----- SUPPLEMENTARY INFORMATION ------

Design and synthesis of non-hydroxamate lipophilic inhibitors of 1-deoxy-Dxylulose 5-phosphate reductoisomerase (DXR): in silico, in vitro and antibacterial studies

Sharyu Kesharwani¹, Eeba², Mukesh Tandi¹, Nisheeth Agarwal², Sandeep Sundriyal^{1*}

¹Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333 031, India

²Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Mile Stone, Gurugram-Faridabad Expressway, Faridabad 121001, Haryana, India

*Corresponding author

Email: sandeep.sundriyal@pilani.bits-pilani.ac.in

Contents	Page No.
Figure S1	S2
Figure S2	S3
Figure S3	S4
Figure S4	S5
Figure S5	S5
Figure S6	S6
Table S1	S7 - S10
Table S2	S10
Table S3	S11
Table S4	S11-S12
IC50 curves of representative compounds (Figures S7- S9)	S13-S14
Spectral Data for compounds (Figures S10 to S76)	S14-S48

Figure S1. Structure of fragments in MCL

Figure S2. Interactions of the cocrystallized ligands at the binding site of (A) 3R0I (B) 2Y1D (B), and (C) 5JAZ

Figure S3. Interaction of the designed molecules with DXR active site (PDB ID 3R0I) (A) derivative of fragment F2 (Docking score: -6.43 kcal/mol) displaying metal binding with the catechol hydroxy groups (B) derivative of fragment F12 (Docking score: -4.47 kcal/mol) displaying metal binding with amide carbonyl and phenolic Oxygen (C) 3D view of the designed derivatives occupying pocket A (by lipophilic R₁ substituent), and pocket B lined by Pro274 and Met276 residues (by aromatic rings of MBGs).

Figure S4. Docking poses of MBG containing non-hydroxamate DXR inhibitors (cyan balls and sticks) showing bidentate chelation of the Mn^{2+} ion (purple ball) inside the DXR pocket (3R0I). The cocrystallized ligand is shown in the yellow balls and sticks model. (A) designed inhibitors (in green balls and stick model) containing SA as MBG (F12) (B) designed inhibitors containing NA as MBG (F7) (C) designed inhibitors containing DHBA as MBG (F2).

Figure S5. Pi-pi stacking interaction between the phenyl R_1 substituent of the ligands derived from F7 (pink ball and sticks) with the indole ring of Trp296 residue of DXR (PDB ID 5JAZ). The cocrystallized ligand is rendered as green sticks. The *O*,*O* motif of the designed ligand overlays well with the hydroxamate MBG of the cocrystallized ligand.

Figure S6. The MIC determination of selective compounds against *M. tuberculosis* using Alamar Blue Assay)

Code	MW	clogP	clogS	HBD	HBA	Rotatable bonds
MCL01	123.1	0.2	-0.86	3	1	1
MCL02	137.1	0.6	-1.23	3	1	1
MCL03	139.1	-0.28	-3.24	4	1	1
MCL04	167.1	-0.32	-0.87	5	2	2
MCL05	139.1	-0.15	-0.56	4	2	1
MCL06	139.1	0.03	-1.09	4	2	1
MCL07	202	1.02	-1.46	3	1	1
MCL08	167.1	-0.26	-0.9	5	2	2
MCL09	181.2	0.08	-1.24	5	2	2
MCL10	167.1	-0.32	-0.87	5	2	2
MCL11	192	1.51	-2.09	3	1	1
MCL12	179.2	1.87	-1.9	3	1	4
MCL13	145.2	1.98	-2.55	2	1	0
MCL14	189.2	1.17	-2.06	4	2	1
MCL15	173.2	1.51	-2.36	3	1	1
MCL16	173.2	1.39	-2.46	3	1	1
MCL17	161.2	1.15	-4.41	3	1	0
MCL18	144.2	1.3	-2.4	2	1	0
MCL19	145.2	1.63	-2.03	2	1	0
MCL20	159.2	2.03	-2.39	2	1	0
MCL21	160.2	1.3	-2.63	3	2	0
MCL22	222.3	1.02	-3.41	4	1	1
MCL23	173.2	1.46	-2.34	3	1	1
MCL24	179.6	2.24	-2.76	2	1	0
MCL25	96.1	0.12	-0.59	3	1	0
MCL26	126.1	-0.53	-1.79	5	3	0
MCL27	128.2	0.29	-1.72	3	1	0
MCL28	128.2	0.16	-1.46	3	1	0
MCL29	140.2	1.08	-2.22	2	0	0

