Electronic Supplementary Information (ESI)

A new generation of 1,8-diaminocarbazole building blocks for the construction of fluorescent anion receptors

Maria L. Korczak^a, Krystyna Maslowska-Jarzyna^a and Michał J. Chmielewski*^a

^a Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101, 02-089 Warszawa, Poland E-mail: <u>mchmielewski@chem.uw.edu.pl</u>

Contents

1	Gene	eral information	3
	1.1	Materials	3
	1.2	Instruments and methods	4
2	Synt	hetic procedures	5
	2.1	Compounds 1-3	5
	2.2	Diester 4	6
	2.3	3,6-Dicyano-1,8-dinitrocarbazole 5	7
	2.4	1,8-Dinitrocarbazole-3,6-dicarboxylic acid 6	8
	2.5	Compound 7	. 10
	2.6	Compound 8	. 12
	2.7	Compound 9	. 14
	2.8	Compound 10	. 17
	2.9	Compound 11	. 19
	2.10	Compound 12	. 21
	2.11	Receptor R1	. 24
	2.12	Receptor R2	. 26
	2.13	Receptor R3	. 28
3	3 Binding studies of receptor R1		
	3.1	General procedure for ¹ H NMR titrations	. 31
	3.2	General procedure for UV-vis titrations	. 31
	3.3	Data fitting	. 32
	3.4	¹ H NMR titration of R1 with TBACI	. 33
	3.5	UV-vis titration of R1 with TBACI.	. 36
	3.7	UV-vis titration of R1 with TBAPhCOO	. 37
	3.8	UV-vis titration of R1 with TBACH ₃ COO.	. 41
	3.9	UV-vis titration of R1 with TBAH ₂ PO ₄ .	. 46
	3.10	UV-vis titration of R1 with (TBA) ₂ SO ₄	. 51
	3.11	UV-vis titration of R1 with TBAOH.	. 55
	3.12	UV-vis titration of R1 with TBAHSO ₄ .	. 56
	3.13	UV-vis titration of R2 with TBAH ₂ PO ₄ .	57
	3.14	UV-vis titration of R2 with TBAPhCOO	. 60
	3.15	UV-vis titration of R3 with TBAH ₂ PO ₄ .	63
	3.16	UV-vis titration of R3 with TBAPhCOO	66
4	Fluo	rescence studies of R1	. 69
5	Dete	rmination of $H_2PO_4^-$ in water using R1	. 71
	5.1	Determination of solubility of receptors R1, R2, R3 and R5.	. 73

1 General information

1.1 Materials

All solvents and reagents were commercially available and used as received unless otherwise stated.

Alfa Aesar: tetra-n-butylammonium sulfate ((TBA)₂SO₄; 50% w/w aq. soln., 41723).

Acros Organics: hydrogen chloride (HCl; pure, 1N solution in diethyl ether, 368461000).

Chempur: methanol (MeOH, 116219904, > 99.8%).

<u>Deutero:</u> DMSO-*d*₆ (C₂D₆SO, 99.8% D).

<u>Euriso-top</u>: DMSO- d_6 + 0.03%TMS v/v (> 99.8% D), chloroform-d (CDCl₃, 99.80% D, D007HAG), acetone- d_6 (C₃D₆O, 99.80% D).

<u>Honeywell</u>: methanol (MeOH; ≥ 99.8% pure p.a., 32213).

<u>Linegal Chemicals</u>: dichloromethane (DCM, pure p.a., 50-8124.4, freshly distilled), ethyl acetate (50-451000, dried and freshly distilled), hexane - fraction from kerosene (50-1009, freshly distilled).

<u>POCH S.A.</u>: acetic acid (AcOH; 99.5-99.9%, pure p.a.-basic, BA8760114), acetic anhydride (Ac₂O; ACS reagent, pure p.a., 693870115), nitric acid (HNO₃; 65%, pure p.a., BA9603115), hydrochloric acid (HCl; 35-38%, pure p.a., BA5283115), sulfuric acid (H₂SO₄, min. 95%, pure p.a., BA5000115), sodium hydroxide (NaOH; 98.8%, pure p.a.-basic, BA0981118), potassium hydroxide (KOH, 85%, pure p.a. basic, BA6800113), triethylamine anhydrous (TEA; pure p.a., 848930117), diethyl ether (C₄H₁₀O; 99.5%, pure p.a.-basic, stab. with BHT, BA4210114), tetrahydrofuran (THF, pure p.a.-basic, BA8200118).

Sigma-Aldrich: acetone (puriss. p.a., ≥ 99.5% by GC, 32201), acetonitrile (ACN; ≥ 99.9%, 34998), 3,3-dimethylbutyryl chloride (*tert*-butylacetyl chloride; 99%, B88802), methanol (MeOH; HPLC grade, ≥ 99.9%, 34860), nitric acid (fuming HNO₃; extra pure, 100%, 1004551000), dimethyl sulfoxide (DMSO; anhydrous, ≥99.9%, 276855), tetrabutylammonium chloride (TBACl; ≥ 99.0%, 86852), 2,2,3,3,4,4,4heptafluoro-1-butanol (C₄H₃F₇O; 98%, H1604), diethylene glycol methyl ether (C₅H₁₂O₃; ≥ 99.0%, 579548), n-butanol (n-BuOH; 99.9%, 537993), activated charcoal (100 mesh particle size powder; 242276), palladium on activated charcoal (Pd/C; 10% Pd basis, 75990), thionyl chloride (SOCl₂; ≥ 99%, 230464), copper(I) iodide (CuI; purum, ≥99.5%, 03140), tetrabutylammonium benzoate (TBAPhCOO; ≥ 99.0%, 86837), tetrabutylammonium phosphate monobasic (TBAH₂PO₄; ≥ 99.0% (T), 86833), sodium hydroxide solution (2M NaOH, Titripur, 1091361000), tetrabutylammonium hydroxide 30-hydrate (TBAOH; ≥ 99.0%, 86859), tetrabutylammonium acetate (TBACH₃COO; ≥ 99.0%, 86835).

