Ti and Zr complexes bearing guanidine–phenolate ligands: coordination chemistry and polymerization studies

Víctor Flores-Romero, Jesse LeBlanc, Zichuan Chen and Gino G. Lavoie*

York University, Department of Chemistry

Toronto, Canada

Electronic Supporting Information

Table of Contents

Figure S1. ¹ H NMR spectrum of 1CI (400 MHz, CDCI ₃)	S5
Figure S2. ¹³ C{ ¹ H} NMR spectrum of 1CI (100 MHz, CDCI ₃)	S5
Figure S3. ¹ H NMR spectrum of 2CI (300 MHz, CDCI ₃)	S6
Figure S4. ¹³ C{ ¹ H} NMR spectrum of 2CI (100 MHz, CDCI ₃)	S6
Figure S5. ¹ H NMR spectrum of L1H (300 MHz, CDCI ₃)	S7
Figure S6. ¹³ C{ ¹ H} NMR spectrum of L1H (75 MHz, CDCI ₃)	S7
Figure S7. ¹ H NMR spectrum of L1H·HCI (400 MHz, D ₂ O)	S8
Figure S8. ¹³ C{ ¹ H} NMR spectrum of L1H·HCI (100 MHz, D ₂ O)	S8
Figure S9. ¹ H NMR spectrum of L1'H (400 MHz, CDCl ₃)	S9
Figure S10. ¹³ C{ ¹ H} NMR spectrum of L1'H (75 MHz, CDCI ₃)	S9
Figure S11. ¹ H NMR spectrum of L1'H·HCI (400 MHz, CDCI ₃)	S10
Figure S12. ¹³ C NMR spectrum of L1'H·HCI (100 MHz, CDCI ₃)	S10
Figure S13. ¹ H NMR spectrum of L2H·HCI (300 MHz, CDCI ₃)	S11
Figure S14. ¹³ C{ ¹ H} NMR spectrum of L2H·HCI (75 MHz, CDCI ₃)	S11
Figure S15. ¹ H NMR spectrum of L2H (300 MHz, CDCI ₃)	S12
Figure S16. ¹³ C{ ¹ H} NMR spectrum of L2H (75 MHz, CDCI ₃)	S12
Figure S17. ¹ H NMR spectrum of L4H·HCI (400 MHz, CDCI ₃)	S13
Figure S18. ¹³ C{ ¹ H} NMR spectrum of L4H·HCI (100 MHz, CDCI ₃)	S13
Figure S19. ¹ H NMR spectrum of L4H (400 MHz, C ₆ D ₆)	S14
Figure S20. ¹³ C{ ¹ H} NMR spectrum of L4H (100 MHz, C ₆ D ₆)	S14
Figure S21. ¹ H NMR spectrum of Ti1a (400 MHz, C ₆ D ₆)	S15
Figure S22. ¹³ C{ ¹ H} NMR spectrum of Ti1a (100 MHz, C ₆ D ₆)	S15
Figure S23. ¹ H NMR spectrum of Ti1'a (400 MHz, C ₆ D ₆)	S16
Figure S24. ¹³ C{ ¹ H} NMR spectrum of Ti1'a (100 MHz, C ₆ D ₆)	S16
Figure S25. ¹ H NMR spectrum of Zr1a (400 MHz, C ₆ D ₆)	S17
Figure S26. ¹³ C{ ¹ H} NMR spectrum of Zr1a (100 MHz, C ₆ D ₆)	S17
Figure S27. ¹ H NMR spectrum of Zr1'a (400 MHz, C ₆ D ₆)	S18
Figure S28. ¹³ C{ ¹ H} NMR spectrum of Zr1'a (100 MHz, C ₆ D ₆)	S18
Figure S29. ¹ H NMR spectrum of Ti2a (400 MHz, C ₆ D ₆)	S19
Figure S30. ¹³ C{ ¹ H} NMR spectrum of Ti2a (75 MHz, CDCI ₃)	S19
Figure S31. ¹ H- ¹ H COSY spectrum of Ti2a (400 MHz, C ₆ D ₆)	S20
Figure S32. ¹ H- ¹³ C HSQC spectrum of Ti2a (400 MHz, C ₆ D ₆)	S21