Table S1: Metal chelators and their properties (calculated using DataWarrior)

MCL30	140.1	0.87	-1.53	4	2	0
MCL31	142.2	0.68	-2.08	3	1	0
MCL32	144.2	0.29	-1.95	4	2	0
MCL33	135.1	-0.35	-2.27	5	2	0
MCL34	126.1	0.34	-0.7	4	2	0
MCL35	124.1	0.73	-0.84	3	1	0
MCL36	126.1	0.52	-1.18	4	2	0
MCL37	112.1	-0.86	-1.29	3	1	0
MCL38	128.2	-0.8	-0.28	2	1	0
MCL39	126.1	-0.19	-1.55	3	1	0
MCL40	126.1	-0.19	-1.55	3	1	0
MCL41	142.2	-0.13	-0.54	2	1	0
MCL42	140.1	0.27	-1.82	3	1	1
MCL43	142.1	-1.11	-1.04	4	2	1
MCL44	160.6	0.04	-1.95	3	1	1
MCL45	174.6	0.71	-2.21	3	1	1
MCL46	156.1	-0.44	-1.3	4	2	1
MCL47	170.1	-1.02	-1.15	5	2	1
MCL48	112.1	-0.72	-1.17	3	1	0
MCL49	111.1	-1.02	-0.88	3	1	0
MCL50	127.2	-0.81	-1.82	2	1	0
MCL51	153.2	0.38	-1.32	3	1	1
MCL52	167.2	0.78	-1.62	3	1	2
MCL53	153.2	0.33	-1.35	3	1	1
MCL54	111.1	-0.86	-1.03	3	2	0
MCL55	155.2	-0.02	-0.04	2	1	0
MCL56	125.1	-0.61	-0.67	3	1	0
MCL57	141.2	-0.39	-1.61	2	1	0
MCL58	155.1	-1.63	-0.61	5	2	1
MCL59	183.3	0.84	-0.61	2	1	2
MCL60	169.3	0.39	-0.34	2	1	1
MCL61	138.1	0.8	-1.33	3	2	1

MCL62	137.1	0.4	-1.41	3	2	1
MCL63	152.2	1.14	-1.68	3	2	1
MCL64	152.2	1.14	-1.68	3	2	1
MCL65	152.2	1.14	-1.68	3	2	1
MCL66	153.1	0.12	-1.41	4	3	1
MCL67	180.2	1.99	-2.2	3	2	2
MCL68	154.1	0.45	-1.04	4	3	1
MCL69	154.1	0.45	-1.04	4	3	1
MCL70	154.1	0.45	-1.04	4	3	1
MCL71	156.1	0.9	-1.65	3	2	1
MCL72	156.1	0.9	-1.65	3	2	1
MCL73	75.1	-0.81	-0.73	3	2	0
MCL74	111.1	-0.08	-0.68	3	2	1
MCL75	199.3	0.54	-1.27	3	1	4
MCL76	129.2	-1.7	0.12	3	3	0
MCL77	174.2	0.94	-2.77	3	1	0
MCL78	216.2	0.3	-1.26	4	2	3
MCL79	180.2	2.29	-3.03	2	0	0
MCL80	110.1	0.97	-1.02	2	2	0
MCL81	124.1	1.24	-1.34	2	1	1
MCL82	140.2	1.53	-2.74	1	0	1
MCL83	122.1	0.36	-1.32	2	1	0
MCL84	164.2	1.47	-1.87	2	1	1
MCL85	160.2	2.16	-2.63	2	2	0
MCL86	154.1	0.45	-1.04	4	3	1
MCL87	153.1	0.12	-1.41	4	3	1
MCL88	154.1	0.45	-1.04	4	3	1
MCL89	211.2	2.97	-4.31	3	1	1
MCL90	227.3	3.15	-2.88	2	1	1
MCL91	171.2	0.77	-1.86	3	1	1
MCL92					i	i
MCL/2	100.1	0.23	-1.1	2	0	2

