Supporting information

Enhancing the stereoselectivity of Me₂GaOR(NHC) species in the ring-opening

polymerization of *rac*-lactide, with the help of the chelation effect

Paweł Horeglad,^{a,*} Anna Rola-Noworyta,^a Dawid Tuszyński,^a Iga Fabianowska,^a Natalia Agnieszka Marek,^a Patrycja Gładysz,^a Ireneusz Wielgus,^a and Anna Maria Dąbrowska^a

^a Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.

- 1) VT ¹H NMR data for complexes 3 and 4 (Figures S1 S26)
- 2) FTIR data for complexes 3 and 4 (Figures S27 S42)
- 3) ¹³C NMR spectra of PLA obtained with 1 and 2 (Figures S43 S45)
- 4) MALDI-TOF and GPC of PLA obtained with complexes 1 and 3 (Figures S46 S89)

1) VT ¹H NMR Data

Figure S1. ¹H NMR (toluene- d_8 , 400 MHz) spectrum of **3** at r.t.

Figure S2. ¹H NMR (toluene- d_8 , 400 MHz) spectrum of 3 at 0°C

Figure S3. ¹H NMR (toluene- d_8 , 400 MHz) spectrum of 3 at -20° C

Figure S4. VT ¹H NMR (toluene- d_8 , 400 MHz) spectra of **3** at r.t. (blue), 0°C (green) and – 20°C (red)

Figure S5. ¹H NMR (CD₂Cl₂, 400 MHz) spectrum of 3 at r.t.

Figure S6. ¹H NMR (CD₂Cl₂, 400 MHz) spectrum of 3 at 0° C

Figure S7. ¹H NMR (CD₂Cl₂, 400 MHz) spectrum of 3 at -20° C

Figure S8. VT 1 H NMR (CD₂Cl₂, 400 MHz) spectra of 3 at r.t. (blue), 0°C (green) and -20°C

(red)

 $<_{6.91}^{6.91}$

 $<^{-1.39}_{-1.41}$

Figure S10. ¹H NMR (THF- d_8 , 400 MHz) spectrum of 3 at 0°C

Figure S12. ¹H NMR (THF- d_8 , 400 MHz) spectrum of 3 at -40°C

Figure S13. VT ¹H NMR (THF- d_8 , 400 MHz) spectra of **3** at r.t. (purple), 0°C (blue), -20°C (green) and -40°C (red)

Figure S14. ¹H NMR (toluene- d_8 , 400 MHz) spectrum of 4 at r.t.

Figure S15. ¹H NMR (toluene-*d*₈, 400 MHz) spectrum of **4** at 0°C

Figure S16. ¹H NMR (toluene- d_8 , 400 MHz) spectrum of 4 at -20° C

Figure S17. VT ¹H NMR (toluene- d_8 , 400 MHz) spectra of **4** at r.t. (blue), 0°C (green) and – 20°C (red)

Figure S18. ¹H NMR (CD₂Cl₂, 400 MHz) spectrum of 4 at r.t.

 \sim 3.59 \sim 3.46 \sim 3.57 \sim 3.46 \sim 3.57 \sim 3.46 \sim 2.09 \sim 2.09 \sim 0.99 \sim 0.98

---1.28 ---1.36

Figure S20. ¹H NMR (CD₂Cl₂, 400 MHz) spectrum of 4 at -20° C

Figure S21. VT ¹H NMR (CD₂Cl₂, 400 MHz) spectra of 4 at r.t. (blue), 0°C (green) and - 20°C (red)

Figure S22. ¹H NMR (THF- d_8 , 400 MHz) spectrum of 4 at r.t.

 $<^{1.36}_{-1.36}$

Figure S23. ¹H NMR (THF- d_8 , 400 MHz) spectrum of 4 at 0°C

Figure S24. ¹H NMR (THF- d_8 , 400 MHz) spectrum of 4 at -20° C

Figure S25. ¹H NMR (THF- d_8 , 400 MHz) spectrum of 4 at -40°C

Figure S26. VT ¹H NMR (THF- d_8 , 400 MHz) spectra of **4** at r.t. (purple), 0°C (blue), -20°C

(green) and $-40^{\circ}C$ (red)

Figure S27. FTIR spectrum of 3% solution of complex 3 in toluene.

Figure S28. FTIR spectrum of 3% solution of complex **3** in toluene. Spectrum of C=O band deconvoluted for two bands **FWHM** – Full Width Half Maximum.

