	N-GQDs	0-50 μΜ	0.80 µM	10.9%	< 10 sec	This work

2. Table S2 Comparison of carbon dots-based fluorescence probes for FA detection

No.	Carbon Dots	Linear range	Limit of detection	Fluorescence quantum yield	Response time	Reference
1	N,S-GQD-NaHSO ₃ - NaClO	0.5-70 μΜ	78 nM	77.2%	/	Food Anal. Methods, 2019, 12 , 869
2	Amino QDs-Carboxyl GQDs	0.11-22.66 nM	0.09 nM	/	/	Anal. Bioanal. Chem., 2019, 411 , 7481
3	CA/EIP CQDs	1.14-47.57 μM	0.38 μΜ	/	/	Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2020, 229, 117931
4	N,S,I-CDs	0.1-175 μM	84 nM	32.4%	5 min	Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2020, 224, 117444
5	CDs-MCM	0-50 μM	118.73 nM	10.39%	/	Nano, 2020, 15 , 2050090
6	HCA-CDs	4-100 μΜ	0.49 μΜ	/	5 min	Microchem. J., 2020, 159 , 105364
7	paper@CDs	1-300 μM	0.28 μΜ	/	12 min	Anal. Bioanal. Chem., 2020, 412, 2805
8	NGQDs	0.8-80 µМ	81.7 nM	/	10 min	ACS Appl. Mater. Interfaces, 2021, 13, 34572

9	C60 FNPs	0-80 μM	0.24 μΜ	26%	1 min	Nanotechnology, 2021, 32 , 195501
10	Carbon Nanodots- Quantum Dots Composite	0.113-906 µM	0.039 µM	/	/	Food Anal. Methods, 2021, 14 , 1637
11	N-CDs	0-200 μM	28 nM	26.5%	3 min	Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2022, 268, 120661
12	PEI-OH-CDs	0.1-100 μM	0.07 μΜ	25%	5 min	J. Chin. Chem. Soc., 2022, 69, 486
13	S,O-CNQDs	5-83.3 μM	90 nM	/	5 min	Arab. J. Chem., 2023, 16, 104520
14	N-CDs	0.1-165 μM	0.04 µM	7.65%	1 min	Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2023, 285, 121891
15	Gd,N-CDs	0-30 μM	3.43 nM	2.52%	1 min	Dyes Pigments, 2023, 209 , 110877
16	Mn,N-CQDs	2-100 μM	0.19 ppm	37%	60 min	J. Nanopart. Res., 2023, 25 , 92
17	N,S,P-CDs	4.85-82.45 μM	0.148 μM	41%	/	Dalton Trans., 2023, 52 , 6551
18	Anhydrous citric acid/ ethylenediamine derived CDs	0-50 nM	6 nM	30%	/	Microchem. J, 2023, 188 , 108470
19	N-GQDs	0-200 μM	2.1 μM	10.9%	< 10 sec	This work