<u>TCI</u>: 2,2,3,3,4,4,4-heptafluoro-1-butanol (C₄H₃F₇O; > 98.0%, H0548).

<u>VWR</u>: dimethylformamide (DMF, for HPLC, 83635320, > 99.90%).

1.2 Instruments and methods

Nuclear magnetic resonance (NMR) spectroscopy

NMR spectra were recorded using Agilent NMR (¹H: 400 MHz, ¹³C: 100 MHz) or Bruker AM-500 (¹H: 500 MHz, ¹³C: 126 MHz) spectrometers at ambient temperature in (CD₃)₂SO, CDCl₃ or (CD₃)₂CO. Chemical shifts, δ , are reported in parts per million (ppm) and coupling constants, *J*, are given in ertz (Hz). The NMR spectra were referenced to the solvent residual signal (¹H: δ_{DMSO} = 2.500 ppm, $\delta_{chloroform}$ = 7.260 ppm, $\delta_{acetone}$ = 2.050 ppm, ¹³C: δ_{DMSO} = 39.50 ppm, $\delta_{chloroform}$ = 77.16 ppm, $\delta_{acetone}$ = 29.84 ppm). Data are reported as follows: chemical shift, multiplicity (s – singlet, bs – broad singlet, d – doublet, t – triplet, dd – doublet of doublets, dt – doublet of triplets, etc.), coupling constant and integration.

Mass spectrometry

The ESI-MS spectra were obtained using API 3000 (Applied Biosystems) and AutoSpec Premier (Waters) mass spectrometers with methanol as the spray solvent.

Elemental analysis

Elemental analysis was performed using an UNIcube elementar analyser from Elementar.

TLC

TLC was carried out on Merck silica gel 60 F₂₅₄ plates.

Preparative chromatography

Preparative chromatography was done manually on Merck silica gel 60 (230-400 mesh) or with the aid of Teledyne ISCO CombiFlash instrument using RediSep normal-phase silica flash columns.

2 Synthetic procedures

Scheme S1. Synthetic pathways to the new 1,8-diaminocarbazole-based building blocks 10-12 and model receptors R1-R3.

2.1 Compounds 1-3

Compounds 1-3 were obtained according to literature procedures.¹

¹ Ł. J. Weseliński, R. Luebke, M. Eddaoudi, A convenient preparation of 9H-carbazole-3,6-dicarbonitrile and 9H-carbazole-3,6-dicarboxylic acid, *Synthesis* **2014**, *46*, 596-599.

2.2 Diester 4

A 500 ml round-bottom flask was equipped with a magnetic stirring bar and a reflux condenser and charged with diacid **3** (4.15 g, 16.3 mmol), methanol (200 ml), and sulfuric(VI) acid (95%, 7.61 g, 73.7 mmol). The reaction mixture was heated under reflux for 26 h. After this time the mixture was cooled down to room temperature and put in a fridge for 24 h. The precipitate was filtered off and rinsed with cold MeOH (3×20 ml). The product was dried in a desiccator over KOH under high vacuum to yield 4.14 g (90%) of **4** as a white solid. ¹H NMR in accord with published data.²

¹**H NMR** (400 MHz, DMSO-*d*₆) δ_{DMSO} : 12.10 (s; 1H; NH); 8.91 (d; *J* = 1.7 Hz; 2H; carbazole CH-4/5); 8.07 (dd; *J*₁ = 8.86 Hz; *J*₂ =1.7 Hz; 2H; carbazole CH-2/7); 7.62 (dd; *J*₁ =8.6 Hz; *J*₂ = 0.6 Hz; 2H; carbazole CH-1/8); 3.89 (s; 6H, CH₃).

² C. A. Rowland, G. P. A. Yap, E. D. Bloch, Novel syntheses of carbazole-3,6-dicarboxylate ligands and their utilization for porous coordination cages, *Dalton Trans.* **2020**, *49*, 16340-16347.

2.3 3,6-Dicyano-1,8-dinitrocarbazole 5

Compound **5** was obtained as described by us previously,³ except that the reaction was scaled up from 3 mmol to 12 mmol of the substrate. The product was purified by column chromatography on approx. 100 g of silica, using 0.1% HCl in DCM/hexane (9/1) as an eluent. Fractions containing pure product were combined and evaporated on a rotary evaporator. The solid residue was dried in a desiccator over KOH under high vacuum. Yield: 1.79 g (49%) of **5** as yellow solid.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ_{DMSO} : 11.83 (s, 1H; NH), 9.34 (d, *J* = 1.4 Hz, 2H; CH-4/5 or CH-2/7), 9.00 (d, *J* = 1.4 Hz, 2H; CH-4/5 or CH-2/7).