Peak Position	Absorbance	FWHM	Area	Peak Type
1726.340597	0.063908	18.316655	1.246039	0%Lorentz+Gauss
1748.195446	0.093912	16.482831	1.695958	6%Lorentz+Gauss

Figure S29. FTIR spectrum of 3% solution of complex **3** in toluene. Spectrum of C=O band deconvoluted for three bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1722.081993	0.062386	9.754557	0.695758	16%Lorentz+Gauss
1733.180318	0.049468	11.306937	0.595393	0%Lorentz+Gauss
1748.549451	0.096721	15.075776	1.655648	14%Lorentz+Gauss

Figure S30. FTIR spectrum of 3% solution of complex 3 in THF.

Figure S31. FTIR spectrum of 3% solution of complex **3** in THF. Spectrum of C=O band deconvoluted for two bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1726.340597	0.063908	18.316655	1.246039	0%Lorentz+Gauss
1748.195446	0.093912	16.482831	1.695958	6%Lorentz+Gauss

Figure S32. FTIR spectrum of 3% solution of complex **3** in THF. Spectrum of C=O band deconvoluted for three bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1722.081993	0.062386	9.754557	0.695758	16%Lorentz+Gauss
1733.180318	0.049468	11.306937	0.595393	0%Lorentz+Gauss

Figure S33. FTIR spectrum of 3% solution of complex 3 in CH₂Cl₂.

Figure S34. FTIR spectrum of 3% solution of complex **3** in CH₂Cl₂. Spectrum of C=O band deconvoluted for two bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1715.274664	0.088592	17.110649	1.613592	0%Lorentz+Gauss
1737.474323	0.171038	18.237052	3.533763	14%Lorentz+Gauss

Figure S35. FTIR spectrum of 3% solution of complex 4 in toluene.

Figure S36. FTIR spectrum of 3% solution of complex **4** in toluene. Spectrum of C=O band deconvoluted for two bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1724.434753	0.080569	17.109827	1.842607	54%Lorentz+Gauss
1746.465898	0.128244	18.492731	2.708876	15%Lorentz+Gauss

Figure S37. FTIR spectrum of 3% solution of complex **4** in toluene. Spectrum of C=O band deconvoluted for three bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1721.863847	0.044304	10.141491	0.487971	4%Lorentz+Gauss
1731.105339	0.060030	22.959413	2.164961	100%Lorentz+Gauss
1747.369518	0.114319	16.265737	2.105625	13%Lorentz+Gauss

Figure S38. FTIR spectrum of 3% solution of complex 4 in THF.

Figure S39. FTIR spectrum of 3% solution of complex **4** in THF. Spectrum of C=O band deconvoluted for two bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1723.709394	0.106060	16.120654	2.134105	36%Lorentz+Gauss
1747.924977	0.127205	17.978735	2.471268	3%Lorentz+Gauss

Figure S40. FTIR spectrum of 3% solution of complex **4** in THF. Spectrum of C=O band deconvoluted for three bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1722.285661	0.110339	12.014184	1.841557	64%Lorentz+Gauss
1733.142974	0.037659	9.835361	0.394268	0%Lorentz+Gauss
1748.379309	0.130130	16.522038	2.384595	9%Lorentz+Gauss

Figure S41. . FTIR spectrum of 3% solution of complex 4 in CH_2Cl_2 .

Figure S42. FTIR spectrum of 3% solution of complex **4** in CH₂Cl₂. Spectrum of C=O band deconvoluted for two bands.

Peak Position	Absorbance	FWHM	Area	Peak Type
1714.579417	0.111738	15.692485	1.866484	0%Lorentz+Gauss
1738.245088	0.181180	15.896046	3.190238	9%Lorentz+Gauss

3) Polymerization data

Figure S43 ¹³C NMR (CDCl₃, 100 MHz) spectra of the methine region of PLA prepared by polymerization of *rac*-LA with **1** and **2** in toluene at: 40°C (a), r.t. (b), 0°C (c), -20° C (d), -40° C (e)

Figure S44 ¹³C NMR (CDCl₃, 100 MHz) spectra of the methine region of PLA prepared by polymerization of *rac*-LA with **1** and **2** in CH₂Cl₂ at: 40°C (a), r.t. (b), 0°C (c), -20° C (d), -40° C (e)

Figure S45 ¹³C NMR (CDCl₃, 100 MHz) spectra of the methine region of PLA prepared by polymerization of *rac*-LA with **1** and **2** in THF at: 40°C (a), r.t. (b), 0°C (c), -20°C (d), -40°C (e)

