Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supporting information

Inductively coupled plasma optical emission spectroscopic determination of trace rare earth elements in highly refractory gadolinium zirconate (Gd₂Zr₂O₇)

Abhijit Saha*, Khushboo Kumari, Sadhan Bijoy Deb* and Manoj Kumar Saxena

Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India 400085

*Corresponding authors Email id: abhi.gallary@gmail.com (A. Saha)

sbdeb@barc.gov.in (S.B. Deb)

Table of contents	Page no.		
Table T1 Preparation of synthetic standard solutions of Gd ₂ Zr ₂ O ₇			
Table T2 Selection of optical emission lines of thirteen lanthanides	S4		
Table T3 Analysis of synthetic standards $(N = 5)$	S5		
Table T4 List of the Gd emission lines responsible for high background counts for	S6		
few rare esrth elements			
Fig. S1(a-m) Calibration spectra of all thirteen lanthanides	S7-S9		
Fig. S2 WDXRF spectrum of ZrO ₂	S10		
Fig. S3 WDXRF spectrum of Gd_2O_3	S11		
Fig. S4(a-m) Emission spectra of all thirteen lanthanides in absence and presence of			
516 mg L^{-1} of Gd matrix			
Fig. S5(a-m) Emission spectra of all thirteen lanthanides in absence and presence of	S25-S37		
1032 mg L^{-1} of Gd matrix			

Table T1:

Synthetic standard set of G1 was prepared by considering dissolution of 50 mg of $Gd_2Zr_2O_7$ sample in 100 mL solution.

Synthetic standard set of G2 was prepared by considering dissolution of 100 mg of $Gd_2Zr_2O_7$ sample in 100 mL solution.

Synthetic standard set of G3 was prepared by considering dissolution of 200 mg of $Gd_2Zr_2O_7$ sample in 100 mL solution.

Element	Synthe	etic stand	ard set	Synthe	etic stand	ard set	Synthe	etic stand	ard set
	C	61 (mg L ⁻	¹)	0	$G2 (mg L^{-1})$	¹)	0	63 (mg L ⁻	¹)
	G1A	G1B	G1C	G2A	G2B	G2C	G3A	G3B	G3C
Gd _{matrix}	258	258	258	516	516	516	1032	1032	1032
Zr _{matrix}	150	150	150	300	300	300	600	600	600
La	0.25	1.0	2.5	1.0	2.5	0.25	2.5	0.25	1.0
Ce	1.0	2.5	0.25	2.5	0.25	1.0	0.25	1.0	2.5
Pr	2.5	0.25	1.0	0.25	1.0	2.5	1.0	2.5	0.25
Nd	1.0	2.5	0.25	2.5	0.25	1.0	0.25	1.0	2.5
Sm	2.5	0.25	1.0	0.25	1.0	2.5	1.0	2.5	0.25
Eu	0.25	1.0	2.5	1.0	2.5	0.25	2.5	0.25	1.0
Tb	2.5	0.25	1.0	0.25	1.0	2.5	1.0	2.5	0.25
Dy	0.25	1.0	2.5	1.0	2.5	0.25	2.5	0.25	1.0
Но	1.0	2.5	0.25	2.5	0.25	1.0	0.25	1.0	2.5
Er	0.25	1.0	2.5	1.0	2.5	0.25	2.5	0.25	1.0
Tm	1.0	2.5	0.25	2.5	0.25	1.0	0.25	1.0	2.5
Yb	2.5	0.25	1.0	0.25	1.0	2.5	1.0	2.5	0.25
Lu	0.25	1.0	2.5	1.0	2.5	0.25	2.5	0.25	1.0

Table	T2:
-------	-----

Element	Emission line (nm)	Interference from Gd	Interference from Zr
		emission line (nm)	emission line (nm)
La	412.323	Not present	412.338
Ce	418.66	Not present	418.669
Pr	417.939	Not present	417.981
Nd	401.225	Not present	401.225
Sm	388.529	Not present	388.542
Eu	381.967	Not present	381.984
Tb	332.44	Not present	Not present
Dy	353.17	Not present	Not present
Но	345.6	Not present	345.591
Er	337.271	Not present	Not present
Tm	313.125	313.081	313.111
Yb	328.937	328.915	Not present
Lu	261.542	Not present	261.559

