Synthesis of (FeCoNiCuMn)₃O₄ spinel-High entropy oxide and, green carbon

from agricultural waste for supercapacitor application.

Gobinda Chandra Mohanty¹, Amlan Asish² Shubhasikha Das³ Anu Verma³

¹School of Nano science and Technology, Indian Institute of Technology, Kharagpur, West Bengal India 721302.

2Advanced Technology Development Centre (ATDC), Indian Institute of Technology, Kharagpur, Kharagpur-721302, India.

³School of Environmental Science and Technology, Indian Institute of Technology, Kharagpur,

West Bengal, India

Figure S1: Total charge(Q) vs inverse square root of scan rate $v^{-1/2}$.

Figure S2: (a) Total charge(Q) vs inverse square root of scan rate $v^{-1/2}$, (b) Cyclic stability at 7 A g⁻¹, (c) GCD at 7 A g⁻¹ before and after stability, (d)EIS before and after cyclic stability of biochar electrode.

Figure S3: (a) Cyclic stability of ASc device, (b) Nyquist plot of device, (c) EIS of Nyquist plot before and after stability, (d) Bode plot, (e) Capacitance plot and (f) GCD of device at 10 A g⁻¹ after and before cyclic stability.

different mass loading ratios are taken for measurement for various asymmetric cells.

Ratio 1: 0.5 mg of HEO and 1 mg of biochar:

Figure S4: (a) CV stability checked, (b) CV at various scan rate, (c) GCD curves at various current rate, and (d) Ragone plot for asymmetric device.

Ratio 2: 1 mg of HEO and 1 mg of biochar:

Figure S5: (a) CV stability checked, (b) CV at various scan rate, (c) GCD curves at various current rate, and (d) Ragone plot for asymmetric device.

Figure S6: (a) CV stability checked, (b) CV at various scan rate, (c) GCD curves at various current rate, and (d) Ragone plot for asymmetric device.

Ratio 4: 0.85 mg of HEO and 1 mg of biochar:

Figure S7: (a) CV stability checked, (b) CV at various scan rate, (c) GCD curves at various current rate, and (d) Ragone plot for asymmetric device.

Mass loading ratio	Specific energy(Wh kg ⁻¹)	Specific Power(W kg ⁻¹)			
HEO: Biochar in mg					
0.5 : 1	33.4	1700			
1:1	17.82	1600			
1:0.5	23.44	1700			

0.85:1	33.4	1700			

Further in depth analyzing the specific energy as well as specific power from reference¹ we can further analyze as follows:

FigureS8: Specific energy vs specific power at different mass loading.

Additionally, specific energy and specific of different misloading are analyzed in detail. For mass rations, we have analyzed the log(specific energy) vs log(specific power) plot according to the equation log(specific energy) = b log(specific power) + a. For all four types of mass ratio loadings are: 1:0.5, 1:1, 0.5:1, 0.85:1 respectively of HEO and biochar taken. For HEO: Biochar ratio, 1:1, slope -0.51, intercept = 2.91 and R² value obtained 0.94, for ratio 0.5:1 we got slope -0.23, intercept = 2.31 and R² value obtained 0.92, for the ratio 1: 0.5 we got slope -0.17, intercept = 1.94 and R²

value obtained 0.93, and for the ratio 0.85: 1 we got slope -0.149, intercept = 1.49 and R^2 value obtained 0.94. Hence as compare to other mass ratio, clearly indicate rate of decrease of energy density with increase of power density is lesser in mass ratio of 0.85:1.

The morphological characterizations by atomic force microscopy (AFM) reveals that the asprepared NPs are quasi-spherical, with an average size of 87 nm \times 90 nm (**Figure S9** below).

Figure S9: AFM pattern of FCNCM HEO.

Carbon	Pyrolysis	Morphology	Electrolyte/	Specific	Cathode//	Energy	Power	Cyclic	Device	Device	Ref.
sources	Activation		Potential	capacitance	Anode	Density	Density	stability	performance	Electrolyte/	
	techniques		Window			(Wh/kg)	(W/kg)			Potential	
			(V)							Window(V)	
Peanut	Calcined in a	Worm-hole-	1М КОН	136F/g @	-	-	-	-	-	-	2
shells	furnace	like pores	-0.5 to 0.5	2A/g							
	800°C/KOH										
wolfberry	Catalytic	Blanket-like	6M KOH	365F/g @	Symmetric	23.2	225	96.4%	209 F/g @	1M Li ₂ SO ₄	3
fruits	carbonization/	rough	-1.0 to 0.0	0.2A/g	device			at 10k	0.5 A/g	0.0 to 1.8	
	Sncl ₂	structure									

 Table S1: Comparison of RS-biochar with various biochar based supercapacitors from agricultural wastage.