Figure S33. ¹ H NMR spectrum of Zr2a (300 MHz, C ₆ D ₆)	S22
Figure S34. ¹³ C{ ¹ H} NMR spectrum of Zr2a (75 MHz, C ₆ D ₆)	S22
Figure S35. ¹ H- ¹ H COSY spectrum of Zr2a (400 MHz, C ₆ D ₆)	S23
Figure S36. ¹ H- ¹³ C HSQC spectrum of Zr2a (400 MHz, C ₆ D ₆)	S24
Figure S37. ¹ H NMR spectrum of Ti3a (300 MHz, C ₆ D ₆)	S25
Figure S38. ¹³ C{ ¹ H} NMR spectrum of Ti3a (75 MHz, C ₆ D ₆)	S25
Figure S39. ¹ H NMR spectrum of Zr3a (400 MHz, C ₆ D ₆)	S26
Figure S40. ¹³ C{ ¹ H} NMR spectrum of Zr3a (100 MHz, C ₆ D ₆)	S26
Figure S41. ¹ H NMR spectrum of Ti4a (300 MHz, C ₆ D ₆)	S27
Figure S42. ¹³ C{ ¹ H} NMR spectrum of Ti4a (75 MHz, C ₆ D ₆)	S27
Figure S43. ¹ H NMR spectrum of Zr4a (400 MHz, C ₆ D ₆)	S28
Figure S44. ¹³ C{ ¹ H} NMR spectrum of Zr4a (100 MHz, C ₆ D ₆)	S28
Figure S45. ¹ H NMR spectrum of Ti1b (400 MHz, C ₆ D ₆)	S29
Figure S46. ¹³ C{ ¹ H} NMR spectrum of Ti1b (100 MHz, C ₆ D ₆)	S29
Figure S47. ¹ H NMR spectrum of Ti1'b (400 MHz, CDCI ₃)	S30
Figure S48. ¹³ C{ ¹ H} NMR spectrum of Ti1'b (100 MHz, CDCI ₃)	S30
Figure S49. ¹ H NMR spectrum of Ti2b (400 MHz, CDCI ₃)	S31
Figure S50. ¹³ C{ ¹ H} NMR spectrum of Ti2b (100 MHz, CDCI ₃)	S31
Figure S51. ¹ H NMR spectrum of the polymer produced with Zr2a (400 MHz, CDCl ₃)	S32
Figure S52.Homonuclear-decoupled ¹ H NMR spectrum of the polymer produced with Zr2a (4 MHz_CDCl ₂)	.00
Figure S53 13 C { ¹ H} spectrum of the polymer produced with 7r2a (100 MHz CDCl ₂)	<u>رود</u> د
Figure S54. Kinetic plot for the polymerization of rac-lactide by $Sn(Oct)_{2}$, $Ti(OiPr)_{4}$, $Ti1a$, $Ti1'a$	Ti2a
Ti3a, and Ti4a.	\$33
Figure S55. Kinetic plot for the polymerization of <i>rac</i> -lactide by Sn(Oct) ₂ , Zr(OiPr) ₄ . ⁱ PrOH, Zr12 $7r12a$ $7r2a$ $7r3a$ and $7r4a$	a, \$34
Figure S56. Kinetic plot for the polymerization of <i>rac</i> -lactide by L2H, Zr2a with purified mono	mer
and Zr2a + ⁱ PrOH	S34
Figure S57. Number-average molecular weight of PLA produced by Zr2a as a function of conv	/ersion. \$35
Figure S58. Decay Zr2a as a function of time when dissolved in toluene and heated to 120 °C	S35
Figure S59. Representative GPC chromatogram plot of a polymer sample, herein obtained us complex Zr1a (entry 6)	ing S36
Figure S60. MALDI-TOF mass spectrum of the polymer obtained using complex Ti2a	S36
Figure S61. MALDI-TOF mass spectrum of the polymer obtained using complex Zr2a	S37

Figure S62 MALDI-TOF mass spectrum of the polymer obtained using complex L2H	S37
Table S1. Relative energies (kJ mol ⁻¹) of the five diastereoisomers for the bis(alkoxide) complex Ti3a , Zr3a, and Ti4a	xes S38
Table S2. Rate constant of the polymerization of rac-lactide	S38
Table S3. Crystal data for Ti3a	\$39
Table S4. Crystal data for Zr3a	S40
Table S5. Crystal data for Ti4a	S41
Table S6. Crystal data for Ti2b	S42

Figure S1. ¹H NMR spectrum of 1CI (400 MHz, CDCI₃)

Figure S2. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of 1Cl (100 MHz, CDCl_3)

Figure S3. ¹H NMR spectrum of 2CI (300 MHz, CDCI₃)

-S6-

Figure S5. ¹H NMR spectrum of L1H (300 MHz, CDCl₃)

Figure S6. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of L1H (75 MHz, CDCl₃)

Figure S7. ¹H NMR spectrum of L1H·HCI (400 MHz, D₂O)

Figure S11. ¹H NMR spectrum of L1'H·HCI (400 MHz, CDCI₃)

Figure S12. ¹³C NMR spectrum of L1'H·HCI (100 MHz, CDCI₃)

Figure S13. ¹H NMR spectrum of L2H·HCI (300 MHz, CDCI₃)