4) MALDI-TOF and GPC of PLA obtained with complexes 1 and 3

polytool

Date: 12/23/2021 Time: 16:42

JKER

FileName: ...M-1.0_DCTB_K_RP700-3500_P36_c5\0_K16\1\1SRef\pdata\1\peaklist.xml peak integrals - NM 1.0 (CHCl3) DCTB+K RP 700-3500 Da P=36% c=5

 $D:\Dane\Mass_Spectra\Rok_2021\Work\NM-1.0_DCTB_K_RP700-3500_P36_c5\0_K16\1\1SRef$

Figure S46. MALDI–TOF spectrum of PLA obtained with **1** in toluene at 40°C, Table 1, entry 1. Figure 1 (—)

Figure S47. GPC eluogram of PLA obtained with 1 in toluene at 40°C, Table 1, entry 1.

3,0

polytool

FileName: ...-3.0_DCTB_K_RP700-3500_P28_c50\0_K22\1\1SRef\pdata\1\peaklist.xml peak integrals - NM 3.0 (CHCl3) DCTB+K RP 700-3500 Da P=28% c=50

* 1000

Figure S49. GPC eluogram of PLA obtained with 1 in toluene at r.t., Table 1, entry 4.

RUKER

FileName: ...TB_K_RP700-3500_P34_c25_defl0640\0_B20\1\1SRef\pdata\1\peaklist.xml peak integrals - DT-14,2 [CHCl3] DCTB+K RP 700-3500 Da P=34% c=25 defl=640 Da

Figure S50. MALDI–TOF spectrum of PLA obtained with 1 in toluene at 0°C, Table 1, entry

Figure S51. GPC eluogram of PLA obtained with 1 in toluene at 0°C, Table 1, entry 7.

FileName: ...M-12.1_DCTB_K_RP700-3500_P38_c5\0_J5\1\1SRef\pdata\1\peaklist.xml peak integrals - NM 12.1 (CHCl3) DCTB+K RP 700-3500 Da P=38% c=5

Figure S52. MALDI–TOF spectrum of PLA obtained with **1** in toluene at –20°C, Table 1, entry 9. Figure 1 (—)

Figure S53. GPC eluogram of PLA obtained with 1 in toluene at -40°C, Table 1, entry 9.

FileName: ...-10.1_DCTB_K_RP700-3500_P34_c50\0_K24\1\1SRef\pdata\1\peaklist.xml peak integrals - NM 10.1 (CHCl3) DCTB+K RP 700-3500 Da P=34% c=50

* 1000

Figure S54. MALDI–TOF spectrum of PLA obtained with **1** in CH₂Cl₂ at 40°C, Table 1, entry 2. Figure 1 (—)

Figure S55. GPC eluogram of PLA obtained with 1 in CH₂Cl₂ at 40°C, Table 1, entry 2.

IKE

FileName: ...B_K_RP700-3500_P36_c05_defl0640\0_C22\1\1SRef\pdata\1\peaklist.xml peak integrals - Ph-227,2 [CHCl3] DCTB+K RP 700-3500 Da P=36% c=05 defl=640 Da

D:\Dane\Mass_Spectra\Rok_2023\Work\Ph-227-2_DCTB_K_RP700-3500_P36_c05_defl0640\0_C22\1\1SRef

Figure S56. MALDI–TOF spectrum of PLA obtained with 1 in CH₂Cl₂ at 0°C, Table 1, entry

Figure S57. GPC eluogram of PLA obtained with 1 in CH₂Cl₂ at 0°C, Table 1, entry 8.

FileName: ...-15.1_DCTB_K_RP700-3500_P36_c50\0_J12\1\1SRef\pdata\1\peaklist.xml peak integrals - NM 15.1 (CHCl3) DCTB+K RP 700-3500 Da P=36% c=50

Figure S58. MALDI–TOF spectrum of PLA obtained with 1 in CH₂Cl₂ at –40°C, Table 1, entry

14. Figure 1 (----)

Figure S59. GPC eluogram of PLA obtained with 1 in CH₂Cl₂ at -40°C, Table 1, entry 14.

FileName: ...M-13.1_DCTB_K_RP700-3500_P36_c50\0_J9\1\1SRef\pdata\1\peaklist.xml peak integrals - NM 13.1 (CHCl3) DCTB+K RP 700-3500 Da P=36% c=50

D:\Dane\Mass_Spectra\Rok_2021\Work\NM-13.1_DCTB_K_RP700-3500_P36_c50\0_J9\1\1SRef

Figure S60. MALDI–TOF spectrum of PLA obtained with 1 in THF at –20°C, Table 1, entry

12. Figure 1 (—)

Figure S61. GPC eluogram of PLA obtained with 1 in THF at –20°C, Table 1, entry 12.

