Supporting Information

A Cd-based MOF : Iodine Capture and Enhanced Efficiency of Perovskite Solar Cells

Yaxin Hou^{a,b}, Yang Liu^a, Juan Chai^{*a}

^aInstitute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, P. R. China.

Email: chaijuan@nbt.edu.cn

^bMinhang Crosspoint Academy at Shanghai Wenqi Middle School, Shanghai, 200240,

P. R. China.

Supporting Information

Table of Contents

1. Powder X-ray diffraction patterns of Cd-MOF. (Fig. S1)	S3
2. FT-IR spectrum of Cd-MOF. (Fig. S2)	S3
3. SEM image of Cd-MOF. (Fig. S3)	S4
4. TGA curve of Cd-MOF measured in air atmosphere. (Fig. S4)	S4
5. Binuclear $[Cd_2O_2(L)_2(COO)_2]$ cluster of Cd-MOF. (Fig. S5)	S5
6. 3D supramolecular structure of Cd-MOF. (Fig. S6)	S5
7. Calibration plot of iodine in a cyclohexane solution via a UV-vis	S6
spectrum. (Fig. S7)	
8. Adsorption amounts of MOF toward iodine in a cyclohexane solution of	S6
iodine when 40 mg of Cd-MOF is added. (Fig. S8)	
9. The image of the sample after I_2 adsorption. (Fig. S9)	S7
10. UV-vis spectra for temporal evolution of absorbance for the I_2 -	S7
released process in EtOH. (Fig. S10)	
11. Crystal and structure refinement data for Cd-MOF. (Table S1)	S8
12. Selected bond lengths [Å] and angles [°] for Cd-MOF. (Table S2)	S9
13. EIS measurements of PSCs without and with Cd-MOF treatment. (Fig.	S9
S11)	
14. Comparisons of device PCE between our PSCs and reported PSCs with MOF treatments (Table S3).	S10
15. Comparison of I_2 adsorption capacity of MOFs (Table S4).	S10-11

Fig. S1 Powder X-ray diffraction patterns of Cd-MOF.

Fig. S2 FT-IR spectrum of Cd-MOF.

Fig. S3 SEM image of Cd-MOF.

Fig. S4 TGA curve of Cd-MOF measured in air atmosphere.

Fig. S5 Binuclear $[Cd_2O_2(L)_2(COO)_2]$ cluster of Cd-MOF .

Fig. S6 hydrogen bonds of Cd-MOF.

Fig. S7 Calibration plot of iodine in a cyclohexane solution via a UV-vis spectrum.

Fig. S8 Adsorption amounts of MOF toward iodine in a cyclohexane solution of iodine when 40 mg of Cd-MOF is added.

Fig. S9 The image of the sample after I_2 adsorption.

Fig. S10 UV-vis spectra for temporal evolution of absorbance for the I_2 -released process in EtOH.

MOFs	Cd-MOF	
chemical formula	$C_{28}H_{16}CdN_2O_{12}$	
fw	684.83	
cryst system	monoclinic	
space grow	$C2/_C$	
a/Å	13.8767(4)	
b/Å	13.7096(4)	
c/Å	26.8754(8)	
α/deg	90	
β/deg	103.797(3)	
γ/deg	90	
<i>V</i> / Å ³	4965.4	
T/K	299	
Z	8	
$D_c/g \text{ cm}^{-3}$	1.832	
μ/mm^{-1}	0.957	
F(000)	2736.0	
	-18≤h≤17	
index ranges	-18≤k≤17	
	-35≤l≤34	
R _{int}	0.0646	
GOF on F^2	1.062	
$\mathbf{R}_{1}[I > 2\sigma(I)]$	0.0378	
$wR_2[I > 2\sigma(I)]$	0.1033	
CCDC No.	2371872	
^{<i>a</i>} $R_1 = \Sigma F_o - F_c / \Sigma F_o $. ^{<i>b</i>} <i>wR</i>	$P_2 = \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [v]$	

