Supporting Information

Metal free C–O bond cleavage: a new strategy for the synthesis of substituted oxazoles

Shengwang Li,^a Guiqin Liu,^a Zheyan Zhang,^a Ruiling, Chen,^{b*} Haiying Tian,^{b*} Huifeng Wang,^{a*} Xiuling Chen^{a*}

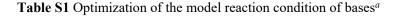
^aHubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of

Science and Technology, Xianning 437100, China

^bSchool of Pharmacy, Changzhi Medical College, Changzhi, 046000, China

[Fax: (+86)-715-8338072; E-mail: cx1828800@163.com (Dr. X. L. Chen)]

Contents

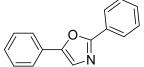

General remarks	2
General procedure	2
¹ H and ¹³ C NMR data of products	3-9
References	9-10
Copies of ¹ H and ¹³ C NMR spectra	11-34

1. General remarks

All non-aqueous reactions and manipulations were performed in air atmosphere. All solvents were purchased from Energy Chemical, Aladdin and used without further treatment. The reactions were monitored by GC (7820A, Hubei University of Science and Technology) and GC-MS (QP2010, Hunan University). The electron ionization (EI) method was used as the ionization method for the HRMS measurement, and the mass analyzer type is TOF for EI. The ¹H NMR and ¹³C NMR spectra were recorded on a Brucker ADVANCE III spectrometer at 400 MHz and 100 MHz, respectively (Hubei University of Science and Technology). Flash column chromatography was performed using silica gel 40-70 µm (200-300 mu). Amines and azide compounds were purchased from Energy Chemical and used without further treatment.

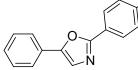
2. General procedure

A 10-mL Schlenk-type tube equipped with a magnetic stir bar was charged with substituted 2-oxo-2-phenylethyl acetate **1a-11** (0.2 mmol), primary amine **2a-2m** (0.24 mmol), K₂CO₃ (0.4 mmol), I₂ (0.4 mmol), under N₂ atmospheres, ethyl acetate (2 mL) was added at room temperature, and then the reaction mixture was stirred at 80 °C for 8 h, the reaction was monitored by GC or GC-MS. After completion of the reaction, the resulting solution was cooled to room temperature, and neutralized with saturated NaCl solution. The product was extracted with ethyl acetate, dried over anhydrous Mg₂SO₄ and concentrated in vacuum. The crude product was purified by flash column chromatography on silica gel and eluted with ethyl acetate/Petroleum ether (1/5-1/10) give analytically pure product.


$ \bigcirc 0 \\ 0 \\ 0 \\ + Ph \\ NH_2 \longrightarrow \bigcirc 0 \\ N \\$						
1	la	2a	3a			
Entry	Additive		Solvent			
1	NaOH/I ₂	ethyl acetate		35%		
2	KOH/I ₂	ethyl acetate		47%		
3	NEt ₃ /I ₂	eth	nyl acetate	trace		

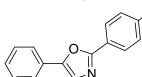
4	Na ₂ CO ₃ /I ₂	ethyl acetate	63%
5	Cs_2CO_3/I_2	ethyl acetate	52%
6	C ₄ H ₉ OK /I ₂	ethyl acetate	81%
7	K_2CO_3/I_2	ethyl acetate	90%

^{*a*}Reaction conditions: 2-oxo-2-phenylethyl acetate **1a** (0.2 mmol), benzylamine **2a** (0.24 mmol), I₂ (0.4 mmol), base (0.4 mmol), ethyl acetate (2 mL), N₂ in 25 mL schlenk tube, 80 °C, 8 h. ^{*b*}Isolated yield.


3. ¹H NMR and ¹³C NMR data of products

2,5-diphenyloxazole (3a)¹

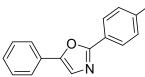
Following the general procedure (EtOAc/Petroleum ether 1:20), **3a** was obtained as a colorless solid, isolated yield: 88%, m.p. 66-68 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (q, 2H, *J* = 4.0 Hz), 7.71 (d, 2H, *J* = 7.6 Hz), 7.42-7.50 (m, 6H), 7.34 (t, 1H, *J* = 7.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 161.2, 151.3, 130.4, 128.9, 128.8, 128.5, 128.1, 127.5, 126.3, 124.2, 123.5; GC-MS: m/z = 221.25.


5-phenyl-2-(p-tolyl)oxazole (3b)²

Following the general procedure (EtOAc/Petroleum ether 1:5), **3b** was obtained as a colorless solid, isolated yield: 85%, m.p. 71-73 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.00 (d, 2H, *J* = 8.0 Hz), 7.71 (d, 2H, *J* = 7.6 Hz), 7.44 (t, 3H, *J* = 7.0 Hz), 7.33 (d, 1H, *J* = 7.6 Hz), 7.28 (d, 2H, *J* = 8.0 Hz), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 161.1, 151.0, 140.7, 129.6, 128.9, 128.3, 128.2, 126.3, 124.8, 124.2, 123.4, 21.6; GC-MS: m/z = 235.09.

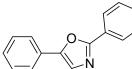
2-(4-methoxyphenyl)-5-phenyloxazole (3c)¹

OCH₃

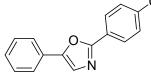


Sc was obtained as a colorless solid, isolated yield: 84%, m.p. 78-79 °C. ¹H NMR (CDCl₃, 400

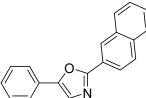
MHz): δ 7.71 (t, 3H, *J* = 6.6 Hz), 7.64 (s, 1H), 7.34-7.46 (m, 5H), 7.00 (q, 1H, *J* = 4.2 Hz), 3.89 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 161.1, 159.9, 151.3, 129.9, 128.9, 128.7, 128.5, 128.0, 124.2, 123.4, 118.8, 116.9, 111.0, 55.5; GC-MS: m/z = 251.09.


2-(4-nitrophenyl)-5-phenyloxazole (3d)³

 NO_2

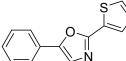

Following the general procedure (EtOAc/Petroleum ether 1:5), **3d** was obtained as a colorless solid, isolated yield: 81%, m.p. 209-213 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.34 (d, 2H, J = 9.2 Hz), 8.13-8.15 (m, 2H), 7.86 (d, 2H, J = 8.8 Hz), 7.66 (s, 1H), 7.52 (t, 3H, J = 3.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 162.8, 149.1, 147.2, 133.8, 131.1, 129.0, 126.9, 126.8, 126.7, 124.6, 124.5; GC-MS: m/z = 266.25.

2-(4-bromophenyl)-5-phenyloxazole (3e)⁴

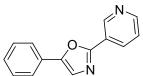

Following the general procedure (EtOAc/Petroleum ether 1:5), **3e** was obtained as a colorless solid, isolated yield: 79%, m.p. 100-102 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, 2H, J = 8.8 Hz), 7.69 (d, 2H, J = 7.6 Hz), 7.69 (d, 2H, J = 8.8 Hz), 7.41-7.45 (m, 3H), 7,34 (t, 1H, J = 7.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 171.1, 160.3, 151.6, 132.1, 128.9, 128.6, 127.8, 127.7, 126.4, 124.8, 124.2, 123.6; GC-MS: m/z = 298.99.

2-(4-chlorophenyl)-5-phenyloxazole (3f)⁵

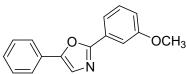
Following the general procedure (EtOAc/Petroleum ether 1:5), **3f** was obtained as a colorless solid, isolated yield: 80%, m.p. 103-105 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.04 (d, 2H, J = 8.8 Hz), 7.71 (d, 2H, J = 7.6 Hz), 7.42-7.56 (m, 5H), 7.34 (t, 1H, J = 7.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 160.2, 151.6, 136.4, 129.1, 128.9, 128.6, 127.9, 127.5, 125.9, 124.3, 123.6; GC-MS: m/z = 255.04.