FileName: ...-16.1_DCTB_K_RP700-3500_P36_c50\0_J15\1\1SRef\pdata\1\peaklist.xml peak integrals - NM 16.1 (CHCl3) DCTB+K RP 700-3500 Da P=36% c=50

* 1000

Figure S62. MALDI–TOF spectrum of PLA obtained with 1 in THF at –40°C, Table 1, entry

15. Figure 1 (—)

Figure S63. GPC eluogram of PLA obtained with 1 in THF at -40°C, Table 1, entry 15.

Figure S64. MALDI–TOF spectrum of PLA obtained with 2 in toluene at 40°C, Table 1, entry 16. Figure 2 (—)

* 1000

12

Figure S65. GPC eluogram of PLA obtained with 2 in toluene at 40°C, Table 1, entry 16.

FileName: ...TB_K_RP700-3500_P26_c25_defl0640\0_A18\1\1SRef\pdata\1\peaklist.xml peak integrals - DT-9,2 [CHCl3] DCTB+K RP 700-3500 Da P=26% c=25 defl=640 Da

Figure S66. MALDI-TOF spectrum of PLA obtained with 2 in toluene at r.t., Table 1, entry

17. Figure 2 (—)

Figure S67. GPC eluogram of PLA obtained with 2 in toluene at r.t., Table 1, entry 17.

FileName: ...TB_K_RP700-3500_P34_c25_defl0640\0_B24\1\1SRef\pdata\1\peaklist.xml peak integrals - DT-15,1 [CHCl3] DCTB+K RP 700-3500 Da P=34% c=25

Traces may originate from hydrolysis of PLA during quenching with H2O/H+

Figure S68. MALDI–TOF spectrum of PLA obtained with **2** in toluene at 0°C, Table 1, entry 20. Figure 2 (—)

Figure S69. GPC eluogram of PLA obtained with 2 in toluene at 0°C, Table 1, entry 20.

0.5

0.0

982

Bruker Daltonics flexAnalysis

7000

7113.863

7200

7400

7600

Figure S70. MALDI–TOF spectrum of PLA obtained with **2** in toluene at –20°C, Table 1, entry 23. Figure 2 (—)

7800

8000

8200

8400

8600

printed: 12/6/2022 page 1 of 1

8800

19:34:33

m/z

Figure S71. GPC eluogram of PLA obtained with 2 in toluene at –20°C, Table 1, entry 23.

D:\Dane\Mass_Spectra\Rok_2022\Work\PG-012_PLA_DCTB_K_RP05-20k_P42_c25_defl600\0_E17\1\1SRef

Figure S72. MALDI–TOF spectrum of PLA obtained with **2** in toluene at –40°C, Table 1, entry

26. Figure 2 (—)

Figure S73. GPC eluogram of PLA obtained with 2 in toluene at -40°C, Table 1, entry 26.

JKE

FileName: ...TB_K_RP700-3500_P38_c25_defl0640\0_B16\1\1SRef\pdata\1\peaklist.xml peak integrals - DT-13,2 [CHCl3] DCTB+K RP 700-3500 Da P=38% c=25 defl=640 Da

May originate from hydrolysis of PLA during quenching with H2O/H+

D:\Dane\Mass_Spectra\Rok_2023\Work\DT-13-2_DCTB_K_RP700-3500_P38_c25_defl0640\0_B16\1\1SRef

18. Figure 2 (—)

*

Figure S75. GPC eluogram of PLA obtained with 2 in CH₂Cl₂ at r.t., Table 1, entry 18.

FileName: ...TB_K_RP700-3500_P34_c25_defl0640\0_A21\1\1SRef\pdata\1\peaklist.xml peak integrals - DT-11,2 [CHCl3] DCTB+K RP 700-3500 Da P=34% c=25 defl=640 Da

D:\Dane\Mass_Spectra\Rok_2023\Work\DT-11-2_DCTB_K_RP700-3500_P34_c25_defl0640\0_A21\1\1SRef

Figure S76. MALDI–TOF spectrum of PLA obtained with **2** in CH₂Cl₂ at 0°C, Table 1, entry 21. Figure 2 (—)

Figure S77. GPC eluogram of PLA obtained with 2 in CH₂Cl₂ at 0°C, Table 1, entry 21.