HR MS (TOF MS ES⁻) m/z calcd. for $C_{14}H_4N_5O_4$ ⁻: 306.0263 found: 306.0262.

 ³ K. Maslowska-Jarzyna, M. L. Korczak, J. A. Wagner, M. J. Chmielewski, Carbazole-based colorimetric anion sensors, *Molecules* 2021, 26, 3205–3221.

2.4 1,8-Dinitrocarbazole-3,6-dicarboxylic acid 6

Alkaline hydrolysis

A 100 ml single-neck round-bottom flask was charged with 3,6-dicyano-1,8-dinitrocarbazole **5** (652 mg, 3.00 mmol), CuI (6.3 mg, 0.03 mmol), NaOH (1.71 g, 42.7 mmol, as a solution in 40 ml of deionized water), and equipped with a stirring bar and a reflux condenser. The reaction mixture was intensively stirred and refluxed for 28 h. After this time the mixture was cooled down to room temperature and deionized water was added until the mixture become homogenous. Then, active carbon (200 mg) was added and the mixture was refluxed for 1 h. After this time, the mixture was filtered through Celite, which was washed with 2M aqueous solution of NaOH. The combined filtrates were acidified with 2M HCl (46.5 ml) to precipitate the product. The suspension was stored in a fridge for 1h, then centrifuged (15 min, 3000 rpm) and the separated solid washed with deionized water (80 ml) acidified with 2M HCl (3 ml). The crude product was redissolved in deionized water and 2M NaOH (55 ml), precipitated again with 2M HCl (70 ml), centrifuged (15 min, 3000 rpm), washed with DMSO (3×5 ml), deionized water (3×5 ml) and methanol (3×5 ml). The thus-obtained solid was dried in an oven at 65 °C for 24 h. Yield: 376 mg (36 %) of a light beige solid.

Acidic hydrolysis

A 250 ml two-neck round-bottom flask was charged with 3,6-dicyano-1,8-dinitrocarbazole **5** (1.657 g, 5.397 mmol), deionized water (30 ml), acetic acid (30 ml), and sulfuric(VI) acid (95%, 60 ml). Then the flask was equipped with a stir bar, reflux condenser and thermometer. The reaction mixture was heated to 110°C for 16 h with intense stirring. After this time the mixture was cooled down, centrifuged (5 min, 3500 rpm) and the thus-collected solid was washed with deionized water (3×30 ml) and redissolved in hot DMSO (100 ml). The solution was slowly cooled down to room temperature and deionized water (100 ml) was added. The precipitated product was collected by centrifugation (5 min., 3500 rpm) and washed with deionized water (3×30 ml). ¹H NMR spectrum revealed that the hydrolysis was not complete, so the whole procedure was repeated. This time the conversion was full and after washing with deionized water and drying in an oven at 85°C, pure product was obtained as a white solid. Yield: 1.633 g (88%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ_{DMSO}: 13.59 (s, 2H, COOH), 11.63 (s, 1H, NH), 9.55 (d, *J* = 1.4, 2H, CH4/5 or CH2/7), 8.87 (d, *J* = 1.4 Hz, 2H, CH4/5 or CH2/7);

¹³**C NMR** (126 MHz, DMSO-*d*₆) δ_{DMSO}: 165.66, 135.36, 132.42, 130.25, 125.67, 124.56, 124.25.

HR MS (TOF MS ES⁻): m/z calcd. For C₁₄H₆N₃O₈⁻: 344.0155, found: 344.0160;

Elemental Analysis calcd. for C₁₄H₇N₃O₈: C, 48.71; H, 2.04; N, 12.17; found: C, 48.60; H, 2.05; N, 12.07.

Figure S4. ¹³C NMR spectrum of 6 in DMSO- d_6 .

2.5 Compound **7**

Path A. Nitration of diester 4

A 50 ml single-neck round-bottom flask equipped with a stirring bar was charged with a solution of diester **4** (405 mg, 1.43 mmol) in concentrated sulfuric acid (95%, 3.98 g, 38.6 mmol). The reaction mixture was stirred and cooled down in an ice bath. After 10 minutes, a cooled-down mixture of nitric acid (65%, 309 mg, 3.19 mmol) and sulfuric acid (95%, 2.52 g, 24.4 mmol) was added drop by drop (approx. one drop per 10 seconds). After the addition was complete, the reaction was quenched with ice (20 g) and mixed well. A precipitate formed, which was collected by filtration on a cold Schott filter funnel G4 and washed with deionized water (3×5 ml). After that the solid was dissolved in dichloromethane, and silica gel (3.33 g) was added to the solution. Volatiles were evaporated on a rotary evaporator and the solid residue was dried under high vacuum. Then, the pre-loaded mixture was separated by column chromatography on 115 g of silica gel, using dichloromethane as an eluent. Fractions containing pure product were combined and evaporated on a rotary evaporator to yield 16-137 mg (3-26 %) of pure **7** as yellow solid.