2-(naphthalen-2-yl)-5-phenyloxazole (3g)²

Following the general procedure (EtOAc/Petroleum ether 1:5), **3i** was obtained as a colorless solid, isolated yield: 85%, m.p. 99-102 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.60 (s, 1H),8.19 (d, 1H, *J* = 8.4 Hz), 7.77-7.93 (m, 5H), 7.47-7.56 (m, 5H), 7.38 (t, 1H, *J* = 7.2


Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 161.4, 151.5, 134.2, 133.1, 128.9, 128.73, 128.71, 128.5, 128.1, 127.9, 127.3, 126.8, 126.2, 124.8, 124.3, 123.6, 123.2; GC-MS: m/z = 271.09.

5-phenyl-2-(thiophen-2-yl)oxazole (3h)⁵


Following the general procedure (EtOAc/Petroleum ether 1:5), **3g** was obtained as a colorless solid, isolated yield: 78%, m.p. 72-74 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.74 (d, 1H, *J* = 3.6 Hz), 7.71 (d, 2H, *J* = 7.6 Hz), 7.42-7.46 (m, 3H), 7.36 (s, 1H), 7.34 (t, 1H, *J* = 7.4 Hz), 7.14 (q, 1H, *J* = 4.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 157.4, 150.9, 130.1, 128.9, 128.5, 128.3, 127.9, 127.8, 127.6, 124.2, 123.3; GC-MS: m/z = 227.04.

5-phenyl-2-(pyridin-3-yl)oxazole (3i)¹

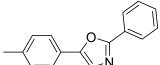
Following the general procedure (EtOAc/Petroleum ether 1:5), **3h** was obtained as a colorless solid, isolated yield: 81%, m.p. 77-79 °C. ¹H NMR (CDCl₃, 400 MHz): δ 9.35 (d, 1H, *J* = 1.2 Hz), 8.69 (d, 1H, *J* = 3.2 Hz), 8.36 (d, 1H, *J* = 8.0 Hz), 7.73 (d, 2H, *J* = 7.6 Hz), 7.36-7.49 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.7, 152.1, 150.9, 147.5, 133.5, 129.0, 128.9, 127.6, 124.4, 123.8, 123.7; GC-MS: m/z = 238.11.

2-(3-methoxyphenyl)-5-phenyloxazole (3j)⁶

Following the general procedure (EtOAc/Petroleum ether 1:5), **3j** was obtained as a colorless solid, isolated yield: 80%, m.p. 81-84 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (t, 2H, *J* = 6.6 Hz), 7.64 (s, 1H), 7.34-7.46 (m, 5H), 7.00 (q, 1H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 161.1, 159.9, 151.3, 129.9, 128.9, 128.7, 128.5, 128.0, 124.2, 123.4, 118.8, 116.9, 111.0, 55.5; GC-MS: m/z = 251.09.

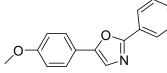
diphenyl benzylphosphoramidate (3k)³

 \bigwedge N OCH₃ Following the general procedure (EtOAc/Petroleum ether 1:5), **3j** was obtained as a colorless solid, isolated yield: 74%, m.p. 77-79 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.74 (t, 2H, *J* = 6.6 Hz), 7.65 (s, 1H), 7.33-7.47 (m, 5H), 7.01 (q, 1H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 161.1, 159.9, 151.4, 130.0, 129.0, 128.7, 128.5, 128.0, 124.3, 123.5, 118.8, 116.9, 111.0, 55.5; GC-MS: m/z = 251.09.

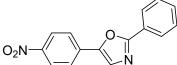

2-benzyl-5-phenyloxazole (3l)²

Following the general procedure (EtOAc/Petroleum ether 1:10), **31** was obtained as a colorless solid, isolated yield: 70%, m.p. 71-72C. ¹H NMR (CDCl₃, 400 MHz): δ 8.31 (d, 2H, *J* = 7.2 Hz), 7.47 (t, 2H, *J* = 7.6 Hz), 7.24-7.49 (m, 7H), 4.18 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 167.7, 138.3, 125.5, 134.4, 131.2, 128.83, 128.75, 127.1, 126.8, 124.1, 122.0, 40.6; GC-MS: m/z = 235.09.

2-ethyl-5-phenyloxazole (3m)¹


Following the general procedure (EtOAc/Petroleum ether 1:10), **3m** was obtained as a colorless liquid, isolated yield: 71%. ¹H NMR (CDCl₃, 400 MHz): δ 7.75 (d, 2H, *J* = 7.2 Hz), 7.34 (t, 2H, *J* = 7.6 Hz), 7.19 (t, 1H, *J* = 7.4 Hz), 7.09 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 149.7, 139.9, 134.5, 128.5, 126.3, 124.7, 114.7, 20.3, 11.2; GC-MS: m/z = 173.08.

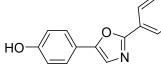
2-phenyl-5-(p-tolyl)oxazole (3n)¹


Following the general procedure (EtOAc/Petroleum ether 1:10), **3n** was obtained as a colorless solid, isolated yield: 85%, m.p. 69-71 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (d, 2H, J = 8.0 Hz), 7.60 (d, 2H, J = 8.0 Hz), 7.45-7.50 (m, 3H), 7.39 (s, 1H), 7.24 (d, 2H, J = 7.6 Hz), 2,39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 160.9, 151.5, 138.5, 130.2, 129.6, 128.8, 127.6, 126.2, 125.3, 124.2, 122.8, 21.4; GC-MS: m/z = 235.09.

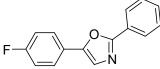
5-(4-methoxyphenyl)-2-phenyloxazole (3o)¹

Following the general procedure (EtOAc/Petroleum ether 1:10), **30** was obtained as a colorless solid, isolated yield: 84%, m.p. 88-89 °C. ¹H (CDCl₃, 400 MHz): δ 8.10 (d, 2H, *J* = 6.4 Hz), 7.64 (d, 2H, *J* = 8.8 Hz), 7.42-7.49 (m, 3H), 7.32 (s, 1H), 6.97 (d, 2H, *J* = 8.8 Hz), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 160.6, 159.9, 151.4, 130.1, 128.8, 127.7, 126.2, 125.8, 122.0, 121.0, 114.5, 55.4; GC-MS: m/z = 251.09.

5-(4-nitrophenyl)-2-phenyloxazole (3p)⁷


Following the general procedure (EtOAc/Petroleum ether 1:10), **3p** was obtained as a colorless solid, isolated yield: 89%, m.p. 112-115 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.31 (d, 2H, J = 9.2 Hz), 8.13-8.15 (m, 2H), 7.86 (d, 2H, J = 8.8 Hz), 7.66 (s, 1H), 7.52 (d, 3H, J = 3.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 162.8, 149.1, 147.2, 133.8, 131.1, 129.0, 126.9, 126.8, 126.7, 124.6, 124.5; GC-MS: m/z = 266.06.

2-phenyl-5-(4-(trifluoromethyl)phenyl)oxazole (3q)¹

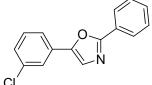

Following the general procedure (EtOAc/Petroleum ether 1:10), **3q** was obtained as a colorless solid, isolated yield: 74%, m.p. 203-205 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (q, 2H, J = 3.8 Hz), 7.81 (d, 2H, J = 8.0 Hz), 7.69 (d, 2H, J = 8.0 Hz), 7.56 (s, 1H), 7.49 (q, 3H, J = 2.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 162.0, 149.9, 131.6, 131.2 (d, J_{c-f} = 94 Hz), 130.8, 129.9 128.9, 127.1, 126.5, 126.0 (d, J_{c-f} = 4.0 Hz), 125.2, 124.2; GC-MS: m/z = 289.07.

