Supporting Information

TpBD/UiO-66-NH₂ micro-mesoporous hybrid material as a stationary phase of open tubular capillary electrochromatography

Lidi Gao^{1,2}, Xinran Qu¹, Shuang Meng¹, Mo Chen¹, Yuxin He¹, Fuquan Zhao¹,

Hongtao Chu^{1,2}, Shili Qin^{1,2*} and Fenglong Jin^{3*}

¹College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China;

²Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University, Qiqihar 161006, China;

³Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar University, Qiqihar 161006, China.

*Correspondence: qinshili1103@163.com;

1. Experimental Methods:

1.1 Preparation and composition of ammonium acetate buffers

The ammonium acetate buffers are prepared by titrating equi-molar concentrations (20 mmol/L) of ammonium acetate, ammonia and acetic acid or adjusting with ammonia and acetic acid till a desired pH is reached.

1.2 Preparation of samples solutions

Firstly, 25.0 mg of each standards (Glu, Asp, Ser, Ala, Val, Thr, Ile, Leu, Met, Trp, Phe, Arg and His; MHB, EHB, PHB and BHB; Mnz, Cpl, Tet and Ctc; SM1, SDM, SM2, SMZ, SIZ and ST) were accurately weighed, and then the standards were dissolved in a small amount of methanol or acetone solution, and then diluted with ultrapure water (18.2 M Ω /cm) to 5.0 mL to obtain their stock solutions with a concentration of 5.0 mg/mL. The work mixed solutions were obtained by mixing the corrsponding stock solution of 1.00 mL of each analyte.

1.3 Preparation of TpBD- and UiO-66-NH₂-bonded OT-CEC column

TpBD- and UiO-66-NH₂-bonded OT-CEC column preparation followed three steps process: (i) pretreatment of the capillary column, (ii) activation of aldehyde groups, (iii) modification of TpBD or UiO-66-NH₂. The first and second steps are consistent with the preparation method of TpBD/UiO-66-NH₂. For the immobilization of TpBD COF on the inner wall of the capillary column by TpBD-bonded OT-CEC column, the aldehyde-coated capillary was filled with a 1:1.5 molar ratio mixture of Tp (12.0 mg) and BD (16.0 mg) as the monomers, and kept for 12 h in a water bath at 80 °C with sealing at both ends^[1]. The reaction principle of UiO-66-NH₂ bonded open tubular column is the same as that of TpBD bonded open tubular column. In order to fix UiO-66-NH₂ on the inner wall of the capillary was filled with UiO-66-NH₂ (38.8 mg), and kept in a water bath at 80 °C for 24 h, both ends sealed. Both processes were repeated twice. The inner diameter, outer diameter and effective length of TpBD- and UiO-66-NH₂-bonded OT-CEC column.

2. Supporting Figures:

Fig. S1 Chemical structures of the analytes investigated

Fig. S2 Schematic illustration of TpBD/UiO-66-NH₂ synthesis

Fig. S3 EDS mapping (A-D) of TpBD/UiO-66-NH₂.

Fig. S4 Zeta potential curve of TpBD/UiO-66-NH₂.(Experimental conditions: 0.2 mg/mL of TpBD/UiO-66-NH₂, 20 mmol/L ammonium acetate buffer, 25°C.) (n=3)

Fig. S5 Effect of buffer pH on EOF. (Experimental conditions: sample, 1.0 mg/mL thiourea; 20 mmol/L of ammonium acetate buffer solution; operating voltage, 15 kV.) (n=3)

Fig. S6 Separation chromatogram of MHB, EHB, PHB and BHB with different runs. (Experimental conditions: sample, 5 mg/mL the mixture of MHB, EHB, PHB and BHB; 20 mmol/L of ammonium acetate buffer, pH=9; operating voltage, 15 kV; detection wavelength, 254 nm.)

Fig. S7 Effects of buffer solution pH under the conditions of 20 mmol/L of ammonium acetate buffer and operating voltage of 15 kV (A), buffer concentration (pH=8) at operating voltage of 15 kV (B) and separation voltage with 20 mmol/L of ammonium acetate buffer (pH=8) (C) on resolution of 13 amino acids on TpBD/UiO-66-NH₂-bonded OT-CEC column. (Detection wavelength, 214 nm. Rs of all the analytes under the different experimental conditions was the average of three determinations (n=3).)

Fig. S8 Effects of buffer solution pH under the conditions of 20 mmol/L of ammonium acetate buffer and operating voltage of 15 kV (A), concentration (pH=9) at operating voltage of 15 kV (B) and separation voltage with 20 mmol/L of ammonium acetate buffer (pH=9) (C) on resolution of four antibiotics on TpBD/UiO-66-NH₂-bonded OT-CEC column (Detection wavelength, 270 nm. (n=3)).

