Supporting Information

Assessment of Acid Catalytic Properties of Ferrosilicate MFI Zeolite by Methanol-to-Hydrocarbon Conversion

Hanyoung Park, ^{t,a,b} Gwang-Jin Na, ^{t,c} Jeong-Chul Kim, ^d* and Ryong Ryoo^c*

^a Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

^b Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea

^c Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Jeonnam 58330, Korea

^d Department Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea

⁺These authors contributed equally to this work.

Figure S1. Thermogravimetric analysis (TGA) data of the fully deactivated $MFI_{TPAOH/(TEOS+Fe)}$ catalyst after the methanol-to-hydrocarbon reaction. The data was obtained by flowing the 40:60 mixture of N₂ and air gases by 100 cm³ min⁻¹, while heating the sample to 973 K at a ramping rate of 10 K min⁻¹.

Figure S2. Regenerations of the MFI_{TPAOH/(TEOS+Fe)} catalyst in the methanol-to-hydrocarbon reaction. Reaction conditions were as follows: 50 mg catalyst, 400 °C, and WHSV of methanol = 50 h⁻¹. The reactivation conditions were as follows: (a) flowing 2 vol% O₂ in N₂ under 500 °C for 2 h, (b) flowing air under 550 °C for 1 h.

Figure S3. The MTH reaction catalytic performance of Fe-MFI synthesized by dropwisely adding H₂O-TEOS-TPAOH mixture into iron nitrate solution.^[36] Reaction conditions were as follows: 50 mg catalyst, 400 °C, and WHSV of methanol = 10 h⁻¹.

Figure S4. FT-IR spectra of pyridine-adsorbed ZSM-5, and the calculated amount of Brønsted acid sites after the desorption at each temperature. Spectra were measured after the desorption of physisorbed pyridine at 150 °C (black line), 300 °C (blue line) and 500 °C (red line) for 1 h.

Fig. S5. The amount of Brønsted acid sites of Fe-MFI zeolites measured after the desorption of pyridine at 500 $^{\circ}$ C, and their C₂₊ hydrocarbons yield at 4 h of reaction time-on-stream.

		1 /			
	MFI _{TPAOH/(TEOS+Fe)}	MFI _{Fe/(TEOS+TPAOH)}	MFI _{Fe/(NaSil+TPABr)}	MFI _{TPABr/(NaSil+Fe)}	
Relative Crystallinity (%)	88.7	87.1	91.0	84.5	

1	•		<u> </u>	1 (57			
	Table S1. Relative cr	stallinity in com	parison	to the case of r	ourely	siliceous MF	I zeolite.

Figure S6. Solid state ²⁹Si MAS NMR spectra of the Fe-MFI zeolites, and purely siliceous MFI zeolite as reference. The measured spectra were drawn in solid red lines, and the calculated proportions of Q_3 over Q_4 were written over each NMR result. Grey curves indicate peak deconvolution, and the black dashed lines illustrate the integration of deconvoluted peaks.

Figure S7. SEM images of (a) $MFI_{TPAOH/(TEOS+Fe)}$, (b) $MFI_{Fe/(TEOS+TPAOH)}$, (c) $MFI_{Fe/(NaSil+TPABr)}$ and (d) $MFI_{TPABr/(NaSil+Fe)}$, and the (e) particle size distributions of each sample.

Figure S8. X-ray absorption of Fe-MFI at Fe K-edge region.