4-(2-phenyloxazol-5-yl)phenol (3r)⁶

Following the general procedure (EtOAc/Petroleum ether 1:10), **3r** was obtained as a colorless solid, isolated yield: 81%, m.p. > 250 °C. ¹H NMR (DMSO-*d*, 400 MHz): δ 9.89 (s, 1H), 8.06 (t, 2H, *J* = 6.4 Hz), 7.65 (d, 2H, *J* = 8.8 Hz), 7.59 (s, 1H), 7.49-7.57 (m, 3H), 6.87 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (DMSO-*d*, 100 MHz): δ 159.7, 158.5, 151.8, 130.8, 129.6, 127.5, 126.3, 126.2, 122.3, 119.0, 116.4; GC-MS: m/z = 237.07.

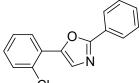
5-(4-fluorophenyl)-2-phenyloxazole (3s)¹

Following the general procedure (EtOAc/Petroleum ether 1:10), **3s** was obtained as a colorless solid, isolated yield: 79%, m.p. 72-74 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.09 (q, 2H, J = 7.2 Hz), 7.69-7.72 (m, 2H), 7.47-7.49 (m, 3H), 7.38 (s, 1H), 7.15 (d, 2H, J = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 161.2 (d, $J_{c-f} = 30$ Hz), 150.5, 130.4, 129.1, 128.9, 129.9, 127.2, 126.3, 126.1 (d, $J_{c-f} = 8.0$ Hz), 123.1, 116.0 (d, $J_{c-f} = 22$ Hz); GC-MS: m/z = 239.07. M

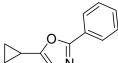

5-(4-bromophenyl)-2-phenyloxazole (3t)⁶

Following the general procedure (EtOAc/Petroleum ether 1:10), **3t** was obtained as a colorless solid, isolated yield: 81%, m.p. 101-103 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.09 (q, 2H, *J* = 4.0 Hz), 7.58 (s, 4H), 7.45-7.49 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 161.5, 150.3, 132.2, 130.5, 128.9, 127.3, 127.0, 126.4, 125.7, 124.0, 123.3; GC-MS: m/z = 298.99.

5-(4-chlorophenyl)-2-phenyloxazole (3u)¹


Following the general procedure (EtOAc/Petroleum ether 1:10), **3u** was obtained as a colorless solid, isolated yield: 80%, m.p. 110-112 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.09 (q, 2H, *J* = 3.8 Hz), 7.62 (d, 2H, *J* = 8.4 Hz), 7.46-7.50 (m, 3H), 7.41 (d, 2H, *J* = 3.6 Hz), 7.39 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 161.4, 150.3, 134.2, 130.5, 129.2, 128.9, 127.3, 126.5, 126.4, 125.4, 123.9; GC-MS: m/z = 255.04.

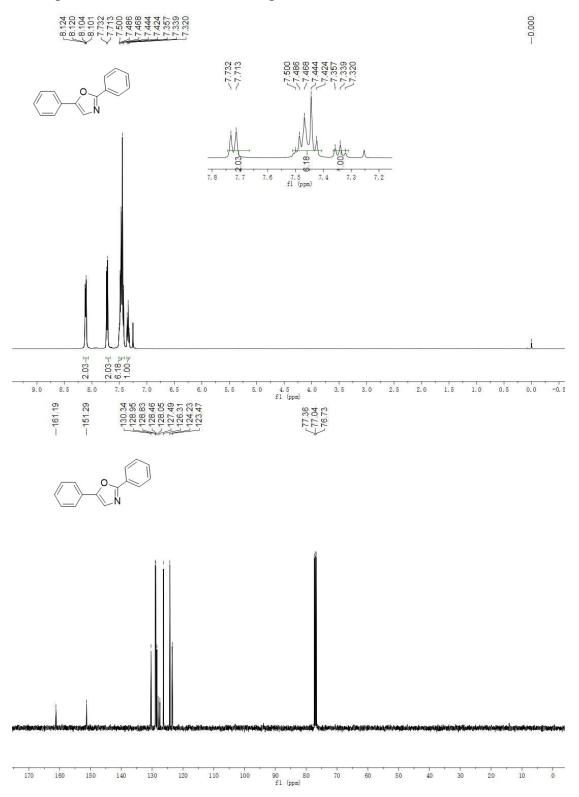
5-(3-chlorophenyl)-2-phenyloxazole (3v)⁴

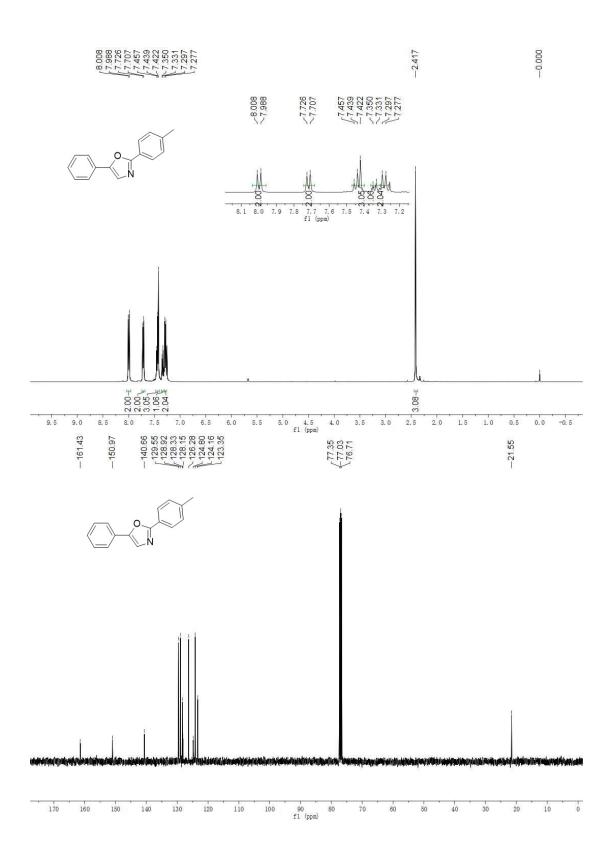

Cl Following the general procedure (EtOAc/Petroleum ether 1:10), 3v was obtained as a colorless solid, isolated yield: 81%, 102-104 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (m, 2H), 7.69 (s, 1H), 7.57 (d, 1H, J = 8.0 Hz), 7.46-7.49 (m, 4H), 7.36 (t, 1H, J = 8.0 Hz), 7.28 (d, 1H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 161.6, 149.9, 135.1, 130.6, 130.2, 129.7, 128.9, 128.4, 127.2, 126.4, 124.4, 124.2, 122.2; GC-MS: m/z = 255.04