MCL94	126.2	0.67	-1.61	2	0	1
MCL95	128.2	0.91	-1.53	2	0	3
MCL96	134.6	0.42	-1.43	2	0	2

 Table S2: Interactions shown by cocrystallized ligands at the binding site

Code	PDB ID	Structures of cocrystallized	RMSD	Docking	Metal	co-
		ligands		score	ordinati	on
				score	distance	2
	5JAZ		0.37	-10.7	2.20	2.23 Å
CL1					Å	
		o Z o				
		HO-P. OH				
		C113				
	2Y1D	О ОН	1.04	-3.9	2.21	2.12 Å
CL2		HO-P, N, O			Å	
		Cl				
		Ċl				
	3R0I	0 0	1.9	-3.86	2.46	2.09 Å
CL3	51101	HOZE A HOZE	1.7	2100	2.10	2.0711
		HO V V			A	
		CH ₃				
		E E				

Code	Molecular formula	MW	cLogP	HBA	HBD	RB	Basic	TPSA
							nitrogen	
FOS	C4H10NO5P	183.1	-4.14	6	3	4	0	107.8
(1)								
20a	C ₁₄ H ₁₄ NO ₅ P	307.2	-0.99	6	4	4	0	116.7
20b	C ₈ H ₁₀ NO ₅ P	231.1	-2.86	6	4	3	0	116.7
20e	C ₁₄ H ₁₂ NO ₅ Cl ₂ P	376.1	0.22	6	4	4	0	116.7
20c	C ₉ H ₁₂ NO ₅ P	245.2	-2.63	6	4	3	0	116.7
20d	$C_{18}H_{16}NO_5P$	357.3	0.21	6	4	4	0	116.7
21 a	C ₁₄ H ₁₄ NO ₆ P	323.2	-1.33	7	5	4	0	136.9
21b	C ₈ H ₁₀ NO ₆ P	247.1	-3.21	7	5	3	0	136.9
21c	C ₉ H ₁₂ NO ₆ P	261.2	-2.98	7	5	3	0	136.9
21d	$C_{18}H_{16}NO_6P$	373.3	-0.14	7	5	4	0	136.9
22a	$C_{18}H_{16}NO_5P$	357.3	0.21	6	4	4	0	116.7
22b	$C_{12}H_{12}NO_5P$	281.2	-1.67	6	4	3	0	116.7
22c	$C_{13}H_{14}NO_5P$	295.2	-1.44	6	4	3	0	116.7
22d	C ₂₂ H ₁₈ NO ₅ P	407.4	1.4	6	4	4	0	116.7
28 a	C ₁₄ H ₁₆ NO ₅ P	309.3	-2.81	6	5	4	0	119.8
23a	C ₁₇ H ₁₄ NO ₆ P	359.3	-1.21	7	3	4	1	122.7

Table S3: Physicochemical Properties of the synthesized derivatives and fosmidomycin (1)

Table S4 Percentage inhibition or MIC values of compounds at 500 μ M against different pathogens. Kanamycin or Isoniazid (INH) were used as a positive control, and 5% DMSO was used as a negative control.