3. Materials and instruments

All reagents used in this work showed below were purchased from commercial suppliers without further purification. Soluble starch ($C_{12}H_{22}O_{11}$, CAS: 9005-84-9), L-arginine (L-Arg, $C_6H_{14}N_4O_2$, CAS: 74-79-3), glucose ($C_6H_{12}O_6$, CAS: 50-99-7), starch (($C_6H_{10}O_5$)n, CAS: 9005-25-8), glutathione (GSH, $C_{10}H_{17}N_3O_6S$), serine (Ser, $C_3H_7NO_3$), glycine (Gly, $C_2H_5NO_2$), alanine (Ala, $C_3H_7NO_2$), L-threonine (L-Thr, $C_4H_9NO_3$), L-cysteine (L-Cys, $C_3H_7NO_2S$), L-lysine (L-Lys, $C_6H_{14}N_2O_2$), L-glutamic acid (L-Glu, $C_5H_9NO_4$), L-histidine (L-His, $C_6H_9N_3O_2$), folic acid (FA, $C_{19}H_{19}N_7O_6$), ascorbic acid (AA, $C_6H_8O_6$), vitamin B6 (VB6, $C_8H_{11}NO_3$ •HC1), nicotinamide ($C_6H_6N_2O$), citric acid (CA, $C_6H_8O_7$), urea (CH₄N₂O), silver nitrate (AgNO₃), aluminum chloride (AlCl₃) barium chloride dihydrate (BaCl₂•2H₂O), calcium chloride (CaCl₂), cadmium sulfate 8/3-hydrate (3CdSO₄•8H₂O), cobalt sulfate heptahydrate (CoSO₄•7H₂O), chromium (III) trichloride hexahydrate (FeCl₃•6H₂O), mercury(II) thiocyanate (Hg(SCN)₂), potassium bromide (NaF), potassium chloride (KCl), potassium carbonate (K₂CCO₃), potassium iodide (KI), potassium phosphate (K₃PO₄), manganese (II) chloride tetrahydrate (MnCl₂•4H₂O), sodium perchlorate,(NaClO₄), sodium fluoride (NaF), sodium sulfate (Na₂SO₄), ammonium chloride (NH₄Cl), nickel(II) chloride (NiCl₂), lead(II) nitrate (Pb(NO₃)₂), stannous chloride dihydrate (SnCl₂•2H₂O), zinc sulfate heptahydrate (ZnSO₄•7H₂O). Sucrose ($C_{12}H_{22}O_{11}$) was obtained from the local supermarket.

Fluorescence spectra were measured by Hitachi F7000 with the slit width of 5/5 nm. Other instruments employed in this work are UV-Visible spectrophotometer (Thermo Evolution 260 Bio), pH Meter (FiveEasy Plus FE28), Transmission electron microscope (TF20), Atomic force microscopy (Bruker Dimension Icon), X-ray powder diffractometer (Bruker D8 Advance), X-ray photoelectron spectrometer (Thermo ESCALAB 250), Fourier transform infrared spectrometer (Perkin Elmer Frontier), Steady-state/transient fluorescence spectrometer, Zeta potential analyzer.

4. Optimization of the hydrothermal reaction conditions for the synthesis of N-GQDs

Carbon sources (glucose, sucrose, soluble starch and starch) (0.15 g) and L-arginine (L-arg, 0.3-1.2 g) were firstly mixed in pure water (12.5 mL) and stirred at 60 °C for 15 min. Then, the mixture was sealed into a 25 mL stainless autoclave lined with Teflon and heated at 180-200 °C for 3-5 h. After that, the mixture was naturally cooled to room temperature and the N-GQDs were obtained by centrifugation at 15,000 rpm for 15 min. The obtained N-GQDs were stored as stock solution at room temperature for further use.

Entry	Carbon source	Nitrogen source	Temperature (°C)	Time (h)	λ_{max}^{em} (nm)	Fluorescence intensity (a.u.)
1	glucose, 0.15 g	L-arg, 0.9 g	190	4	442	935
2	sucrose, 0.15 g	L-arg, 0.9 g	190	4	439	637
3	soluble starch, 0.15 g	L-arg, 0.9 g	190	4	445	1380
4	starch, 0.15 g	L-arg, 0.9 g	190	4	423	1181
5	soluble starch, 0.15 g	L-arg, 0.3 g	190	4	446	432
6	soluble starch, 0.15 g	L-arg, 0.6 g	190	4	443	816
7	soluble starch, 0.15 g	L-arg, 1.2 g	190	4	439	1245
8	soluble starch, 0.15 g	L-arg, 0.9 g	180	4	425	1043
9	soluble starch, 0.15 g	L-arg, 0.9 g	200	4	444	819
10	soluble starch, 0.15 g	L-arg, 0.9 g	190	3	436	935
11	soluble starch, 0.15 g	L-arg, 0.9 g	190	5	440	1006

Table S3 Optimization of the hydrothermal reaction conditions.

