SUPPLEMENTARY DATA

SUPPLEMENTARY FIGURES

Fig. S1. Inhibition efficiency from weight loss studies

Fig. S2. Fiber diameter of pristine PAN nanofiber coated 316 L SS and its corresponding histogram

Fig. S3. Fiber diameter of PAN-CMQD nanofiber coated 316 L SS and its corresponding histogram

SUPPLEMENTARY TABLES

316 L SS	Time (Days)	CR (mm/year)	IE (%)
Uncoated			
	7	0.024333±0.0012	-
	14	0.02221±0.0013	-
	21	0.02027±0.0011	-
	28	0.02205±0.0014	-
5 min			
	7	0.0156±0.00081	35.88
	14	0.0136±0.00044	38.76
	21	0.0129±0.00095	36.35
	28	0.0133±0.00052	39.64
10 min			
	7	0.0107±0.0012	56.03

Table S1. Experimental data of weight loss study

	14	0.0108±0.0009	51.35
	21	0.0116±0.0010	42.77
	28	0.0111±0.0007	49.65
15 min			
	7	0.0039±0.00054	83.97
	14	0.00372±0.00029	83.34
	21	0.003358±0.00035	83.43
	28	0.00322±0.00056	85.39
20 min			
	7	0.00061±0.000012	97.50
	14	0.00047±0.000025	97.92
	21	0.00043±0.000031	97.87
	28	0.00035±0.000033	98.41
25 min			
	7	0.0027±0.00030	88.90
	14	0.0026±0.00022	88.29
	21	0.0028±0.00017	86.18
	28	0.0027±0.00012	87.75
30 min			
	7	0.0071±0.00042	70.81
	14	0.00602±0.00019	72.76
	21	0.00599±0.00036	70.44
	28	0.00593±0.00012	73.11

 Table S2. The electrochemical parameters obtained from PD plot

Sample	E _{corr} (V)	I _{corr} (A/cm ²)	βa (V/dec)		βc (V/dec)		IE (%)
Uncoated 316 L	-0.432795699	-4.9133*10-6	0.38751	±	-0.05578	±	-
SS			0.00164		0.0017		
Etched 316 L SS	-0.33172	-2.22473*10-6	0.18785	±	-0.15494	±	54.72
			0.00373		0.00196		
PAN/316 L SS	-0.251612903	- 1.904296875*10-	0.28878	±	-0.21711	±	61.24
		6	0.00172		8.53888E-4		
PAN-	-	-4.0588*10-8	0.52141	±	-0.37696	±	99.18
CMQD/316 L SS	0.0940860215		0.00567		0.00251		

Table S3 EIS parameters obtained from ZSmipwin software for uncoated 316 L SS, etched 316 L SS, PAN coated 316 L SS and PAN-CMQD coated 316 L SS.

Parameters	Uncoated 316	Etched 316 L SS	PAN/ 316 L SS	PAN-CMQD/
	L SS			316 L SS
R _s	24.63	26.89	29.12	0.02419
(Ohm cm ²)				
Q _{di}	6.353*10-5	1.793*10-4	3.467 *10-4	7.69E-8
(S sn cm ⁻²)				
n _{di}	0.8	0.8	0.8	0.8288
R _{ct}	795	1989	2.395*10 ¹⁵	$5.851*10^4$
(Ohm cm ²)				
Q _{coat}	-	-	2.322*10-8	4.874E-5
(S sn cm ⁻²)				
n _{coat}	-	-	0.8	1
R _{coat}	-	-	1029	29.54
(Ohm cm ²)				
χ^2	6.576*10 ⁻³	2.90*10-2	1.261*10-2	9.01*10-4

Table S4 Phase angle value of HFR and LFR for the uncoated and coated 316 L SS for the 1st and 30th day of immersion in corrosive electrolyte.

-Phase angle (θ)	Days	Uncoated 316 L SS	PAN-CMQD/316 L SS
Low frequency Region (LFR)	1 st	15 ± 0.405	72 ± 1.512
	30 th	3 ± 0.081	70 ± 1.47
Higher Frequency region (HER)	1 st	25 ± 0.40	51 ± 0.867
	30 th	16 ± 0.256	48 ± 0.816

Table S5 Comparison with the current state of art with respect to nanofiber based anticorrosive coatings.

S. No.	NANOFIBER	COATING	CORROSION	PERFORM	REFERENCE
	COATED METALS	METHOD	MEDIUM	ANCE	S
				(IE %)	
1.	Polyaniline/cellulose	TEMPO	3.5 wt.% NaCl	99.11	68
	nanofiber coated Q235	oxidation			
	carbon steel	method			
2.	ZnO-NiO-CuO/	Electrospinnin	1 M HCl	94.8 %	69
	polycaprolactone	g			

	nanofiber coated mild steel				
3.	Carbon nanofiber coated AISI 1020 steel and AZ31 magnesium alloys	plasma sputter, accompanied by the chemical vapor deposition method	3.5 wt.% NaCl	Coated steel 97% and AZ31 magnesium alloy 98 %	70
4.	Polyvinyl chloride nanofiber coated Aluminum (Al) Steel (S) Brass (B)	Electrospinnin g	3.5 wt.% NaCl	99.75 for Al 78.33 for Steel and 89.10 for brass	71
5.	PAN-GO _{CM} and PAN- BDMCAQD coated 316 L Stainless Steel	Electrospinnin g	3.5 wt.% NaCl	99.63 % for PAN- GOCM/ 316 L SS and 99.86 % for PAN- BDMCAQ D/316 L SS	48
6.	PVC-Ceria coated Aliminium	Electrospinnin g	0.1 M HCl	85.7	72
7.	PAN-CMQD coated 316 L SS	Electrospinnin	3.5 wt.% NaCl	99.18%	This work