Chestnut	Carbonization/	pseudo-	6M KOH	373F/g @	-	-	-	99.7%	-	-	4
pulp	КОН	honeycomb-	-1.0 to 0.0	0.5A/g				at 10k			
		like 3D									
		network									
		network									
Cornstalk	800°C	three-	6M KOH	350.4F/g	Symmetric	10.1	249.9	99.8%	308 F/g @	6M KOH	5
	Carbonization	dimensional	-1.0 to 0.0	@0.2A/g	device			at 10k	0.2A/g	0.0 to 1.0	
		mesh-like									
		pore									
Wheat	Microwave	interconnected	6M KOH	325F/g @	Symmetric	21.5	7.2	90.7%	268.5F/g	PVA/LiCl	6
straw	heating	macropores	-1.0 to 0.0	0.5A/g	device		kW/kg	at 10k	@0.5A/g	-0.4 to 0.4	
	500°C/KOH	1									
	500 C/KOII										-
Discarded	700°C	bulk flakes	ЗМ КОН	131.95F/g	-	-	-	-	-	-	/
tea waste	Carbonization	densely	-0.8 to 0.3	@0.5A/g							
		packed									
		structure									
Cherry	700°C	Large pore	6M KOH -	370.5 F/g	-	-	-	99.1%	-	-	8
stones	Carbonization	structure	1.0 to 0.0	@ 0.5A/g				at 5k			
<u> </u>	75000	II.C	<u>ALKON</u>	204.05/ @		8.0	2.502	000/ /			0
Corncob	/50°C	Uniform	6M KOH -	394.9F/g @	-	8.9	2.502	99% at	-	-	,
waste	Carbonization/	porous	1.0 to 0.0	1A/g			kW/kg	10k			
	КОН	structure									
Wheat	800°C	Hollow	6M KOH -	271.5F/g @	-	-	-	82% at		-	10
husk	Carbonization	tunnel's	1.0 to 0.0	0.5A/g				5k			
		structure									
Rice	400°C	Mesoporous	6М КОН	324	Symmetric	48.9	750	95% at	-	EMI-TFSI	11
etross	carbonization/	structure	-1.0 to 0.0	@0.5A/g				101		Aonic	
Suaw	Carbonization/	structure	-1.0 10 0.0	@0.5A/g				TOK			
	КОН									liquid)	
Garlic	700°C	Porous	6M KOH	268F/g	Symmetric	31.7	500	99.2%	228.2 F/g at	6M KOH	12
Seeds	Carbonization/	honeycomb-	-1.0 to 0.0	@0.5A/g				at 10k	0.5 A/g	1.0 to 0.0	
	КОН	like structure									
Willow	800°C	Microporous	6М КОН	394F/g @	Symmetric	23	10	94% at	201 F/g at	1M Na ₂ SO ₄	13
Wood	Carbonization	structure	-1.0 to 0.0	1A/g			kW/kg	5k	0.5 A/g	0.0 to 1.8	
Waste	700°C	Porous	6М КОН	455F/g@	Symmetric	22.3	220.9	93.4%	206F/g at	1M	14
Bagasse	Carbonization/	Structure	-1.0 to 0.0	0.5A/g				at 10k	0.5A/g	Na2SO4	