Path B. Esterification of diacid 6

A 25 ml single-neck round-bottom flask equipped with a stirring bar was charged with diacid **6** (347 mg, 1.00 mmol), methanol (15 ml), and sulfuric acid (95%, 633 mg, 6.13 mmol). Then the flask was equipped with a reflux condenser. The reaction mixture was intensively stirred and heated to 95°C (temperature measured in oil bath) for 22 h. After this time the mixture was cooled down to room temperature, stored in a fridge overnight and filtrated on a Schott filter funnel G4. The obtained precipitate was washed with cold methanol (3×5 ml). The solid was purified by column chromatography on 40 g of silica gel, using dichloromethane as an eluent. Fractions containing pure product were combined and evaporated on a rotary evaporator. The solid was dried in a desiccator over KOH under high vacuum. Yield 291 mg (78 %) of pure product as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃:DMSO- d_6 10:1) δ_{CDCl_3} : 11.58 (s; 1H; NH); 9.09 (d; J = 1.4 Hz; 2H; CH-4/5 or CH-2/7); 9.03 (d; J = 1.4 Hz; 2H; CH4/5 or CH2/7); 3.96 (s; 6H, CH₃).

¹³**C NMR** (126 MHz, CDCl₃:DMSO-*d*₆ 10:1) δ_{CDCl3}: 164.85, 136.02, 132.79, 129.09, 125.20, 124.18, 52.82.

Elemental analysis: calcd. for C₁₆H₁₁N₃O₈: C, 51.48; H, 2.97; N, 11.26, found: C, 51.11; H, 2.93; N, 11.02.

HR MS (TOF MS ES⁻) m/z calcd. for $C_{16}H_{10}N_3O_8^-$: 372.0468, found: 372.0464.

Figure S6. ¹³C NMR spectrum of 7 in CDCl₃:DMSO- d_6 =10:1. Chemical shifts are measured with respect to CDCl₃ = 77.16 ppm.

2.6 Compound 8

A 25 ml single-neck round-bottom flask was charged with diacid **6** (346.1 mg, 1.00 mmol), n-butanol (10 ml), sulfuric acid (666.7 mg, 95%), and a stirring bar. Then the flask was equipped with a reflux condenser. The reaction mixture was intensively stirred and heated to 130°C (measured in oil bath) for 20 h. After this time the mixture was cooled down to room temperature, stored in a fridge, and filtrated through a Schott filter funnel G4. The obtained precipitate was washed with acetonitrile (3×5 ml). The solid was purified by column chromatography on silica gel (43 g) using gradient elution with 10% (500 ml), 30% (250 ml), and 50% (250 ml) of ethyl acetate in hexane. Fractions containing pure product were combined and evaporated on a rotary evaporator. The solid product was dried in a desiccator over KOH under high vacuum. Yield: 412.0 mg (90 %) of yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ_{CDCl3} : 11.70 (s; 1H; NH); 9.18 (dd; $J_1 = 1.4$ Hz; $J_2 = 0.7$ Hz, 2H; CH-4/5 or CH-2/7); 9.15 (d; J = 1.4 Hz ; 2H; CH-4/5 or CH-2/7); 4.47 (t, J = 6.7 Hz, 4H; butyl CH-1); 1.86 (m, 4H; butyl CH-2); 1.54 (m; 4H; butyl CH-3); 1.04 (t, J = 7.4 Hz, 6H; butyl CH-4).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ_{CDCl3} : 164.80, 136.30, 133.08, 129.26, 126.21, 125.45, 124.84, 66.17, 30.93, 19.44, 13.94.

Elemental analysis: calcd. for C₂₂H₂₃N₃O₈: C, 57.76; H, 5.07; N, 9.19, found: C, 57.84; H, 5.13; N, 9.10.

HR MS (TOF MS ES⁻) m/z calcd. for C₂₂H₂₂N₃O₈⁻: 456.1407 found: 456.1395.

Figure S8. ¹³C NMR spectrum of 8 in CDCl₃.

2.7 Compound 9

A 10 ml single-neck round-bottom flask was charged with diacid 6 (346 mg, 1.00 mmol) and equipped with a stirring bar. The flask was sealed with a septum and deaerated by sequentially evacuating and refilling with argon three times. Thionyl chloride (3 ml) and three droplets of DMF were added in the flow of argon. Then, still in the flow of argon, the flask was equipped with a reflux condenser connected to a bubbler and the reaction mixture was heated to 60°C (temperature measured in oil bath) with intense stirring for 4 h. After this time the volatiles were evaporated on a rotary evaporator and the solid residue **6b** was further dried under high vacuum. Next, the flask was sealed with a septum and deaerated as before. DCM (3 ml) was added through the septum and the flask was put into an ultrasonic bath for approx. 1 minute. Triethylamine (0.40 ml) and 2,2,3,3,4,4,4-heptafluorobutyl alcohol (0.40 ml, 3.20 mmol) were added. The reaction mixture was intensively stirred for 4h. Then the volatiles were removed on a rotary evaporator and the solid residue was purified by column chromatography using CombiFlash instrument, 4 g cartridge, and eluent's flow of 15 ml/min. Separation was achieved using gradient elution with ethyl acetate in hexane 0->10% (5 min), 10% (20 min), 10->25% (5 min), and 25% (60 min). Fractions containing pure product were combined and evaporated on a rotary evaporator. The solid was dried in a desiccator over KOH under high vacuum. Yield 604 mg (85 %) of yellow solid.

¹**H NMR** (500 MHz, (CD₃)₂CO) $\delta_{acetone}$: 11.73 (s; 1H; NH); 9.55 (d; *J* = 1.5 Hz; 2H; CH4/5 or CH2/7); 9.06 (d; *J* = 1.5 Hz ; 2H; CH4/5 or CH2/7); 3.41 (m, 4H; CH₂).