Fig. S1 Fluorescence spectra of the as-synthesized N-GQDs under different conditions in Table S3: (a) entry 1-4; (b) entry 3, 5-7; (c) entry 3, 8-9; (d) entry 3, 10-11.

5. FTIR spectrum of N-GQDs

Fig. S2 FTIR spectrum of N-GQDs.

6. Calculation of fluorescence quantum yield of N-GQDs

The fluorescence quantum yield (QY) of N-GQDs was determined by a common method according to previous reports using quinine sulfate in pure water as a reference (QY = 55%). The fluorescence QY value of N-GQDs was calculated as follows:

$$QYt = QYr \times (It/Ir) \times (Ar/At) \times (\eta t/\eta r)^2$$

The subscript "t" and "r" refer to the N-GQDs and quinine sulfate. A is the optical density, I is the integrated emission intensity, and η is the refractive index of the solvent. To get more reliable results, the absorption of the two solutions were adjusted to less than 0.1 to prevent the reabsorption effect.

		Qı	iinine sulf	ate				N-GQDs		
Absorban ce	0.022	0.038	0.061	0.082	0.102	0.022	0.041	0.059	0.080	0.100
Integrated Intensity	18296.11	48906.1	81227.1	122660	165966.2	5032.859	11132.78	20046.67	27565.03	32218.84
Excitation (nm)			380					380		
Slope			1828241.6	5				362356.1		
QY (%)			55					10.9		

Fig. S3 Plots of integrated intensity of Quinine sulfate and N-GQDs.

7. Thermostability, photostability and reproducibility of N-GQDs

Fig. S4 (a) Fluorescence spectra of N-GQDs under different incubation temperatures; (b-d) fluorescence intensities of N-GQDs at 445 nm: (b) under different incubation temperatures (n = 3); (c) at continuous excitation wavelength of 370 nm; (d) between 8 different batches of N-GQDs.

8. General experimental procedure

Detection of Cr(VI)

N-GQDs stock solution (500 μ L) was firstly diluted by pure water (3.0 mL) and different amount of Cr(VI) were added. Then the solutions were further diluted by pure water to 5.0 mL. The concentrations of Cr(VI) in the solutions were 0-175 μ M. Then the fluorescence intensities of the mixed solutions were measured and repeated for 3 times. Other cations (Ag⁺, Al³⁺, Ba²⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, Hg²⁺, K⁺, Mn²⁺, Na⁺, NH₄⁺, Ni²⁺, Pb²⁺, Sn²⁺ and Zn²⁺ (10 mM, 87.5 μ L)) and common anions (Br⁻, Cl⁻, ClO₄⁻, CO₃²⁻, F⁻, I⁻, NO₃⁻, PO₄³⁻, SCN⁻ and SO₄²⁻ (10 mM, 87.5 μ L)) were added under the same conditions.

Detection of FA

N-GQDs stock solution (500 μ L) was firstly diluted by pure water (3.0 mL) and different amount of FA were added. Then the solutions were further diluted to 5.0 mL. The concentrations of FA in the solutions were 0-200 μ M. Then the fluorescence intensities of the mixed solutions were measured and repeated for 3 times. Other interfering compounds (GSH, Glucose, Ser, Gly, Ala, L-Arg, L-Thr, L-Cys, L-Lys, L-Glu, L-His, AA, VB6, niacinamide, CA and Urea (10 mM, 50 μ L)) were added under the same conditions.

Detection of Cr(VI) in actual water samples:

The actual samples selected for the determination of Cr(VI) were tap water, C'eastbon bottled drinking water and lake water. Tap water was collected from laboratory water piping, C'estbon bottled drinking water was purchased from the local supermarket and the lake water was collected from Tianyi Lake in Henan University of Chinese Medicine. The practical water samples were centrifuged at 8000 rpm for 20 min and filtered through a 0.22 µm microporous membrane. Then, different amount of Cr(VI) were added into the above water samples to calculate the recovery rate and relative standard deviation (RSD). All measurements were repeated for 3 times.