	КОН									1.0 to 1.8	
Taro	800°C	Cambered	6M KOH	466 @ 1A/g	Symmetric	17.05	50.05	99.8%	126.6 at	6M KOH	15
epidermis	Carbonization/	sheet structure	-1.0 to 0.0					at 40k	0.1A/g	2.0 to 0.0	
	КОН										
Pine nut	600ºC	interconnected	6 М КОН		Symmetric	11.9	463.6	94.6%	324F/g at	6М КОН	16
i nic nut	000 0	interconnected	0 M Kon		Symmetre	11.9	105.0	94.070	52417g at		
shells	Carbonization/	carbon	-1.0 to 0.0					at 2A/g	0.05A/g	1.0 to 0.0	
	КОН	nanosheets						At 10k			
Crab	700°C	3D	6 M KOH	474 F/g	Symmetric	20.5	4500	95.6%	-	1M	17
shells and	Carbonization/	hierarchically	-1.0 to 0.0	@0.5A/g				at 20k		Na2SO4	
rice husks	HCl	porous								1.0 to 1.8	
		structure									
Bean	500°C	Porous	6 M KOH	197 F/g	Symmetric	18.43	120	86% at	207 mF/cm ²	PVA-KOH	18
dregs	Carbonization/	Structure	-1.0 to 0.0	@0.3 A/g		µWh/cm ²	µW/cm ²	2.5k	at	0.0 to 0.8	
	КОН								0.3mA/cm ²		
Pomelo	700°C	Interconnected		845 F/g @				93.8%			19
seed	Carbonization/	quasi-		1A/g				at 10k			
	КОН	spherical						@10A/g			
		carbon									
Rice	600°C	2D graphitic	ЗМ КОН	121.5 F g ⁻¹	Asymmetric	33.4	1700	90% at	83 F g ⁻¹ at 2	3M aqueous	This
straw	carbonization	structure	-1.0 to 0.0.	at 1 A g ⁻¹				7.5k @	A g ⁻¹	КОН	work
								5 A g ⁻¹			

Reference:

Basak, U.; Das, A.; Maity, S.; Chatterjee, D. P.; Nandi, A. K. Polyaniline-(Dinonylnapthyl Disulphonic Acid) Hydrogel Showing Enhanced Supercapacitor and Photo-Current Performance by in Situ Growth of AgNPs. *Colloids Surfaces A Physicochem. Eng. Asp.* 2024, 685, 133193. https://doi.org/10.1016/j.colsurfa.2024.133193.

- Nguyen, N. T.; Le, P. A.; Phung, V. B. T. Biomass-Derived Carbon Hooks on Ni Foam with Free Binder for High Performance Supercapacitor Electrode. *Chem. Eng. Sci.* 2021, 229. https://doi.org/10.1016/j.ces.2020.116053.
- (3) Xu, X.; Sielicki, K.; Min, J.; Li, J.; Hao, C.; Wen, X.; Chen, X.; Mijowska, E. One-Step Converting Biowaste Wolfberry Fruits into Hierarchical Porous Carbon and Its Application for High-Performance Supercapacitors. *Renew. Energy* 2022, *185*, 187–195. https://doi.org/10.1016/j.renene.2021.12.040.
- (4) Zhang, D.; Sun, L.; Liu, Q.; Sun, H.; Wang, Q.; Li, W.; Li, Z.; Wang, B. Ultra-High Specific Surface Area Porous Carbon Derived from Chestnut for High-Performance Supercapacitor. *Biomass and Bioenergy* 2021, *153* (July), 106227. https://doi.org/10.1016/j.biombioe.2021.106227.
- Yue, X.; Yang, H.; Cao, Y.; Jiang, L.; Li, H.; Shi, F.; Liu, J. Nitrogen-Doped Cornstalk-Based Biomass Porous Carbon with Uniform Hierarchical Pores for High-Performance Symmetric Supercapacitors. *J. Mater. Sci.* 2022, *57* (5), 3645–3661. https://doi.org/10.1007/s10853-022-06891-9.
- (6) Chen, W.; Wang, X.; Liu, C.; Luo, M.; Yang, P.; Zhou, X. Rapid Single-Step Synthesis of Porous Carbon from an Agricultural Waste for Energy Storage Application. *Waste Manag.* 2020, *102*, 330–339. https://doi.org/10.1016/j.wasman.2019.10.058.
- Thirumal, V.; Yuvakkumar, R.; Ravi, G.; Dineshkumar, G.; Ganesan, M.; Alotaibi, S. H.;
 Velauthapillai, D. Characterization of Activated Biomass Carbon from Tea Leaf for
 Supercapacitor Applications. *Chemosphere* 2022, *291* (P2), 132931.
 https://doi.org/10.1016/j.chemosphere.2021.132931.