¹⁹**F NMR** (470 MHz, (CD₃)₂CO) $δ_{acetone}$: -81.71 (t; *J* = 9.4 Hz; 6F); -120.66 (m, 4F); -128.10 (m, 4F).

¹³**C NMR** (126 MHz, (CD₃)₂CO) $δ_{acetone}$: 206.14, 163.95, 134.17, 131.21, 127.28, 125.90, 123.28, 60.97. The remaining aliphatic carbons were barely visible due to coupling with fluorine atoms.

Elemental analysis: calcd. for C₂₂H₉F₁₄N₃O₈: C, 37.25; H, 1.28; F, 37.50; N, 5.92, found: C, 37.17; H, 1.28; F, 37.60; N, 5.94.

HR MS (TOF MS ES⁻) m/z calcd. for $C_{22}H_8F_{14}N_3O_8^-$: 708.0088 found: 708.0076.

Figure S10. ¹³C NMR spectrum of **9** in acetone- d_6 .

Figure S11. ¹⁹F NMR spectrum of **9** in acetone- d_6 .

2.8 Compound **10**

A 25 ml two-neck round-bottom flask was charged with dinitro compound **7** (176 mg, 0.472 mmol) and equipped with a stirring bar. The flask was sealed with septa and deaerated by sequentially evacuating and refilling with argon three times. Then acetonitrile (5 ml) and 10% Pd/C (15.6 mg) were added in a flow of argon. The argon flow was changed to hydrogen and maintained for 30 minutes. To wash out the compounds deposited on the flask walls due to bubbling of hydrogen, another 5 ml of acetonitrile was added. The pressure of hydrogen was set to 0.3 bar and the mixture was intensively stirred for 7 hours. After this time DMSO (5 ml) was added *via* a syringe to dissolve the obtained product and the reaction mixture was filtrated using 0.2 μ m PTFE filter under argon atmosphere. Deoxygenated water (50 ml) was added immediately, in the flow of argon, to yield a pale red precipitation. The solid was filtered out on a Schott filter funnel G4 and dried in a desiccator over KOH under high vacuum. Yield 121 mg (77 %) of brown solid. To obtain analytically pure sample for analyses, compound **12** was purified by column chromatography with 5% MeOH in DCM as an eluent.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ_{DMSO} : 11.15 (s; 1H; NH); 8.07 (d; *J* = 1.4 Hz; 2H; CH4/5 or CH2/7); 7.36 (d; *J* = 1.5 Hz; 2H; CH4/5 or CH2/7); 5.34 (s, 4H; NH₂); 3.85 (s, 6H; CH₃).

¹³**C NMR** (126 MHz, DMSO-*d*₆) δ_{DMSO}: 167.27, 133.76, 132.05, 123.10, 121.72, 111.54, 109.98, 51.62.

HR MS (TOF MS ES⁺) m/z calcd. for $C_{16}H_{16}N_3O_4^+$: 314.1141, found: 314.1129.

Figure S13. ¹³C NMR spectrum of 10 in DMSO- d_6 .

2.9 Compound 11

A 25 ml two-neck round-bottom flask was charged with the dinitro compound **8** (229 mg, 0.501 mmol) and equipped with a stirring bar. The flask was sealed with septa and deaerated by sequentially evacuating and refilling with argon three times. Then acetonitrile (5 ml) and 10% Pd/C (15.3 mg) were added in a flow of argon. The argon flow was changed to hydrogen and maintained for 30 minutes. To wash out the compounds deposited on the flask walls due to bubbling of hydrogen, another 5 ml of acetonitrile was added. The pressure of hydrogen was set to 0.3 bar and the mixture was intensively stirred for 5 hours. After this time DMF (10 ml) was added *via* a syringe to dissolve the obtained product and the reaction mixture was filtrated using 0.2 μ m PTFE filter under argon atmosphere. Deoxygenated water (50 ml) was added immediately, in the flow of argon, to yield a white precipitation. The solid was filtered out on a Schott filter funnel G4 and dried in a desiccator over KOH under high vacuum. Yield 176 mg (89 %) of white solid.

¹**H NMR** (500 MHz, DMSO- d_6) δ_{DMSO} : 11.13 (s; 1H; NH); 8.05 (d; J = 1.4 Hz, 2H; CH4/5 or CH2/7); 7.35 (d; J = 1.5 Hz ; 2H; CH4/5 or CH2/7); 5.33 (s, 4H, NH₂); 4.27 (t; $J_1 = 6.6$ Hz; $J_2 = 6.6$ Hz, 4H); 1.72 (m, 4H); 1.46 (m, 4H); 0.96 (t; $J_1 = 7.4$ Hz; $J_2 = 7.4$ Hz, 6H; CH-3).

¹³**C NMR** (126 MHz, DMSO-*d*₆) δ_{DMSO}: 166.85, 133.73, 132.04, 123.07, 122.02, 111.43, 109.96, 63.77, 30.48, 18.85, 13.67.

Elemental analysis: calcd. for $C_{22}H_{27}N_3O_4$: C, 66.48; H, 6.85; N, 5.10.57, found: C, 66.57; H, 6.95; N, 10.32.