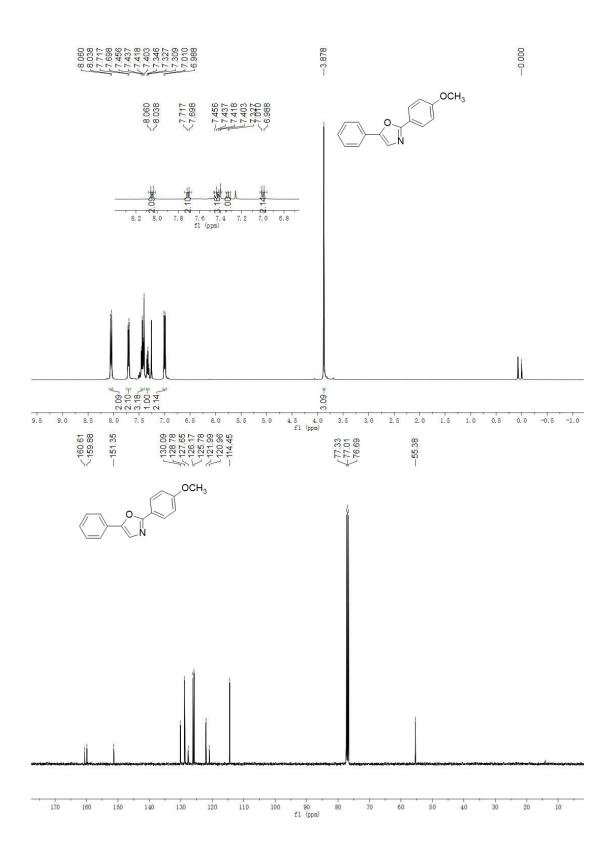
5-(2-chlorophenyl)-2-phenyloxazole (3w)⁷

Cl Following the general procedure (EtOAc/Petroleum ether 1:10), **3w** was obtained as a colorless solid, isolated yield: 74%, 101-102 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (q, 2H, *J* = 3.8 Hz), 7.72 (s, 1H), 7.59 (d, 1H, *J* = 8.0 Hz), 7.48-7.51 (m, 4H), 7.36 (t, 1H, *J* = 8.0 Hz), 7.31 (d, 1H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 161.6, 149.9, 135.1, 130.6, 130.3, 129.7, 128.9, 128.4, 127.3, 126.4, 124.5, 124.2, 122.3; GC-MS: m/z = 255.04.

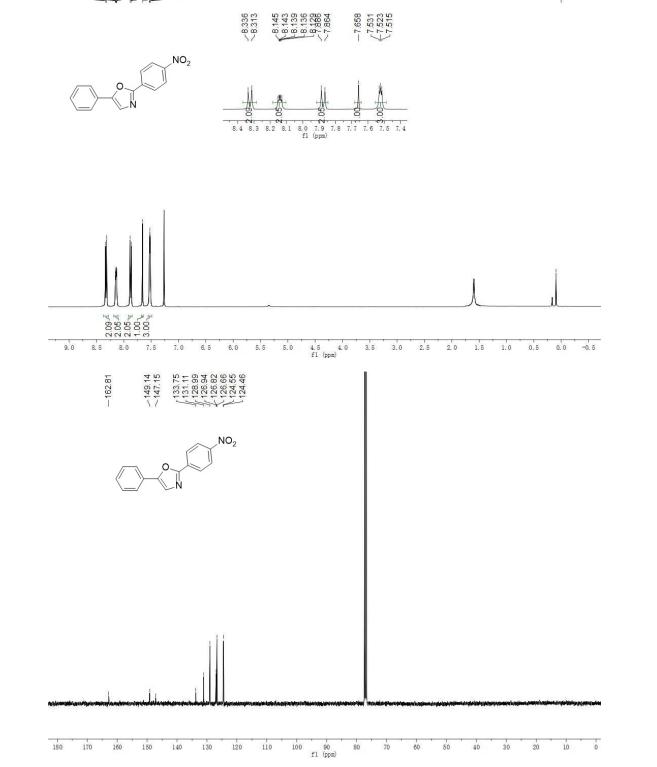
5-cyclopropyl-2-phenyloxazole (3x)⁴

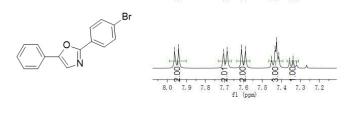

Following the general procedure (EtOAc/Petroleum ether 1:10), **3x** was obtained as a colorless solid, isolated yield: 69%, 70-72 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.99 (q, 2H, *J* = 3.8 Hz), 7.40-7.45 (m, 3H), 6.81 (s, 1H), 1.92-1.99 (m, 1H), 0.97-1.00 (m, 2H), 0.85-0.88 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 161.1, 154.6, 129.9, 128.7, 127.8, 126.0, 122.6, 6.7, 6.5; GC-MS: m/z = 185.08.

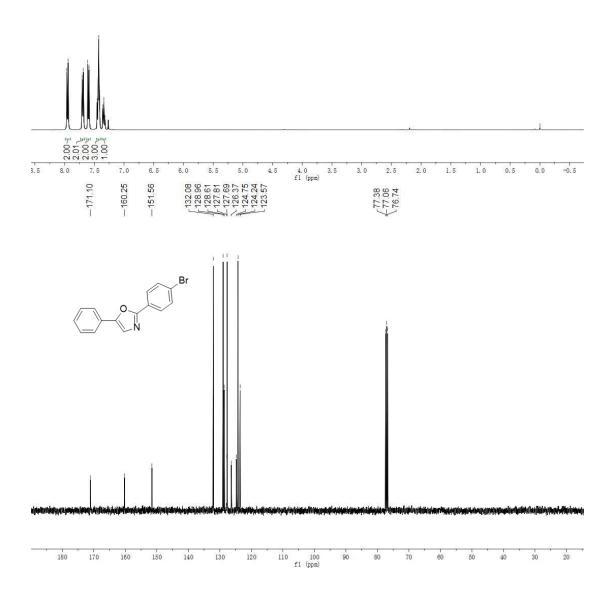

4. References


- Chatterjee, T.; Cho, J. Y.; Cho, E. J. Synthesis of Substituted Oxazoles by Visible-Light Photocatalysis. J. Org. Chem. 2016, 81 (16), 6995–7000. https://doi.org/10.1021/acs.joc.6b00989.
- (2) Xu, Z.; Zhang, C.; Jiao, N. Synthesis of Oxazoles through Copper-Mediated Aerobic Oxidative Dehydrogenative Annulation and Oxygenation of Aldehydes and Amines. *Angew. Chem. Int. Ed.* 2012, *51* (45), 11367–11370. https://doi.org/10.1002/anie.201206382.
- (3) Yuan, S.; Li, Z.; Xu, L. Convenient One-Pot Synthesis of 2,5-Disubstituted Oxazoles via a Catalytic Oxidative Dehydrogenation of F₃ CSO₃ H·SiO₂ -DDQ/CuCl₂/LiCl: Oxazole, Aldoximes, Cyclization, DDQ, Catalytic Oxidation. *J. Heterocycl. Chem.* **2013**, *50* (6), 1405– 1409. https://doi.org/10.1002/jhet.1637.
- (4) Yu, X.; Chen, K.; Wang, Q.; Zhang, W.; Zhu, J. Synthesis of 2,5-Disubstituted Oxazoles *via* Cobalt(III)-Catalyzed Cross-Coupling of *N* -Pivaloyloxyamides and Alkynes. *Chem. Commun.* 2018, *54* (10), 1197–1200. https://doi.org/10.1039/C7CC08611C.
- (5) Zhang, X.; He, Y.; Li, J.; Wang, R.; Gu, L.; Li, G. CO 2 /Photoredox-Cocatalyzed Tandem Oxidative Cyclization of α-Bromo Ketones and Amines To Construct Substituted Oxazoles. *J. Org. Chem.* **2019**, *84* (12), 8225–8231. https://doi.org/10.1021/acs.joc.9b00283.