Figure S14. ¹³C{¹H} NMR spectrum of L2H·HCI (75 MHz, CDCI₃)

Figure S17. ¹H NMR spectrum of L4H·HCI (400 MHz, CDCI₃)

Figure S18. ¹³C{¹H} NMR spectrum of L4H·HCI (100 MHz, CDCI₃)

Figure S19. ¹H NMR spectrum of L4H (400 MHz, C₆D₆)

Figure S21. ¹H NMR spectrum of Ti1a (400 MHz, C₆D₆)

Figure S25.¹H NMR spectrum of Zr1a (400 MHz, C₆D₆)

Figure S26.¹³C{¹H} NMR spectrum of Zr1a (100 MHz, C₆D₆)

Figure S28.¹³C{¹H} NMR spectrum of Zr1'a (100 MHz, C₆D₆)

Figure S30.¹³C{¹H} NMR spectrum of Ti2a (75 MHz, CDCI₃)

Figure S31. ¹H-¹H COSY spectrum of Ti2a (400 MHz, C₆D₆)

Figure S32. ¹H-¹³C HSQC spectrum of Ti2a (400 MHz, C₆D₆)

Figure S33.¹H NMR spectrum of Zr2a (300 MHz, C₆D₆)

Figure S34.¹³C{¹H} NMR spectrum of Zr2a (75 MHz, C₆D₆)

Figure S35. $^{1}H^{-1}H$ COSY spectrum of Zr2a (400 MHz, C₆D₆)

Figure S36. ¹H-¹³C HSQC spectrum of Zr2a (400 MHz, C₆D₆)

Figure S37.¹H NMR spectrum of Ti3a (300 MHz, C₆D₆)

Figure S39.1H NMR spectrum of Zr3a (400 MHz, C₆D₆)

Figure S41.¹H NMR spectrum of Ti4a (300 MHz, C₆D₆)

Figure S42.¹³C{¹H} NMR spectrum of Ti4a (75 MHz, C₆D₆)

Figure S43.¹H NMR spectrum of Zr4a (400 MHz, C₆D₆)

Figure S46.¹³C{¹H} NMR spectrum of Ti1b (100 MHz, C₆D₆)

Figure S47.¹H NMR spectrum of Ti1'b (400 MHz, CDCI₃)

Figure S48.¹³C{¹H} NMR spectrum of Ti1'b (100 MHz, CDCI₃)

10 ppm

Figure S50.¹³C{¹H} NMR spectrum of Ti2b (100 MHz, CDCI₃)

Figure S51.¹H NMR spectrum of the polymer produced with Zr2a (400 MHz, CDCl₃)

Figure S52.Homonuclear-decoupled 1 H NMR spectrum of the polymer produced with Zr2a (400 MHz, CDCl₃)

Figure S53. ¹³C {¹H} spectrum of the polymer produced with Zr2a (100 MHz, CDCl₃)

Figure S54. Kinetic plot for the polymerization of rac-lactide by Sn(Oct)₂, Ti(OiPr)₄, Ti1a, Ti1a, Ti2a, Ti3a, and Ti4a.

Figure S56. Kinetic plot for the polymerization of *rac*-lactide by L2H, Zr2a with purified monomer and Zr2a + ⁱPrOH.

Figure S57. Number-average molecular weight of PLA produced by Zr2a as a function of conversion. The triangles (\blacktriangle) represent the M_n measured by NMR end-group analysis. The circles (\bullet) represent the theoretical M_n based on the initial LA:Zr ratio, assuming a living system.

Figure S58. Decay Zr2a as a function of time when dissolved in toluene and heated to 120 °C.

Figure S59. Representative GPC chromatogram plot of a polymer sample, herein obtained using complex Zr1a (entry 6).

Figure S60. MALDI-TOF mass spectrum of the polymer obtained using complex Ti2a.

Figure S61. MALDI-TOF mass spectrum of the polymer obtained using complex Zr2a.

Figure S62. MALDI-TOF mass spectrum of the polymer obtained using complex L2H.

Table S1. Relative energies (kJ mol⁻¹) of the five diastereoisomers for the bis(alkoxide) complexes Ti3a , Zr3a, and Ti4a

		<i>cis</i> -O ⁱ Pr		trans	- O ⁱ Pr
Complex	cis-N,N-	cis-N,N-	trans-N,N-	cis-N,N-	trans-N,N-
	trans-O,O	cis-O,O	cis-O,O	cis-O,O	trans-O,O
Ti3a	0.0	5	15	46	50
Zr3a	0.0	1	15	44	35
Ti4a	0.0	28	27	70	62

Table S2. Rate constant of the polymerization of *rac*-lactide

entry ^a	Catalyst	$k_{ m app}$	$M_n^{\ b}$	${ m M_w}^b$	D^c
		$(10^{-5} \mathrm{s}^{-1})$	(Da)	(Da)	
1	Ti2a	1.42	2600	3600	1.4
2	Zr2a	2.03	2100	2900	1.4
3	$\mathbf{L}2\mathbf{H}^{d}$	0.92	2800	3900	1.4

^{*a*}All polymerization were carried out at 130 °C to full conversion and a lactide-to-catalyst stoichiometric ratio of 1000:1. ^{*b*}Determined by GPC in THF ^{*c*} $\mathcal{D} = M_w \div M_n$ as determined by GPC ^{*d*}Lactide:catalyst stoichiometric ratio of 500:1.