HR MS (TOF MS ES⁻) m/z calcd. for C₂₂H₂₆N₃O₄⁻: 396.1923 found: 396.1918.

2.10 Compound 12

A 25 ml two-neck round-bottom flask was charged with dinitro compound **9** (355 mg, 0.500 mmol) and equipped with a stirring bar. The flask was sealed with septa and deaerated by sequentially evacuating and refilling with argon three times. Then acetonitrile (5 ml) and 10% Pd/C (16.4 mg) were added in a flow of argon. The argon flow was changed to hydrogen and maintained for 30 minutes. To wash out the compounds deposited on the flask walls due to bubbling of hydrogen, another 5 ml of acetonitrile was added. The pressure of hydrogen was set to 0.3 bar and the mixture was intensively stirred for 5 hours. After this time DMF (10 ml) was added *via* a syringe to dissolve the obtained product and the reaction mixture was filtrated using 0.2 μ m PTFE filter under argon atmosphere. Deoxygenated water (50 ml) was added immediately, in the flow of argon, to yield a white precipitation. The solid was filtered out on a Schott filter funnel G4 and dried in a desiccator over KOH under high vacuum. Yield 281 mg (87 %) of white solid.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ_{DMSO} : 11.34 (s; 1H; NH); 8.06 (d; *J* = 1.4 Hz, 2H; CH4/5 or CH2/7); 7.37 (d; *J* = 1.55 Hz; 2H; CH4/5 or CH2/7); 5.47 (s, 4H, NH₂); 5.10 (t; *J* = 13.9 Hz, 4H; CH₂).

¹³**C NMR** (126 MHz, DMSO-*d*₆) $δ_{DMSO}$: 165.06, 134.31, 132.61, 122.99, 119.98, 111.69, 109.97, 59.03. The remaining aliphatic carbons were barely visible due to coupling with fluorine atoms.

¹⁹**F NMR** (470 MHz, DMSO-*d*₆) δ_{DMSO}: -80.51 (t; *J* = 9.0 Hz; 6F); -119.13 (m, 4F); -127.09 (m, 4F)

Elemental analysis: calcd. for C₂₂H₁₃F₁₄N₃O₄: C, 40.69; H, 2.02; F, 40.96; N, 6.47, found: C, 40.84; H, 2.19; F, 40.94; N, 6.37.

HR MS (TOF MS ES⁺) m/z calcd. for $C_{22}H_{14}F_{14}N_3O_4^+$: 650.0761 found: 650.0746.

Figure S17. ¹³C NMR spectrum of **12** in DMSO- d_6 .

Figure S18. ¹⁹F NMR spectrum of 12 in DMSO- d_6 .

2.11 Receptor R1

C₂₈H₃₅N₃O₆ = 509.59

A 50 ml single-neck round-bottom flask was charged with diamine **10** (94.8 mg, 0.300 mmol) and equipped with a stirring bar. The flask was sealed with a septum and deaerated by sequentially evacuating and refilling with argon three times. Then dry THF (20 ml) was added in a flow of argon, followed by triethylamine (0.09 ml, 67 mg, 0.66 mmol) and *t*-butylacetyl acid chloride (0.09 ml, 89 mg, 0.66 mmol). The reaction mixture was intensively stirred for 1h. After this time the volatiles were evaporated on a rotary evaporator. The solid residue was suspended in water (5 ml), filtered through a Schott filter funnel G4 and then further washed with water (2 × 5 ml) and diethyl ether (3 × 5 ml). The product was dried in a desiccator over KOH under high vacuum. Yield 101 mg (66 %) of white solid.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ_{DMSO}: 10.90 (s; 1H; carbazole NH); 10.20 (s; 2H; amide NH); 8.74 (s; 2H; CH4/5 or CH2/7); 8.15 (s; 2H; CH4/5 or CH2/7); 3.91 (s, 6H, CH₃); 2.36 (s; 4H; CH₂); 1.11 (s; 18H; *t*-butyl).

¹³**C NMR** (126 MHz, DMSO-*d*₆) δ_{DMSO}: 170.51, 166.42, 135.32, 124.16, 123.26, 121.53, 120.33, 119.05, 51.99, 49.02, 30.91, 29.66.

HR MS (TOF MS ES⁺) m/z calcd. for C₂₈H₃₅N₃O₆Na⁺: 532.2424 found: 532.2417.

Figure S20. ¹³C NMR spectrum of R1 in DMSO- d_6 .

2.12 Receptor R2

A 50 ml single-neck round-bottom flask was charged with diamine **11** (117 mg, 0.300 mmol) and equipped with a stirring bar. The flask was sealed with a septum and deaerated by sequentially evacuating and refilling with argon three times. Then dry THF (20 ml) was added in a flow of argon, followed by triethylamine (0.09 ml, 67 mg, 0.66 mmol) and *t*-butylacetic acid chloride (0.09 ml, 89 mg, 0.66 mmol). After this time the volatiles were evaporated on a rotary evaporator. The solid residue was suspended in diethyl ether (5 ml), filtered through a Schott filter funnel G4 and then further washed with diethyl ether (2 × 5 ml) and MeOH (3 × 5 ml). The solid was dried in a desiccator over KOH under high vacuum. Yield 99.7 mg (56 %) of white solid.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ_{DMSO}: 10.85 (s; 1H; carbazole NH); 10.21 (s, 2H, amide NH); 8.72 (s; 2H; CH4/5 or CH2/7); 8.11 (s, 2H; CH4/5 or CH2/7); 4.33 (t; *J* = 6.6 Hz; 4H); 2.36 (s, 4H); 1.76 (m, 4H); 1.48 (m, 4H); 1.11 (s, 18H, *t*-butyl); 0.97 (m, 6H, CH₃).