Elements		G1 (mg L ⁻¹)			G2 (mg L ⁻¹)			G3 (mg L ⁻¹)	
	G1A	G1B	GIC	G2A	G2B	G2C	G3A	G3B	G3C
La	0.245 ± 0.005	0.98 ± 0.01	2.40 ± 0.04	1.00 ± 0.02	$2.44{\pm}0.03$	0.248 ± 0.004	2.38 ± 0.05	0.235 ± 0.006	$0.93 {\pm} 0.02$
	(98)	(86)	(96)	(100)	(86)	(66)	(95)	(94)	(93)
Ce	0.99 ± 0.01	2.42 ± 0.05	0.252 ± 0.005	2.45 ± 0.04	$0.251 {\pm} 0.005$	0.96 ± 0.02	0.213 ± 0.003	0.92 ± 0.02	2.20 ± 0.06
	(66)	(67)	(101)	(98)	(100)	(96)	(<u>85</u>)	(88)	(<u>88</u>)
Pr	2.45 ± 0.04	0.242 ± 0.004	0.95 ± 0.02	0.245 ± 0.04	0.98 ± 0.02	$2.40{\pm}0.05$	$0.86{\pm}0.04$	2.23 ± 0.06	0.211 ± 0.006
	(88)	(67)	(95)	(98)	(88)	(96)	(<u>86</u>)	(<u>89</u>)	(<u>84</u>)
Nd	0.96 ± 0.02	2.39 ± 0.04	0.244 ± 0.004	2.40 ± 0.04	$0.248{\pm}0.003$	0.97 ± 0.02	0.213 ± 0.006	$0.87 {\pm} 0.03$	2.23 ± 0.07
	(96)	(96)	(98)	(96)	(66)	(67)	(<u>85</u>)	(<u>87</u>)	(<u>8</u>)
Sm	$2.44{\pm}0.04$	0.238 ± 0.003	0.96 ± 0.01	0.239 ± 0.004	$0.97 {\pm} 0.02$	2.46 ± 0.05	$0.87{\pm}0.03$	2.20 ± 0.05	0.212 ± 0.006
	(98)	(95)	(96)	(96)	(67)	(98)	(<u>87</u>)	(88)	(<u>85</u>)
Eu	0.250 ± 0.004	0.97 ± 0.02	2.52±0.05	0.96 ± 0.02	2.49 ± 0.05	0.245 ± 0.004	2.30 ± 0.06	0.225 ± 0.006	$0.90{\pm}0.03$
	(100)	(67)	(101)	(96)	(100)	(98)	(92)	(06)	(06)
Tb	2.41 ± 0.04	0.245 ± 0.005	0.95 ± 0.01	0.243 ± 0.002	0.98 ± 0.01	2.44 ± 0.04	$0.84{\pm}0.02$	$2.04{\pm}0.06$	0.210 ± 0.006
	(96)	(86)	(95)	(97)	(100)	(88)	(<u>84</u>)	(<u>82</u>)	(<u>84</u>)
Dy	0.248 ± 0.003	1.02 ± 0.02	2.46 ± 0.04	0.95 ± 0.01	2.40 ± 0.04	0.242 ± 0.003	2.30±0.05	0.220 ± 0.005	$0.90{\pm}0.03$
	(66)	(102)	(98)	(95)	(96)	(67)	(92)	(88)	(06)
Но	0.99 ± 0.01	2.48 ± 0.03	0.254 ± 0.003	2.40 ± 0.03	0.239 ± 0.004	$0.98{\pm}0.01$	0.202 ± 0.007	$0.85 {\pm} 0.04$	2.16 ± 0.06
	(66)	(66)	(102)	(96)	(96)	(98)	(<u>81</u>)	(<u>85</u>)	(<u>86</u>)
Er	0.248 ± 0.004	$0.97 {\pm} 0.02$	2.50 ± 0.05	0.96 ± 0.01	2.46 ± 0.04	0.247 ± 0.003	2.43±0.05	0.226 ± 0.005	$0.91 {\pm} 0.03$
	(66)	(67)	(100)	(96)	(86)	(66)	(67)	(06)	(91)
Tm	$1.01 {\pm} 0.02$	2.49 ± 0.04	0.249 ± 0.005	2.52 ± 0.05	0.249 ± 0.004	$0.98{\pm}0.01$	$0.240{\pm}0.005$	0.95 ± 0.02	2.43 ± 0.05
	(101)	(100)	(100)	(101)	(100)	(98)	(96)	(95)	(67)
Yb	2.47 ± 0.04	0.250 ± 0.003	1.00 ± 0.01	0.250 ± 0.003	0.99 ± 0.02	2.45±0.04	$0.88 {\pm} 0.03$	$2.31{\pm}0.05$	0.221 ± 0.005
	(66)	(100)	(100)	(100)	(66)	(86)	(88)	(92)	(<u>88</u>)
Lu	0.248 ± 0.004	0.99 ± 0.01	2.53 ± 0.05	$0.99 {\pm} 0.01$	2.48 ± 0.04	0.250 ± 0.005	2.42 ± 0.006	0.240 ± 0.004	0.95 ± 0.02
	(66)	(66)	(101)	(66)	(66)	(100)	(26)	(96)	(95)
Ē									

Table T3:

S5

Note: The percentage recoveries are given in parenthesis.

Table T4:

Element	Emission line (nm)	Interference from nearby Gd emission line(s) (nm)
Ce	418.66	418.425
Pr	417.939	417.356
Nd	401.225	401.38
Sm	388.529	388.184
Tb	332.44	332.044 and 332.934
Но	345.6	345.038, 345.23, 345.414 and 345.49

S7

Fig. S1(m)

Fig. S2

Fig. S3

Fig. S4(a)

Fig. S4(b)

Fig. S4(c)

Fig. S4(d)

Fig. S4(e)

Fig. S4(f)

Fig. S4(g)

Fig. S4(h)

Fig. S4(i)

Fig. S4(j)

Fig. S4(k)

Fig. S4(l)

Fig. S4(m)

Fig. S5(a)

Fig. S5(b)

Fig. S5(c)

Fig. S5(d)

Fig. **S5(e)**

Fig. S5(f)

Fig. S5(g)

Fig. S5(h)

Fig. S5(i)

Fig. S5(j)

Fig. S5(k)

Fig. S5(l)

Fig. **S5(m)**