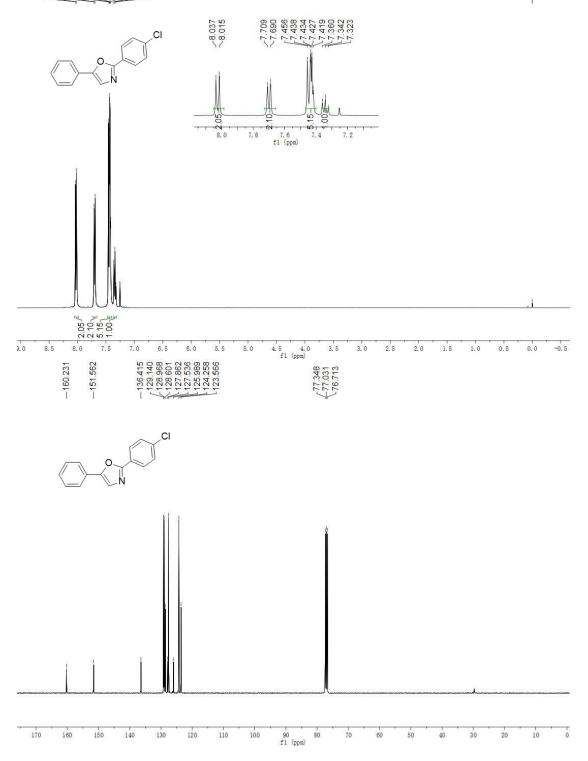
- (6) Jiang, H.; Huang, H.; Cao, H.; Qi, C. TBHP/I₂ -Mediated Domino Oxidative Cyclization for One-Pot Synthesis of Polysubstituted Oxazoles. *Org. Lett.* **2010**, *12* (23), 5561–5563. https://doi.org/10.1021/ol1023085.
- Hu, T.; Yan, H.; Liu, X.; Wu, C.; Fan, Y.; Huang, J.; Huang, G. Metal-Free Sp3 C–H Functionalization: PABS/I2-Promoted Synthesis of Polysubstituted Oxazole Derivatives from Arylethanones and 2-Amino-2-Alkyl/Arylacetic Acid. *Synlett* 2015, *26* (20), 2866–2869. https://doi.org/10.1055/s-0035-1560660.

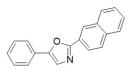

Copies of ¹H NMR and ¹³C NMR spectra

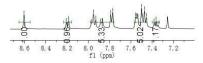


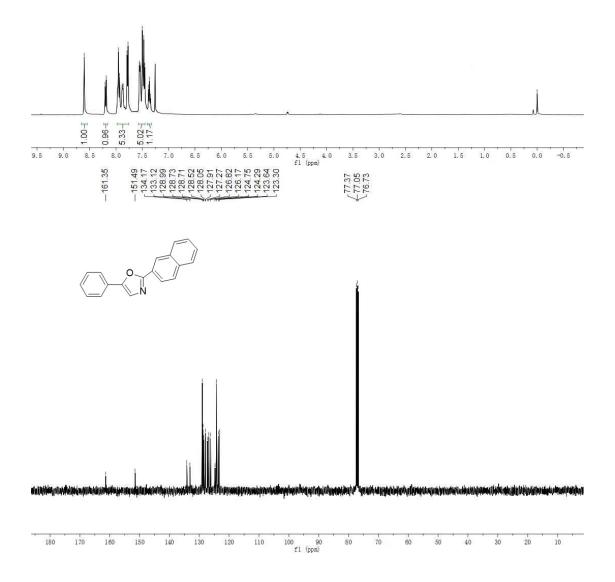


000.0---

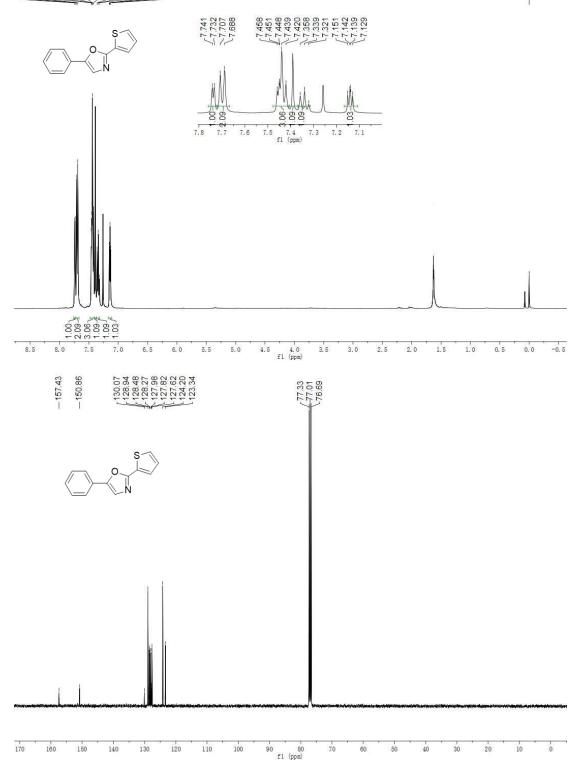

~7.963 ~7.941 ~7.61 ~7.655 ~7.655 ~7.655 ~7.455 ~7.455 ~7.455 ~7.455 ~7.414 ~7.335 ~7.335 ~7.335

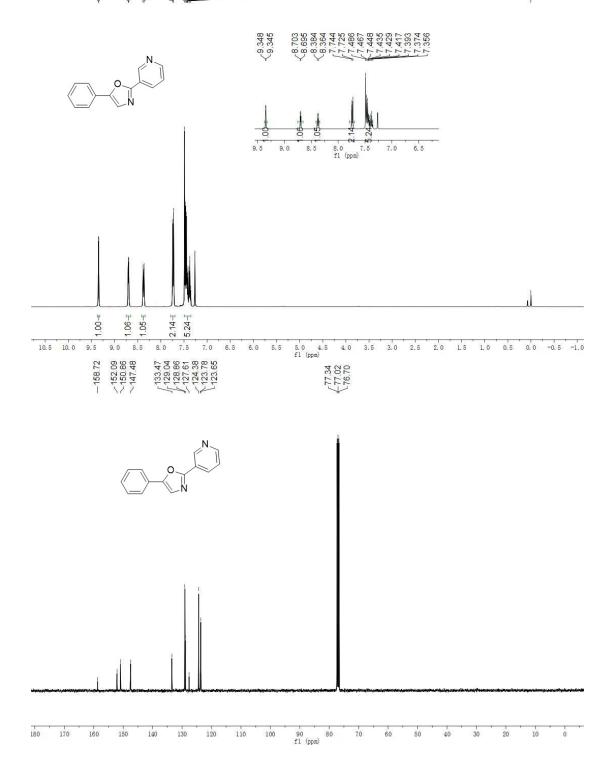

000.0----

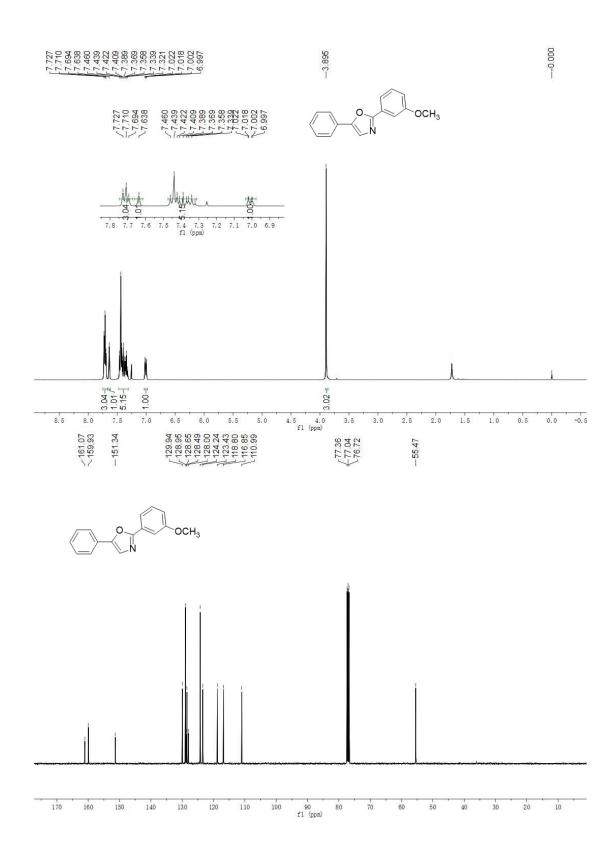

8.037 8.015 7.709 7.709 7.456 7.438 7.433 7.433 7.433 7.433 7.433 7.433 7.433 7.333 7.332