¹³**C NMR** (126 MHz, DMSO-*d*₆) δ_{DMSO}: 170.50, 165.99, 135.37, 124.18, 123.26, 121.80, 120.38, 118.97, 64.24, 49.00, 30.90, 30.41, 29.66, 18.79, 13.65.

HR MS (TOF MS ES⁻) m/z calcd. for $C_{34}H_{47}N_3O_6Na^+$: 616.3363 found: 616.3350.

Figure S22. ¹³C NMR spectrum of R2 in DMSO- d_6 .

2.13 Receptor R3

A 50 ml single-neck round-bottom flask was charged with diamine **12** (147 mg, 0.300 mmol) and equipped with a stirring bar. The flask was sealed with a septum and deaerated by sequentially evacuating and refilling with argon three times. Then dry THF (20 ml) was added in a flow of argon, followed by triethylamine (0.09 ml, 67 mg, 0.66 mmol) and *t*-butylacetic acid chloride (0.09 ml, 89 mg, 0.66 mmol). The reaction mixture was intensively stirred for 1h. After this time the volatiles were evaporated on a rotary evaporator. To the solid was added 5 ml of water and then washed on a Schott filter funnel G4 with water (2×5 ml) and diethyl ether (3×5 ml). The solid was dried in desiccator over KOH under high vacuum. Yield 185 mg (73%) of white solid.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ_{DMSO} : 11.10 (s; 1H; carbazole NH); 10.25 (s, 2H, amide NH); 8.73 (s; 2H; CH4/5 or CH2/7); 8.21 (s, 2H; CH4/5 or CH2/7); 5.17 (t, *J* = 13.9 Hz; 4H); 2.37 (s, 4H); 1.11 (s, 18H, *t*-Bu).

¹³**C NMR** (126 MHz, DMSO- d_6) δ_{DMSO} : 170.65, 164.29, 135.92, 124.09, 123.71, 120.64, 119.82, 119.33, 114.45 (t, *J* = 30.4 Hz), 59.33 (t, *J* = 26.8 Hz), 49.01, 30.93, 29.62. The remaining aliphatic carbons were barely visible due to coupling with fluorine atoms.

¹⁹**F NMR** (470 MHz, DMSO-*d*₆) δ_{DMSO}: -80.45 (t; *J* = 9.0 Hz; 6F); -119.10 (m, 4F); -127.06 (m, 4F)

HR MS (TOF MS ES⁻) m/z calcd. for $C_{34}H_{33}N_3O_6F_{14}Na^+$: 868.2044 found: 868.2028.

Figure S24. ¹³C NMR spectrum of R3 in DMSO- d_6 .

Figure S25. ¹⁹F NMR spectrum of R3 in DMSO- d_6 .

3 Binding studies of receptor R1

3.1 General procedure for ¹H NMR titrations

Preparation of standard solutions. All reagents were weighted separately on a Mettler Toledo Excellence XA105DU analytical balance (readability 0.01 mg) in screw-capped vials sealed with Teflon-covered septa. DMSO/H₂O mixtures were prepared using Milli-Q water, and their concentrations were expressed as weight-to-weight percentage. All solvent and solution manipulations were performed using Hamilton gas-tight syringes. The titrant was prepared by dissolving TBACI in the receptor solution to avoid receptor dilution during titration. The uncertainty of the concentration of standard solutions was estimated to be $\pm 2\%$ for receptor, and $\pm 1\%$ for anion.

¹H NMR titration procedure. Titrations were conducted in screw-capped NMR tubes sealed with Teflon-covered septa. Aliquots of the titrant solution were added to the receptor solution, and ¹H NMR spectra were recorded after each addition. The NMR spectra were measured using an Agilent 400 MHz spectrometer. More specifically, to a solution of the host (600μ l, $0.01 \pm 0.0002 M$) in a septum-sealed, screw-capped NMR tube, appropriate aliquots of titrant ($0.3 \pm 0.003 M$ TBACl, dissolved in the host solution to avoid dilution) were added using a 25 μ l gas-tight microsyringe. Association constants were calculated based on the changes in chemical shifts of the most affected protons of the ligand, as detailed in each specific case below.

3.2 General procedure for UV-vis titrations

Preparation of standard solutions. All reagents were weighted separately using a Mettler Toledo Excellence XA105DU analytical balance (readability 0.01 mg) in screw-capped vials sealed with Teflon-covered septa. DMSO/H₂O mixtures were prepared using Milli-Q water, and their concentrations were expressed as weight-to-weight percentages. All solvent and solution manipulations were conducted using Hamilton gas-tight syringes. Titrants were prepared by dissolving the appropriate TBA salts in the solution of the appropriate receptor (unless specified otherwise) to avoid dilution of the receptor during titration. The uncertainty of the concentration of standard solutions was estimated to be \pm 3% for receptors, and \pm 2% for anions.