Table S3. Crystal data for Ti3a

$C_{28}H_{42}N_6O_4Ti$
574.57
173.0
monoclinic
P21/n
23.2014(7)
10.7004(3)
24.3975(7)
90
95.7949(12)
90
6026.1(3)
8
1.267
0.326
2448.0
0.1 imes 0.1 imes 0.1
MoKa ($\lambda = 0.71073$)
5.076 to 60.066
$-29 \le h \le 32, -15 \le k \le 15, -34 \le 1 \le 34$
157194
17589 [Rint = 0.0771, Rsigma = 0.0307]
17589/0/779
1.131
R1 = 0.0532, wR2 = 0.1254
R1 = 0.0643, wR2 = 0.1316
e Å-3 0.43/-0.60

Table S4. Crystal data for Zr3a

Empirical formula	$C_{28}H_{42}N_6O_4Zr$
Formula weight	617.89
Temperature/K	173.00
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	9.6548(4)
b/Å	15.7838(6)
c/Å	19.7193(7)
α/°	90
β/°	90.246(2)
γ/°	90
Volume/Å ³	3005.0(2)
Z	4
$\rho_{calc}g/cm^3$	1.366
μ/mm^{-1}	0.408
F(000)	1296.0
Crystal size/mm ³	0.4 imes 0.4 imes 0.1
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	^o 4.218 to 55.134
Index ranges	-12 \leq h \leq 12, -20 \leq k \leq 20, -25 \leq l \leq 25
Reflections collected	94441
Independent reflections	6938 [$R_{int} = 0.1255$, $R_{sigma} = 0.0549$]
Data/restraints/parameters	6938/0/371
Goodness-of-fit on F ²	1.049
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0579, wR_2 = 0.0989$
Final R indexes [all data]	$R_1 = 0.0975, wR_2 = 0.1138$
Largest diff. peak/hole / e Å ⁻³	1.10/-0.79

Table S5. Crystal data for Ti4a

Empirical formula	$C_{30}H_{46}N_6O_4Ti$
Formula weight	602.63
Temperature/K	173.00
Crystal system	orthorhombic
Space group	Pca2 ₁
a/Å	14.5172(8)
b/Å	11.5840(6)
c/Å	19.1268(10)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3216.5(3)
Z	4
$\rho_{calc}g/cm^3$	1.244
μ/mm^{-1}	0.309
F(000)	1288.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.1
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	^o 4.498 to 55.106
Index ranges	-18 \leq h \leq 18, -14 \leq k \leq 15, -24 \leq l \leq 24
Reflections collected	39189
Independent reflections	7358 [$R_{int} = 0.0835$, $R_{sigma} = 0.0610$]
Data/restraints/parameters	7358/1/378
Goodness-of-fit on F ²	1.053
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0481, wR_2 = 0.1066$
Final R indexes [all data]	$R_1 = 0.0924, wR_2 = 0.1296$
Largest diff. peak/hole / e Å-3	0.44/-0.35

Table S6. Crystal data for Ti2b

Empirical formula	$C_{37}H_{48}Cl_2N_6O_2Ti$
Formula weight	727.61
Temperature/K	173.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	10.6343(7)
b/Å	30.9675(18)
c/Å	12.5823(8)
$\alpha/^{\circ}$	90
β/°	110.817(2)
$\gamma/^{\circ}$	90
Volume/Å ³	3873.1(4)
Z	4
$\rho_{calc}g/cm^3$	1.248
μ/mm^{-1}	0.398
F(000)	1536.0
Crystal size/mm ³	$0.1\times0.025\times0.025$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	² 4.304 to 61.016
Index ranges	$-15 \le h \le 15, -44 \le k \le 44, -17 \le l \le 17$
Reflections collected	150839
Independent reflections	11792 [$R_{int} = 0.0482$, $R_{sigma} = 0.0239$]
Data/restraints/parameters	11792/6/507
Goodness-of-fit on F ²	1.191
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0600, wR_2 = 0.1306$
Final R indexes [all data]	$R_1 = 0.0700, wR_2 = 0.1352$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.52/-0.53