Fig. S9 Effects of buffer solution pH under the conditions of 20 mmol/L of ammonium acetate buffer and operating voltage of 20 kV (A), concentration (pH=9) at operating voltage of 20 kV (B) and separation voltage with 20 mmol/L of ammonium acetate buffer (pH=9) (C) on resolution of four preservatives on TpBD/UiO-66-NH₂-bonded OT-CEC column (Detection wavelength, 270 nm. (n=3)).

Fig. S10 Effects of buffer solution pH under the conditions of 20 mmol/L of ammonium acetate buffer and operating voltage of 15 kV (A), concentration (pH=9) at operating voltage of 15 kV (B) and separation voltage with 20 mmol/L of ammonium acetate buffer (pH=9) (C) on resolution of six sulfonamides on TpBD/UiO-66-NH₂-bonded OT-CEC column. (Detection wavelength, 254 nm.

(n=3)).

Fig. S11 Separation diagrams of four antibiotics (A), four preservatives (B) and six sulfonamides (C) on three open-tubular columns. (Experimental conditions: 20 mmol/L of ammonium acetate buffer; pH=9; operating voltage, 15 kV; detection wavelength, sulfonamides at 254 nm, antibiotics and preservatives at 270 nm.)

3. Supporting Tables:

	1	2 3
Elements	Peak BE	Atomic%
Cls	283.48	60.45
Ols	530.28	29.03
N1s	182.19	4.81
Zr3d	398.34	5.72

Table S1 XPS data of TpBD/UiO-66-NH₂ hybrid material

Table S2 Pore structure parameters of UiO-66-NH2, TpBD, TpBD/UiO-66-NH2

Samples	S _{BET} (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
UiO-66-NH ₂ ^[32]	897.78	0.31	1.232
TpBD ^[33]	524.38	0.84	3.50-7.80
TpBD/UiO-66-NH ₂	340.04	0.21	1.18-2.65

 Table S3 Reproducibility and stability of the TpBD/UiO-66-NH2 bonded OT-CEC column.

	RSDs (%) of migration time			RSDs (%) of resolution			
Types and numbers (n)	MHB	EHB	PHB	BHB	MHB-		PHB-BHB
					EHB	ЕНВ-РНВ	
Run to run (n=9)	1.24	1.17	1.62	1.55	1.85	1.79	1.94
Day to day (n=9)	1.63	1.74	1.71	1.83	2.14	1.86	1.99
Column to column (n=3)	2.99	3.12	3.20	3.17	4.01	3.23	3.94
Runs (n=200)	3.54	3.46	3.93	3.69	3.77	3.72	4.31

Stationary phase	Analytes	Migration time Column efficiency			
		(t /min)	(plates/m)	Ks	a
	MHB	4.34	43460	-	-
	EHB	4.71	33023	2.55	1.09
	PHB	5.29	14355	3.79	1.12
	BHB	5.77	21785	3.60	1.09
	Mnz	3.76	8155	-	-
	Cpl	4.65	11979	3.52	1.24
	Tet	5.71	5607	3.68	1.23
трво	Ctc	6.61	9110	2.58	1.16
	SM1	2.85	4500	-	-
	SDM	3.41	6423	3.08	1.20
	SM2	3.93	5304	2.45	1.15
	ST	4.52	8412	2.51	1.15
	SIZ	5.21	16317	3.36	1.15
	SMZ	5.77	9823	2.79	1.11
	MHB	6.47	30636	-	-
	EHB	6.61	37820	0.74	1.02
	PHB	6.73	17400	1.05	1.02
	BHB	6.93	6033	1.32	1.03
	Mnz				
	Cpl	617	6800		
	Tet	0.17	0809	-	-
010-00-1112	Ctc				
	SM1	5.89	7143	-	-
	SDM				
	SM2				
	ST	5.92	7394	0.14	1.00
	SIZ				
	SMZ				
	MHB	2.59	3315	-	-
	EHB	2.91	3682	7.21	1.52
TpBD/UiO-66-NH ₂	PHB	5.55	14888	8.86	1.41
	BHB	6.97	16672	6.22	1.25
	Mnz	3.85	2651	-	-
	Cpl	4.73	5295	2.44	1.32
	Tet	5.48	20540	2.38	1.16
	Ctc	6.29	12968	2.45	1.15
	SM1	2.07	4858	-	-
	SDM	2.55	9998	3.68	1.23
	SM2	2.95	30092	6.69	1.16
	ST	3.47	5833	3.79	1.18
	SIZ	3.02	8866	2.99	1.12
	SMZ	4.34	64903	4.04	1.11

Table S4 Separation results of the analytes by three types of bonded-OT column