ID	<i>M</i> .	<i>E</i> .	S.	A.	<i>K</i> .	S.	<i>V</i> .	<i>P</i> .
	tuberculosis	coli	aureu	baumanni	Pneumonia	typhimuriu	cholera	aerugin
			S	i	е	m	е	osa
20a	NA*	NA	NA	NA	NA	NA	NA	NA
22a	NA*	NA	NA	NA	NA	NA	NA	NA
21 a	NA*	NA	NA	NA	NA	NA	NA	NA
23a	NA*	NA	NA	NA	NA	NA	NA	NA
28 a	NA*	NA	NA	NA	NA	NA	NA	NA
20c	NA	NA	NA	NA	NA	NA	NA	NA

20e	$\frac{MIC}{\mu M} > 250$	NA						
22b	MIC > 250 μM	NA						
22c	NA	NA	NA	NA	NA	NA	NA	NA
21d	NA	NA	NA	NA	NA	NA	NA	NA
20d	$\frac{\text{MIC}}{\mu\text{M}} > 250$	NA						
22d	MIC 125 µM	NA						
21b	NA	NA	NA	NA	NA	NA	NA	NA
21c	NA	NA	NA	NA	NA	NA	NA	NA
Kana mycin (0.2 mg/m L)	NT	82 %	82 %	94 %	10 %	82 %	86 %	86 %
INH (0.212 μM)	44 %	NT						
NA = not active; NT = not tested *tested at 200 μM								

IC₅₀ curves of the representative compounds

Figure S7. IC₅₀ curve for compound 22b

Figure S9. IC₅₀ curve for compound 20d

Spectral data for compounds

Figure S10 1H NMR spectrum of 20a in [D₆]-DMSO (400 MHz, 300 K).

Figure S11 13C NMR spectrum of 20a in [D₆]-DMSO (101 MHz, 300 K).

Figure S12 31P NMR spectrum of 20a in [D₆]-DMSO (162 MHz, 300 K).

Figure S13. HRMS data for compound 20a

Figure S14. HPLC data for compound 20a

Figure S15 1H NMR spectrum of 20c in [D₆]-DMSO (400 MHz, 300 K).

Figure S16 31P NMR spectrum of 20c in [D₆]-DMSO (162 MHz, 300 K).

Figure S17 13C NMR spectrum of 20c in [D₆]-DMSO (101 MHz, 300 K).

Figure S18. HPLC trace for compound 20c

Figure S19 1H NMR spectrum of 20d in [D₆]-DMSO (400 MHz, 300 K).

Figure S20 13C NMR spectrum of 20d in [D₆]-DMSO (101 MHz, 300 K).

Figure S21 31P NMR spectrum of 20d in [D₆]-DMSO (162 MHz, 300 K).

221.61 C18H16NO5P

Figure S22. HRMS data for compound 20d

380.0658

2.18 1

380.065

(M+Na)+

<Chromatogram>

Figure S23. HPLC data for compound 20d

Figure S24 1H NMR spectrum of 20e in [D₆]-DMSO (400 MHz, 300 K).

Figure S25 13C NMR spectrum of 20e in [D₆]-DMSO (101 MHz, 300 K).

Figure S26 31P NMR spectrum of 20e in [D₆]-DMSO (162 MHz, 300 K).

Figure S27. HRMS data for compound 20e

Figure S28. HPLC data for compound 20e

Figure S29 1H NMR spectrum of 21a in [D₆]-DMSO (400 MHz, 300 K).

Figure S30 13C NMR spectrum of 21a in [D₆]-DMSO (101 MHz, 300 K).

Figure S31 31P NMR spectrum of 21a in [D₆]-DMSO (162 MHz, 300 K).

Figure S32. MS data for compound 21a

Figure S33. HPLC data for compound 21a

Figure S34 1H NMR spectrum of 21b in [D₄]- MeOD (400 MHz, 300 K).

Figure S35 13C NMR spectrum of 21b in [D₆]-DMSO (101 MHz, 300 K).

Figure S36 31P NMR spectrum of 21b in [D₆]-DMSO (162 MHz, 300 K).

HPLC trace

Figure S37. HPLC data for compound 21b

Figure S38 1H NMR spectrum of 21c in [D₆]-DMSO (400 MHz, 300 K).

Figure S39 13C NMR spectrum of **21c** in [D₆]-DMSO (101 MHz, 300 K).

Figure S40 31P NMR spectrum of 21c in [D₆]-DMSO (162 MHz, 300 K).

