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1 Additional Simulation Results

Figure S1: Transmittance of a thin film (continuous flat layer) of material with refractive index n = 2.7 and thick-
ness of 650 nm, on a silica substrate. On top of the film, there is a superstrate with the same refractive
index as the substrate. The solid line corresponds to the unbiased crystal (∆n = 0). The dashed line is
for a biased crystal corresponding to an isotropic change in the refractive index ∆n = 0.02. The ordinate
axis is shown in the same range as in Figure 2a of the main text.
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Figure S2: a Refractive index of Sn2P2S6 reported in Ref. [1]. b Transmittance of a dense nanoantenna array
without accounting for refractive index dispersion of Sn2P2S6 (solid black line) and accounting for it
(dotted red line). The antenna and array dimensions are the same as in Figure 2a of the main text.
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Figure S3: a Transmittance of a dense nanoantenna array under various approximations: (blue) isotropic mate-
rial with nxx = nyy = nzz = 2.7000; (light blue) isotropic material with nxx = nyy = nzz = 2.8707;
(red) anisotropic material with zero off-diagonal elements in the frame of reference of Figure 1a, with
nxx = 2.7 and nyy = nzz = 2.8707; (dotted black) anisotropic material with non-zero off-diagonal el-
ements, with nxx = 2.7000, nyy = nzz = 2.8707, and nyz = nzy = 0.02081. The optical properties of
nanoantennas built from a material with off-diagonal refractive index components are simulated using
the commercial software COMSOL, which allows for the account of arbitrary tensor components of n. b
Table summarizing which resonance is mainly affected by the various components of the material tensor
based on the results from panel a. It can be concluded that, while an array consisting of nanoantennas
built from an anisotropic material would exhibit resonances at wavelengths different from those of a
corresponding isotropic system, the nature of the modes and the overall spectral response are expected
to be quite similar, and thus the modes can also be similarly modified by an applied field.
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Figure S4: Maximum induced change in refractive index |∆n| that can be achieved in Sn2P2S6 as a function of
bias E at three temperatures close to Tc, T = 336, 337, and 337.5 K. Taking into account r111, for these
temperatures, the EO coefficients are 1.37, 2.02, and 3.15 nm/V, respectively. These traces complement
the results presented in Figure 4a of the main text and are based on the same set of experimental data
from Ref. [1].

Figure S5: EO-induced shift of the dip position with respect to temperature T at fixed electric field. Simulations
are performed for four modes of the dense array that forms chalcophosphate Sn2P2S6 metasurface and
the bias of E = 6.5 kV/mm. The calculations are the same as in Figure 4b of the main text, but relate
to changes in r221 with respect to temperature and not bias. Note the logarithmic scale of the ordinate
axis. The colorbar indicates the mode localization defined in the same way as in Figure 3 of the main
text. Here, MD+EQ mode is analyzed for ax = ay = az = 470 nm, ED+MQ for 550 nm, MOC+odd for
683 nm, and EOC+even for 716 nm. Dx = Dy = 750 nm for all calculations of the dense array.
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2 Multipolar Decomposition

The multipolar decomposition allows us to calculate
the contribution of each multipole term to the over-
all response of the metasurface, and it uses the field
distribution in the simulation domain to derive mul-
tipolar moments [2]. The multipolar decomposition
method is based on the induced electric polarization
P(r) = ε0(εp − εs)Eins(r), where Eins(r) denotes the elec-
tric field within the nanoantenna. Here, ε0 represents
the vacuum permittivity, whereas εp = n2 and εs = n2

s
are the relative permittivity of the nanoparticle and the
surrounding medium, respectively. We employ Carte-
sian multipolar representations based on spherical har-
monic functions. The expressions for the multipolar
moments are the following:
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where ks is the wavenumber in the surrounding
medium, the integral is extended over the region where

P is nonzero [3]. The notation jn(ρ) denotes the spheri-
cal Bessel function of the n-th order, and it is defined by
jn(ρ) =

√
π/2ρJn+1/2(ρ), where Jn(ρ) is the Bessel func-

tion of the first kind. The following expressions are
used:
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where β = x,y,z, γ = x,y,z, τ = x,y,z, and δβγ is the Kro-
necker delta. The general expressions for the transmis-
sion coefficient, described by the multipolar moments
for x-polarization, is:

t =1 +
iks

E02SLε0εs
(px +

√
εs
c

my −
iks
6

Qxz

−
iks
√
εs

2c
Myz −

k2
s
6
O

(e)
xzz −

k2
s
√
εs

6c
O

(m)
yzz ),

(11)

Effective polarizabilities can also be used to obtain the
transmittance coefficient:
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where SL = DxDy is the area of a lattice unit cell,
and the effective polarizabilities of the ED, MD, EQ,
MQ, electric octupole (EOC), and magnetic octupole
(MOC) are defined by αeff

p = px/Ex, αeff
m = my /Hy ,

αeff
Q = 2Qxz/(iksEx), αeff

M = 2Myz/(iksHy ), αeff
eo =

−3O
(e)
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s Ex), and αeff
mo = −3O

(m)
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s Hy ), respectively.
The normalized effective multipolar polarizabilities are
obtained by multiplying by effective polarizabilities
with the coefficients in Eq. (12) to compare their rel-
ative contribution to transmittance. The transmittance
related to the intensity is T = |t|2.
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