Detection of FA in FA tablet:

FA tablets (5 mg/tablet) were purchased at a local drugstore. The average weight of 10 tablets was calculated after thorough pulverization into fine powder. An amount of FA powder equal to the mass of one FA tablet was accurately weighed and dissolved in 20 mL pure water with ultrasonic assistance. The solution was centrifuged for 20 min at 8000 rpm and filtered through 0.22 µm membrane syringe filters. The working solution was prepared by diluting the sample solution with pure water to maintain the concentration of the working solution within the linear range. Then, different amount of FA were added into the above working solution to calculate the recovery rate and relative standard deviation (RSD). All measurements were repeated for 3 times.

Detection of FA in orange juice:

The orange juice samples were centrifuged at 8000 rpm for 20 min and filtered through a 0.22 μ M microporous membrane. The working solution was prepared by diluting the sample solution with pure water to maintain the concentration of the working solution within the linear range. Then, different amount of FA were added into the above working solution to calculate the recovery rate and relative standard deviation (RSD). All measurements were repeated for 3 times.

9. Fluorescence detection of Cr(VI)

Fig. S5 Fluorescence spectra (a,c)/intensities (b,d) of N-GQDs ($\lambda ex = 370 \text{ nm}$, $\lambda em = 445 \text{ nm}$) with different cations or anions (175 μ M) (n = 3).

10. Response time of N-GQDs to Cr(VI)

Fig. S6 Fluorescence intensity of N-GQDs ($\lambda ex = 370 \text{ nm}$, $\lambda em = 445 \text{ nm}$) in the absence/presence of Cr(VI) (175 μ M).

11. Photographs of N-GQDs solution with Cr(VI)

Fig. S7 Photographs of N-GQDs solution with Cr(VI) (from left to right: 0, 20, 40, 60, 80 and 100 μ M) under fluorescent lamp (above) and 365 nm UV light (below).

No.	Fluorescence Intensity (a.u.)	F/F_0
1	1310	1.0022
2	1312	1.0037
3	1308	1.0007
4	1309	1.0014
5	1304	0.9976
6	1307	0.9999
7	1302	0.9961
8	1302	0.9961
9	1311	1.0030
10	1306	0.9992
σ	0.0026	

12. Table S4 Fluorescence intensity and standard deviation

13. Fluorescence detection of FA

Fig. S8 Fluorescence spectra of N-GQDs ($\lambda ex = 370 \text{ nm}$, $\lambda em = 445 \text{ nm}$) with different compounds (200 μ M).

14. The response time of N-GQDs to FA

Fig. S9 Fluorescence intensity of N-GQDs ($\lambda ex = 370 \text{ nm}$, $\lambda em = 445 \text{ nm}$) in the absence/presence of FA (200 μ M).

15. Photographs of N-GQDs solution with FA

Fig. S10 Photographs of N-GQDs solution with FA (from left to right: 0, 20, 40, 60, 80 and 100 μ M) under fluorescent lamp (above) and 365 nm UV light (below).

16. Exploration of the quenching mechanism by calculation methods.

 A_{ex} , A_{em} and F_{obsd} are the absorbance and fluorescence intensities of N-GQDs at optimal excitation (Ex = 370 nm) and optimal emission (Em = 445 nm). F_{cor} (corrected fluorescence emission intensities of N-GQDs at 445 nm) was calculated according to Eq. 1 (the Parker's equation). Then, CF (correction factor), E_{obsd} (observed fluorescence suppression efficiency), E_{cor} (corrected fluorescence suppression efficiency) and $F_{cor.o}/F_{cor}$ (the ratio of corrected fluorescence emission intensities of N-GQDs at 445 nm without/with analytes) were calculated as shown in Table S5 and S6 (CF \leq 3 to ensure the accuracy of the results). The IFE ratio was then calculated by $(E_{obsd} - E_{cor})/E_{obsd}$ to be 79.74% for Cr(VI) and 90.11% for FA.