Figure S41. HPLC data for compound 21c

Figure S42 1H NMR spectrum of **21d** in [D₄]- MeOD (400 MHz, 300 K). Some solvent peaks observed Peak at 5.49 (s, broad) DCM,

Ethanol CH3 (t) 1.19and CH2 (q) 3.6

Ethyl acetate CH3CO (s) 2.01, CH2CH3 (q), 4.09 and CH2CH3 (t), 1.24

n-Hexane CH3 t 0.90 and CH2 m 1.29

Figure S43 13C NMR spectrum of 21d in [D₆]-DMSO (101 MHz, 300 K).

Figure S44 31P NMR spectrum of **21d** in [D₆]-DMSO (162 MHz, 300 K).

HRMS

Figure S45. HRMS data for compound 21d

Figure S46. HPLC data for compound 21d

Compound 22a

Figure S47 1H NMR spectrum of 22a in [D₆]-DMSO (400 MHz, 300 K).

Figure S48 13C NMR spectrum of 22a in [D₆]-DMSO (101 MHz, 300 K).

Figure S49 31P NMR spectrum of 22a in [D₆]-DMSO (162 MHz, 300 K).

HRMS

Figure S50. HRMS data for compound 22a

HPLC trace

Figure S51. HPLC data for compound 22a

Figure S52 1H NMR spectrum of 22b in [D₆]-DMSO (400 MHz, 300 K).

Figure S53 13C NMR spectrum of 22d in [D₆]-DMSO (101 MHz, 300 K).

Figure S54 31P NMR spectrum of 22b in [D₆]-DMSO (162 MHz, 300 K).

Figure S55. HRMS data for compound 22b

Figure S56. HPLC data for compound 22b

Figure S57 1H NMR spectrum of 22c in [D₆]-DMSO (400 MHz, 300 K).

Figure S58 13C NMR spectrum of 22c in [D₆]-DMSO (101 MHz, 300 K).

Figure S59 31P NMR spectrum of 22c in [D₆]-DMSO (162 MHz, 300 K).

Figure S60. HPLC data for compound 22c

Figure S61 1H NMR spectrum of 22d in [D₆]-DMSO (400 MHz, 300 K).

Figure S62 13C NMR spectrum of 22d in [D₆]-DMSO (400 MHz, 300 K).

Figure S63 31P NMR spectrum of 22d in [D₆]-DMSO (400 MHz, 300 K).

MS Spectrum Peak List

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
407.1003	407.0917	-21.14	1	223.79	C22H18NO5P	M+
408.0877	408.0995	28.96	1	124.2	C22H18NO5P	(M+H)+
430.084	430.0815	-5.82	1	345.85	C22H18NO5P	(M+Na)+
431.0903	431.0848	-12.8	1	198.17	C22H18NO5P	(M+Na)+

Figure S64. HRMS data for compound 22d

Figure S65. HPLC data for compound 22d

Figure S66 1H NMR spectrum of 23a in [D₆]-DMSO (400 MHz, 300 K).

Figure S67 13C NMR spectrum of 23a in [D₆]-DMSO (101 MHz, 300 K).

Figure S68 31P NMR spectrum of 23a in [D₆]-DMSO (162 MHz, 300 K).

Figure S69. HPLC data for compound 23a

Figure S70 1H NMR spectrum of 28a in [D₄]-MeOD (400 MHz, 300 K).

Figure S71 13C NMR spectrum of 28a in [D₆]-DMSO (101 MHz, 300 K).

Figure S72 31P NMR spectrum of 28a in [D₆]-DMSO (162 MHz, 300 K).

MS S	Spectrum	Peak	List

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
309.0777	309.0761	-5.28	1	704.96	C14H16NO5P	M+
310.0776	310.0839	20.39	1	364.03	C14H16NO5P	(M+H)+
332.059	332.0658	20.54	1	186.95	C14H16NO5P	(M+Na)+

Figure S73. HRMS data for compound 28a

Figure S74 1H NMR spectrum of 25a in [D]-CDCl₃ (400 MHz, 300 K).

Page S49 of S50

Figure S76 1H NMR spectrum of 25c in [D]-CDCl₃ (400 MHz, 300 K).