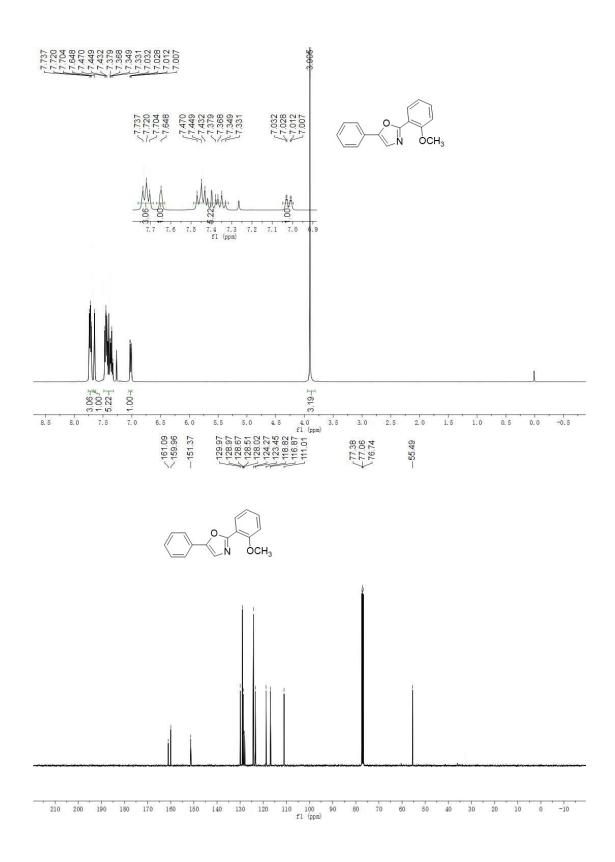



0000-

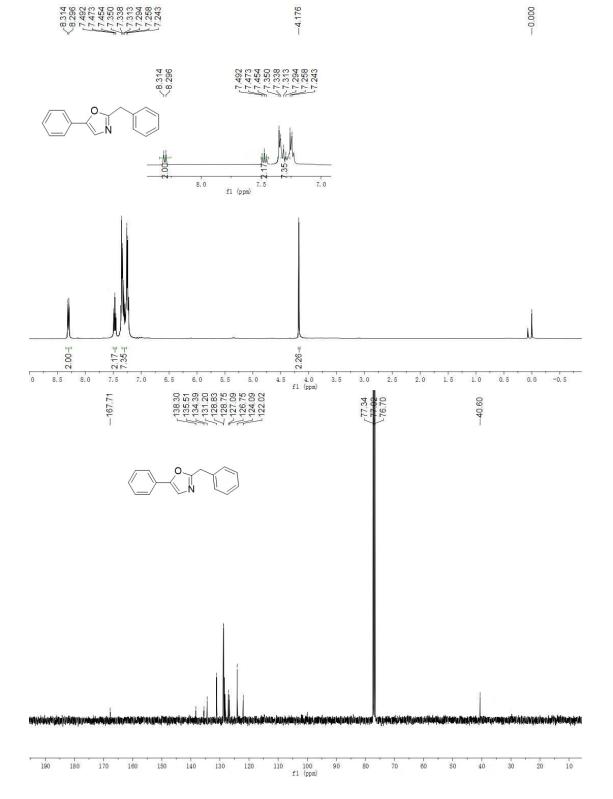

-8.604 -8.604 -8.206 -8.206 -8.206 -8.206 -8.205 -7.871 -7.555 -7 000.0----

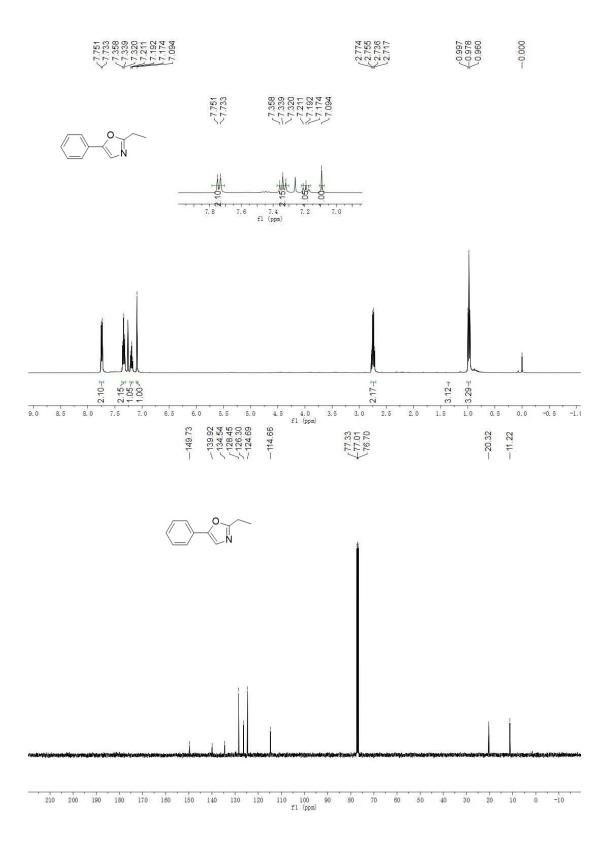


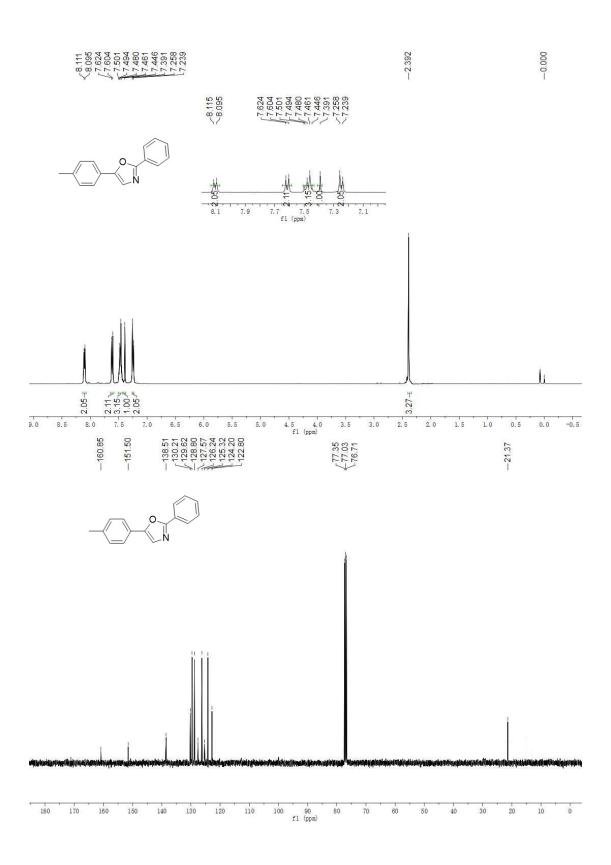


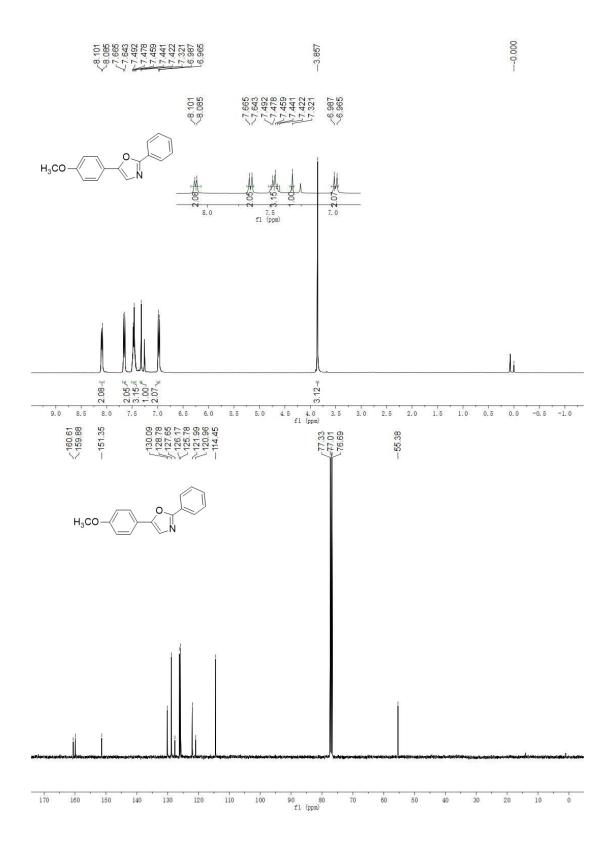

000.0---

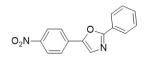
C9.348 C9.345 C9.345 C8.695 C8.695 C8.685 C8.745 C7.7448 C8.745 C7.7448 C7.745 C7.775 C7.755 C7.775 C7.755 C7.775 C7.755 C7.7