FileName: ...DCTB_K_RP05-20k_P45_c25_defl600\0_D14\1\1SRef\pdata\1\peaklist.xml peak integrals - PG-009 [PLA] [CHCI3] DCTB+K RP 05-20 kDa P=45% c=25 defl=600 Da

Figure S78. MALDI–TOF spectrum of PLA obtained with 2 in CH₂Cl₂ at –20°C, Table 1, entry

24. Figure 2 (----)

Figure S79. GPC eluogram of PLA obtained with 2 in CH_2Cl_2 at $-20^{\circ}C$, Table 1, entry 24.

JKER

FileName: ...DCTB_K_RP05-20k_P43_c25_defl600\0_E20\1\1SRef\pdata\1\peaklist.xml peak integrals - PG-013 [PLA] [CHCl3] DCTB+K RP 05-20 kDa P=43% c=25 defl=600 Da

D:\Dane\Mass_Spectra\Rok_2022\Work\PG-013_PLA_DCTB_K_RP05-20k_P43_c25_defl600\0_E20\1\1SRef

Figure S80. MALDI–TOF spectrum of PLA obtained with 2 in CH₂Cl₂ at –40°C, Table 1, entry

27. Figure 2 (—)

Figure S81. GPC eluogram of PLA obtained with 2 in CH_2Cl_2 at $-40^{\circ}C$, Table 1, entry 27.

Traces may originate from hydrolysis of PLA during quenching with H2O/H+

Figure S82. MALDI–TOF spectrum of PLA obtained with **2** in THF at r.t., Table 1, entry 19. Figure 2 (—)

Figure S83. GPC eluogram of PLA obtained with 2 in THF at r.t., Table 1, entry 19.

FileName: ...B_K_RP700-3500_P34_c25_defl0400\0_C20\1\1SRef\pdata\1\peaklist.xml peak integrals - IG-2,1 [CHCl3] DCTB+K RP 700-3500 Da P=34% c=25 defl=400 Da

Traces may originate from hydrolysis of PLA during quenching with H2O/H+

Figure S84. MALDI–TOF spectrum of PLA obtained with 2 in THF at 0°C, Table 1, entry 22.

Figure 2 (—)

Figure S85. GPC eluogram of PLA obtained with 2 in THF at 0°C, Table 1, entry 22.

* 1000 70 60 50 40 30 20 10 hhili ta a a 0 111 2000 6000 8000 4000 Da resid. end1 end2 cation Mn Mw DP % I. cnt n ser. rep.unit pd 1 1 144.042 65.6140 38.9637 2610.62 3229.86 1.23720 18.1240 51.6 58 2 144.042 75.3782 38.9637 3495.85 4273.79 1.22253 24.2696 40.7 80 • 2 3 3 144.042 136.174 38.9637 1973.39 2739.37 1.38815 13.7001 6.5 47 н-{-.0 10 0 Ó D:\Dane\Mass_Spectra\Rok_2022\Work\PG-010_PLA_DCTB_K_RP05-20k_P43_c25_defl600\0_D17\1\1SRef Comment 1 PG-010 [PLA] [CHCl3] DCTB+K RP 05-20 kDa P=43% c=25 defl=600 Da Comment 2 ⊡ x10⁴ PG-010_PLA_DCTB_K_RP05-20k_P43_c25_defl600 0:D17 MS Raw 4 1977.735 Intens. 2121.744 2265.756 2409.763 2553.769 -2697.771 3 . 602 503 2275.578 -2419.584 569 583 2707 558 2131 2 987 144 Da 1 735 2191.746 2335.800 -2479.806 2623.819 047 0 2700_{m/z} 2000 2100 2200 2300 2400 2500 2600 Bruker Daltonics flexAnalysis 12/6/2022 19:20:27 printed:

page 1 of 1

Figure S86. MALDI–TOF spectrum of PLA obtained with 2 in THF at –20°C, Table 1, entry

25. Figure 2 (—)

Figure S87. GPC eluogram of PLA obtained with 2 in THF at -20°C, Table 1, entry 25.

FileName: ...DCTB_K_RP05-20k_P40_c25_defl600\0_E24\1\1SRef\pdata\1\peaklist.xml peak integrals - PG-014 [PLA] [CHCI3] DCTB+K RP 05-20 kDa P=40% c=25 defl=600 Da

Figure S88. MALDI-TOF spectrum of PLA obtained with 2 in THF at -40°C, Table 1, entry

28. Figure 2 (—)

Figure S89. GPC eluogram of PLA obtained with 2 in THF at -40°C, Table 1, entry 28.