- (8) Zhang, J.; Chen, H.; Ma, Z.; Li, H.; Dong, Y.; Yang, H.; Yang, L.; Bai, L.; Wei, D.;
 Wang, W. A Lignin Dissolution-Precipitation Strategy for Porous Biomass Carbon
 Materials Derived from Cherry Stones with Excellent Capacitance. *J. Alloys Compd.*2020, *832*, 155029. https://doi.org/10.1016/j.jallcom.2020.155029.
- (9) Xu, M.; Huang, Q.; Lu, J.; Niu, J. Green Synthesis of High-Performance Supercapacitor Electrode Materials from Agricultural Corncob Waste by Mild Potassium Hydroxide Soaking and a One-Step Carbonization. *Ind. Crops Prod.* 2021, *161* (July 2020), 113215. https://doi.org/10.1016/j.indcrop.2020.113215.
- Baig, M. M.; Gul, I. H. Conversion of Wheat Husk to High Surface Area Activated Carbon for Energy Storage in High-Performance Supercapacitors. *Biomass and Bioenergy* 2021, 144 (July 2020), 105909. https://doi.org/10.1016/j.biombioe.2020.105909.
- (11) Charoensook, K.; Huang, C.-L.; Tai, H.-C.; Lanjapalli, V. V. K.; Chiang, L.-M.; Hosseini, S.; Lin, Y.-T.; Li, Y.-Y. Preparation of Porous Nitrogen-Doped Activated Carbon Derived from Rice Straw for High-Performance Supercapacitor Application. *J. Taiwan Inst. Chem. Eng.* 2021, *120*, 246–256. https://doi.org/10.1016/j.jtice.2021.02.021.
- (12) Li, S.; Chen, Q.; Gong, Y.; Wang, H.; Li, D.; Zhang, Y.; Fu, Q.; Pan, C. "One-Step" Carbonization Activation of Garlic Seeds for Honeycomb-like Hierarchical Porous Carbon and Its High Supercapacitor Properties. *ACS Omega* 2020, *5* (46), 29913–29921. https://doi.org/10.1021/acsomega.0c04190.
- (13) Phiri, J.; Dou, J.; Vuorinen, T.; Gane, P. A. C.; Maloney, T. C. Highly Porous Willow Wood-Derived Activated Carbon for High-Performance Supercapacitor Electrodes. *ACS Omega* 2019, *4* (19), 18108–18117. https://doi.org/10.1021/acsomega.9b01977.

- Yu, P.; Liang, Y.; Dong, H.; Hu, H.; Liu, S.; Peng, L.; Zheng, M.; Xiao, Y.; Liu, Y. Rational Synthesis of Highly Porous Carbon from Waste Bagasse for Advanced Supercapacitor Application. *ACS Sustain. Chem. Eng.* 2018, *6* (11), 15325–15332. https://doi.org/10.1021/acssuschemeng.8b03763.
- (15) Chen, X.; Chi, M.; Xing, L.; Xie, X.; Liu, S.; Liang, Y.; Zheng, M.; Hu, H.; Dong, H.;
 Liu, Y.; Jiang, S. P.; Xiao, Y. Natural Plant Template-Derived Cellular Framework Porous
 Carbon as a High-Rate and Long-Life Electrode Material for Energy Storage. *ACS Sustain. Chem. Eng.* 2019, 7 (6), 5845–5855.
 https://doi.org/10.1021/acssuschemeng.8b05777.
- Guan, L.; Pan, L.; Peng, T.; Gao, C.; Zhao, W.; Yang, Z.; Hu, H.; Wu, M. Synthesis of Biomass-Derived Nitrogen-Doped Porous Carbon Nanosheests for High-Performance Supercapacitors. *ACS Sustain. Chem. Eng.* 2019, 7 (9), 8405–8412. https://doi.org/10.1021/acssuschemeng.9b00050.
- Peng, L.; Liang, Y.; Huang, J.; Xing, L.; Hu, H.; Xiao, Y.; Dong, H.; Liu, Y.; Zheng, M. Mixed-Biomass Wastes Derived Hierarchically Porous Carbons for High-Performance Electrochemical Energy Storage. *ACS Sustain. Chem. Eng.* 2019, *7* (12), 10393–10402. https://doi.org/10.1021/acssuschemeng.9b00477.
- (18) Chen, F.; Ji, Y.; Deng, Y.; Ren, F.; Tan, S.; Wang, Z. Ultrasonic-Assisted Fabrication of Porous Carbon Materials Derived from Agricultural Waste for Solid-State Supercapacitors. *J. Mater. Sci.* 2020, *55* (25), 11512–11523. https://doi.org/10.1007/s10853-020-04751-y.
- (19) Yin, Z.; Xu, Y.; Wu, J.; Huang, J. Effect of Pomelo Seed-Derived Carbon on the

Performance of Supercapacitors. Nanoscale Adv. 2021, 3 (7), 2007–2016.

https://doi.org/10.1039/d0na00778a.