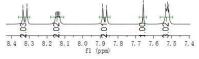


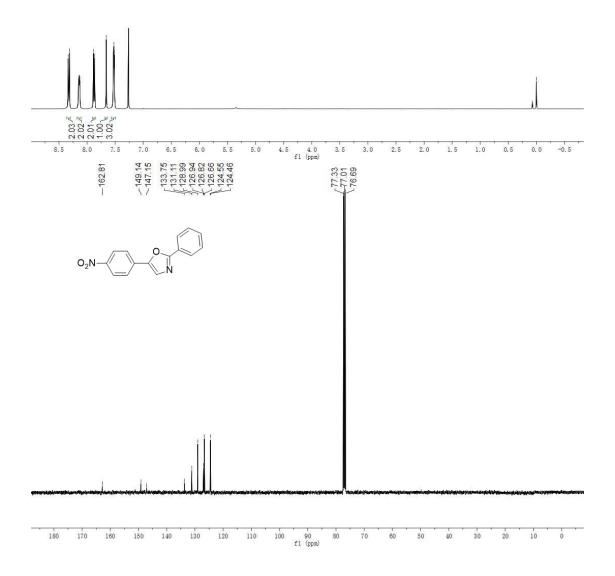

000.0---

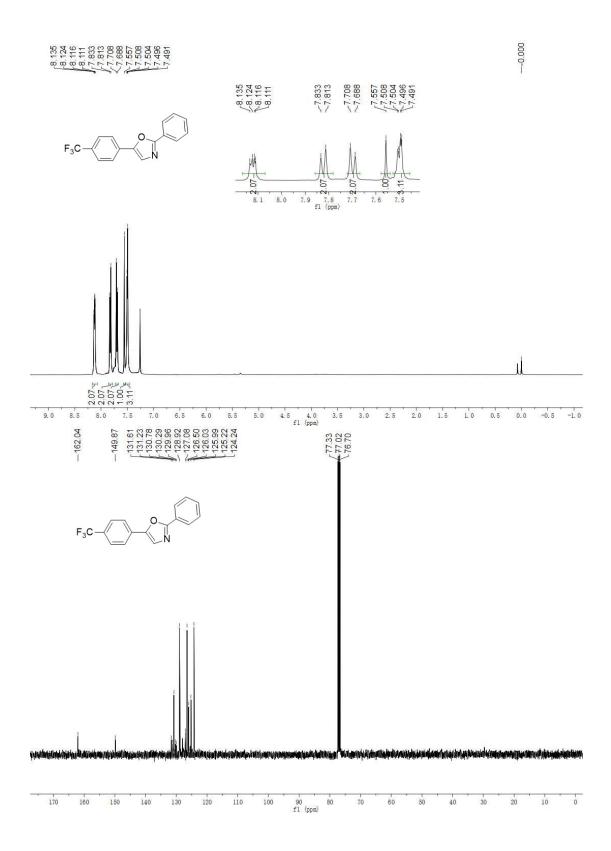


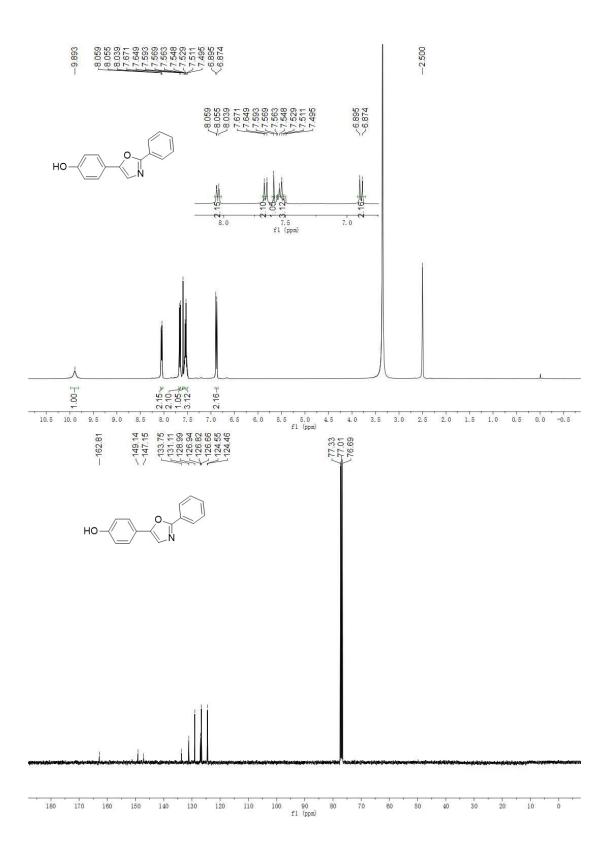


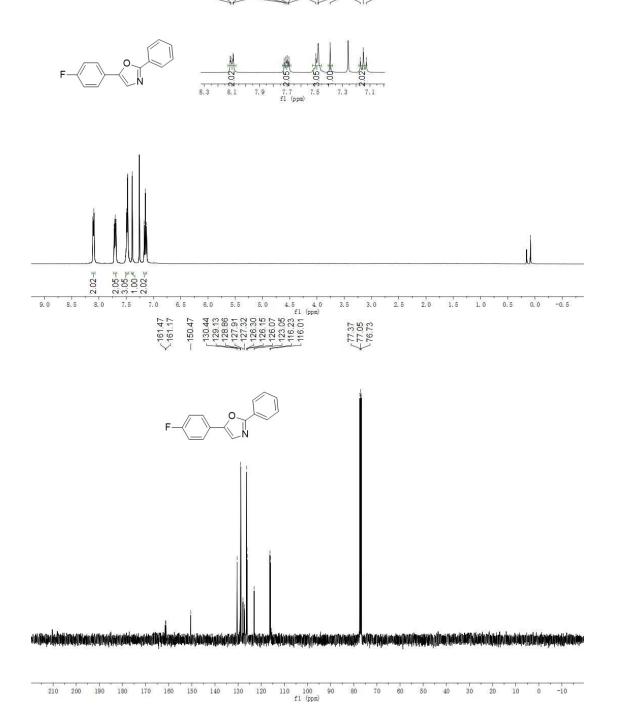




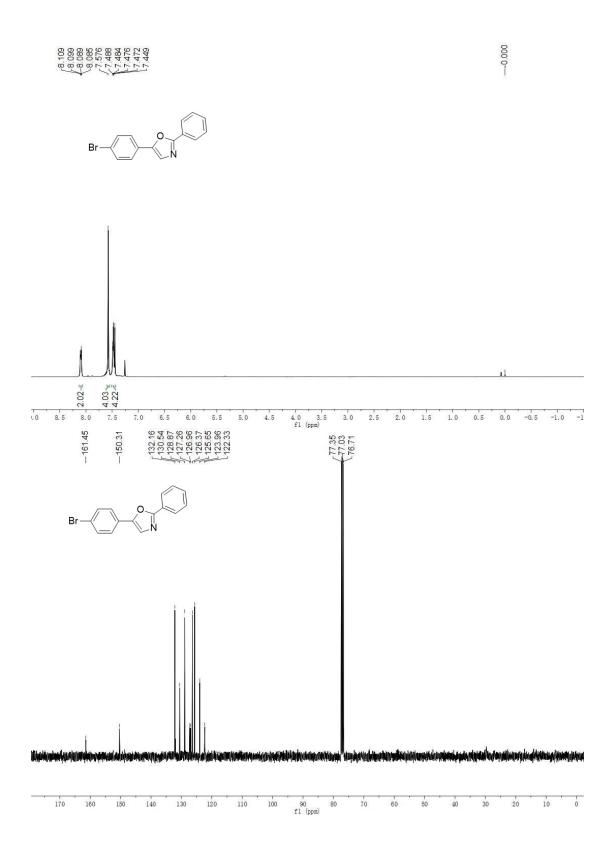


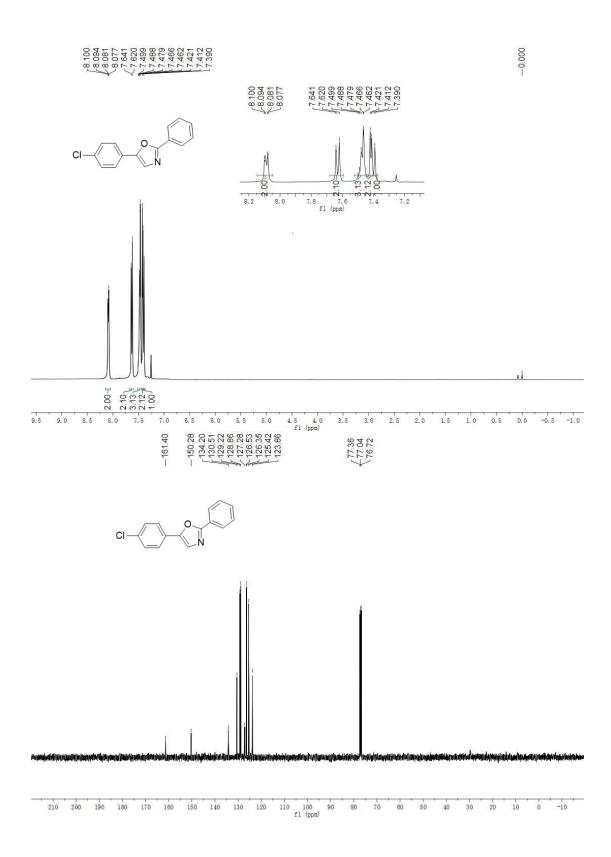


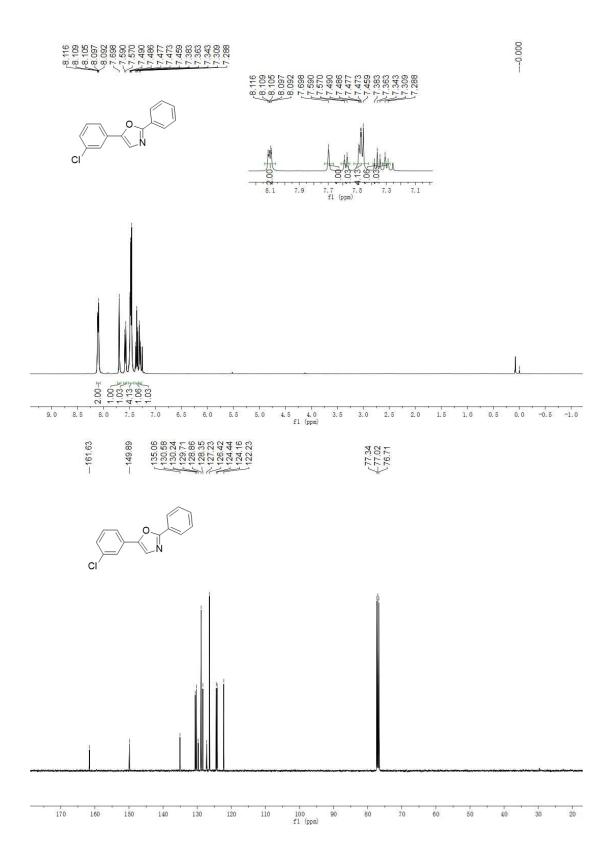




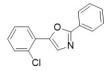