Table S1 Crystal and structure refinement data for Cd-MOF

8

Cd(1)-O(10)	2.324(2)	Cd(1)- O(7)	2.217(2)
Cd(1)-O(5)	2.308(2)	Cd(1)-O(9)	2.333(2)
Cd(1)-O(1)	2.243(2)	Cd(1)-O(6)	2.361(2)
O(10)-Cd(1)-O(9)	56.27(8)	O(10)-Cd(1)-O(6)	102.33(9)
O(7)-Cd(1)-O(10)	148.84(8)	O(7)-Cd(1)-O(5)	88.11(8)
O(7)-Cd(1)-O(9)	94.10(8)	O(7)-Cd(1)-O(1)	95.19(8)
O(7)-Cd(1)-O(6)	105.25(9)	O(5)-Cd(1)-O(10)	95.42(8)
O(5)-Cd(1)-O(9)	114.26(8)	O(5)-Cd(1)-O(6)	56.18(8)
O(9)-Cd(1)-O(6)	157.44(9)	O(1)-Cd(1)-O(10)	98.93(8)
O(1)-Cd(1)-O(5)	145.72(8)	O(1)-Cd(1)-O(9)	99.57(9)
O(1)-Cd(1)-O(6)	90.26(8)		

Table S2 Selected bond lengths [Å] and angles [°] for Cd-MOF

Fig. S11 EIS measurements of PSCs without and with Cd-MOF treatment.

PCE (%)	$J_{ m SC}$	$V_{\rm OC}$ (V)	FF (%)	ref
	(mA/cm^2)			
23.71	25.16	1.179	79.90	Our work
18.10	22.1	1.11	73.9	1
12.0	23.04	0.93	60	2
22.16	23.71	1.14	82	3
20.24	22.85	1.12	79.1	4

Table S3. Comparisons of device PCE between our PSCs and reported PSCs withMOF treatments.

Ref:

1. Y.-N. Zhang, B. Li, L. Fu, Q. Li, L.-W. Yin, *Electrochim. Acta*, 2020, 330, 135280.

2. T.-H. Chang, C.-W. Kung, H.-W. Chen, T.-Y. Huang, S.-Y. Kao, H.-C. Lu, M.-H. Lee, K.M. Boopathi, C.-W. Chu, K.-C. Ho, *Adv. Mater.*, 2015, **27**, 7229-7235.

J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma, X.X. Niu, N.X. Li, C.B. Shi, Z.W. Qiu,
 H.P. Zhou, Y. Bai, Q. Chen, *Adv. Mater.*, 2021, 33, 2102947.

4. L.Y. Lou, L. Wan, Z.S. Wang, ACS Appl. Mater. Interfaces, 2023, 15, 37059-37068.

Table 51 comp		m eupliency of mor	5
MOF material	Solution media	adsorption	Ref.
		capacity	
		(mg g-1)	
Cd-MOF	Cyclohexane	51.4	This work
IFMC-10	Hexane	40	1
Th-TATAB	Cyclohexane	75	2
$\{[Zn_2(\alpha\text{-bptc})(H_2O)_4]\bullet pra)\}n$	Methanol	85	3
MIL-125-NH ₂ @chitosan	H ₂ O	19	4
$[Cd_3(BTC)_2(TIB)_2]_n$	Hexane	160	5

Table S4 Comparison of I₂ adsorption capacity of MOFs

Ref.:

L. Chen, K. Tan, Y.Q. Lan, S.L. Li, K.Z. Shao, Z. M. Su, *Chem. Commun.*, 2012,
 48, 5919-5921.

2. N. Zhang, L. X. Sun, Y. H. Xing, F. Y. Bai, Cryst. Growth Des., 2019, 19, 5686-5695.

S.S. Feng, Y.T. Bai, J.L. Zhu, L.P. Lu, M.L. Zhu, Spectrochim. Acta, Part A, 2018,
 205, 139-145.

4. M. El-Shahat, A.E. Abdelhamid, R.M. Abdelhameed, *Carbohydr. Polym.*, 2020, **231**, 115742.

5. Y. Rachuri, K.K. Bisht, B. Parmar, E. Suresh, *J. Solid State Chem.*, 2015, **223**, 23-31.