The ratio of corrected fluorescence emission intensities of N-GQDs at 445 nm without/with analytes

 $(F_{cor,o}/F_{cor})$ versus the concentration of analytes were plotted as shown in Fig S10. In the presence of Cr(VI), $F_{cor,0}/F_{cor}$ has a linear relationship with the concentration of Cr(VI) (Fig. S10b), which indicates the presence of static quenching effect and dynamic quenching effect in the system according to Stern-Volmer equation (Eq. 2). While, $F_{cor,0}/F_{cor}$ was not linearly related to FA, which indicated that the static quenching effect and dynamic quenching effect between N-GQDs and FA are negligible.

Fig. S11 Geometry of a quartz cuvette, where d, g and s are 1.00, 0.25 and 0.50 cm.

Table S5 Parameters used to calculate the IFE percentage of Cr(VI) to N-GQDs fluorescence

Cr(VI) (µM)	A _{ex}	A _{em}	CF	F _{obsd}	F _{cor}	Eobsd	Ecor	Fcor,0/Fcor
0	0.34	0.06	1.55	1004.17	1556.46	0.00	0.00	1.00
5	0.41	0.07	1.69	902.00	1524.38	0.10	0.02	1.02
10	0.49	0.09	1.85	806.13	1491.35	0.20	0.04	1.04
15	0.54	0.09	1.94	754.17	1463.08	0.25	0.06	1.06
20	0.59	0.10	2.03	699.57	1420.12	0.30	0.09	1.10
25	0.66	0.11	2.21	622.40	1375.50	0.38	0.12	1.13

 $CF = F_{cor}/F_{obsd}$; $E_{obsd} = 1 - F_{obsd} / F_{obsd,0}$; $E_{cor} = 1 - F_{cor} / F_{cor,0}$

Table S6 Parameters used to calculate the IFE percentage of FA to N-GQDs fluorescence

FA (µM)	A_{ex}	A _{em}	CF	F _{obsd}	Fcor	Eobsd	Ecor	$F_{cor,0}/F_{cor}$
0	0.39	0.10	1.71	1008.30	1724.19	0.00	0.00	1.00
10	0.47	0.11	1.85	895.77	1657.19	0.11	0.04	1.04
15	0.52	0.11	1.95	854.80	1666.86	0.15	0.03	1.03
20	0.59	0.13	2.12	796.40	1688.37	0.21	0.02	1.02
25	0.64	0.13	2.22	740.33	1643.54	0.27	0.05	1.05

 $CF = F_{cor}/F_{obsd}$; $E_{obsd} = 1 - F_{obsd} / F_{obsd,0}$; $E_{cor} = 1 - F_{cor} / F_{cor,0}$

$$\frac{F_{cor}}{F_{obsd}} = \frac{2.3dA_{ex}}{1 - 10^{-dA_{ex}}} 10^{gA_{em}} \frac{2.3sA_{em}}{1 - 10^{-sA_{em}}}$$
(Eq. 1)

 F_{cor} and F_{obsd} are N-GQDs corrected and measured fluorescence intensities (Em = 445 nm); d, g and s are the geometric parameters of the quartz cuvette (Fig. S9) 1.00, 0.25 and 0.50 cm respectively; A_{ex} and A_{em} are the absorbance of N-GQDs at optimal excitation (Ex = 370 nm) and optimal emission (Em = 445 nm).

Fig. S12 Observed and corrected fluorescence intensity suppression efficiency (E_{obsd} and E_{cor}) (a,c); Relationship between Cr(VI) (b) or FA (d) concentrations and $F_{cor,0}/F_{cor}$.

$$F_{cor,0}/F_{cor} = 1 + K_{SV}[Q]$$
(Eq. 2)

 $F_{cor,0}$ and F_{cor} are corrected fluorescence intensities without and with the addition of Cr(VI) or FA; K_{sv} is the Stern-Volmer constant; [*Q*] is the concentration of Cr(VI) or FA.