000.0---

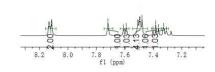


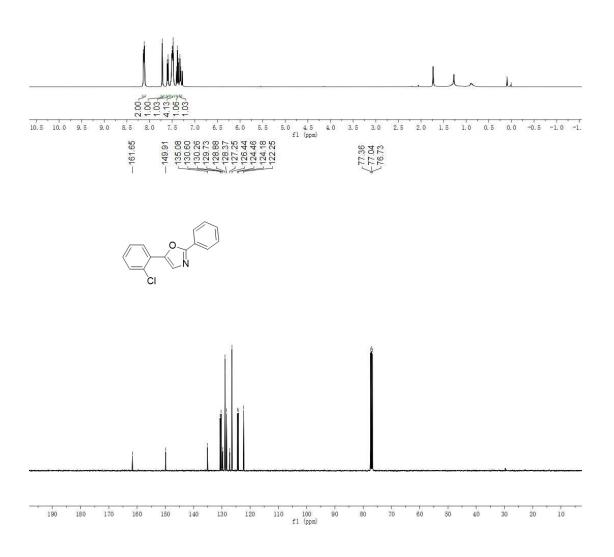


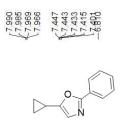


000.0----








000.0---



1.987 1.974 1.954 1.954 1.954 1.954 1.932 1.932 1.938 1.920 1.928 1.920 1.928 1.920 1.928 1.920 1.928 1.920 1.928 1.920 1.928 1.920 1.928 1.9386 1.938 1.938 1.9385 1.938 1.9385 1.9385 1.9385 1.9385 1.9385 1.9385 1.9385 1.9385 1.