UV-vis titration procedure. To a solution of the host (3 ml, 1×10^{-4} M $\pm 0.04 \times 10^{-4}$ M) in a septumsealed, screw-capped precision cell made of SUPRASIL Quartz (optical path length: 10 mm), appropriate aliquots of the titrant (0.0075 \pm 0.000075 M) were added using a 25 µl gas-tight microsyringe. UV-vis spectra were recorded at 25°C using a Thermo Scientific Evolution 300 UV-vis spectrometer.

3.3 Data fitting

The ¹H NMR titration data were fitted with BindFit software.⁴ Association constant and chemical shifts of 1:1 complexes were set as free parameters for fitting, whereas chemical shifts of the free ligand were constrained to be equal to the experimentally measured values. Association constants derived from independent experiments were averaged using arithmetic mean.

The UV-vis titration data were fitted with HySS software. Association constants were calculated from changes in absorbance at fixed wavelengths. For each titration six wavelengths were chosen in the region of the highest absolute absorbance change, as specified in each case below. Nonlinear curve fitting was carried out using the HypSpec software. Association constants and molar absorption coefficients of complexes were set as free parameters for fitting. Logarithms of association constants were averaged using arithmetic mean from at least two separate experiments.

⁴ <u>http://supramolecular.org;</u> a) P. Thordarson, Determining association constants from titration experiments in supramolecular chemistry, *Chem. Soc. Rev.* **2011**, *40*, 1305-1323; b) D. B. Hibbert, P. Thordarson, The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis, *Chem. Commun.* **2016**, *52*, 12792-12805.

3.4 ¹H NMR titration of **R1** with TBACI.

¹H NMR titration of 0.01 M solution of **R1** in DMSO- $d_6/0.5\%$ H₂O with 0.3 M solution of TBA⁺Cl⁻ (dissolved in the solution of **R1**).

Titration of **R1** with TBACI produced the most significant changes in the ¹H NMR chemical shifts of the carbazole NH and amide NHs. The data sets for these two signals were therefore simultaneously fitted with the 1:1 model using Bindfit software.

Scheme 1. Chloride binding to R1.

Stack of ¹H NMR spectra from the titration of R1 with TBACI

Figure S26. ¹H NMR titration of 0.01 M R1 with TBACI.

Raw data

Added volume		Chemical Shifts [ppm]	
of titrant solution [µl]	Equivalents of TBA'CI	NH _(amide)	NH _(carbazole)
0.0	0.0	10.19080	11.00785
4.0	0.2	10.15305	11.30870
8.0	0.4	10.11970	11.58275
12.0	0.6	10.09095	11.81430
16.5	0.8	10.06470	12.03180
20.5	1.0	10.04315	12.21095
25.0	1.2	10.02250	12.38130
31.5	1.5	10.00050	12.56615
43.0	2.0	9.96885	12.82890
54.5	2.5	9.94825	12.99900
66.5	3.0	9.93220	13.14500
79.0	3.5	9.92175	13.23915
92.5	4.0	9.91315	13.32085
120.0	5.0	9.90145	13.43310
150.0	6.0	9.89365	13.51035
218.0	8.0	9.88510	13.61465
300.0	10.0	9.88155	13.68045

Exemplary ¹H NMR titration curves:

Figure S27. Data points and fitting curves for ¹H NMR titration of R1 (0.01 M in DMSO- $d_6/0.5\%$ H₂O) with TBACI.

a) Binding constant K derived from simultaneous fitting of 1:1 model to the two selected protons using BindFit:

$K = 119.7 \pm 0.7 M^{-1}$

b) Binding constant K derived from an independent experiment, repeated according to the same methodology:

$K = 124.0 \pm 0.8 M^{-1}$

c) Chemical shifts derived from simultaneous fitting of 1:1 model to the two selected protons using BindFit:

¹ H NMR signal	Titration	R1 [ppm]	R1 × TBA ⁺ Cl ⁻ [ppm]
	Titration 1:	10.1932	9.8799
ואח (amide)	Titration 2:	10.1884	9.8832
	Titration 1:	10.9695	13.6793
Nn(carbazole)	Titration 2:	11.0462	13.6816

d) Binding constant averaged from the two experiments:

K = 121.9 M⁻¹

3.5 UV-vis titration of **R1** with TBACI.

UV-vis titration of 10⁻⁴ M solution of R1 in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺Cl⁻ (dissolved in the solution of receptor R1).

Stack of UV-vis spectra from the titration of R1 with TBACI in DMSO/0.5% H₂O

Figure S28. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor R1 in DMSO/0.5% H₂O with 0.0075 M solution of TBACI (dissolved in the solution of receptor R1).

UV-vis titration of 10⁻⁴ M solution of **R1** in DMSO/10% H₂O with 0.075 M solution of TBA⁺Cl⁻ (dissolved in the solution of receptor **R1**).

350

Stack of UV-vis spectra from the titration of R1 with TBACI in DMSO/10% H₂O

1.0

0.5

0.0

300

Wavelength, nm

400

450
3.7 UV-vis titration of **R1** with TBAPhCOO.

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺PhCOO⁻ (dissolved in the solution of receptor **R1**).

Added volume of	Equivalents		Wavelength [nm]					
titrant solution	of	336	336 337 338 339 340					
[µl]	TBAPhCOO			Absor	bance			
0.0	0.0	1.161	1.113	1.061	1.009	0.958	0.909	
4.0	0.1	1.197	1.154	1.104	1.056	1.005	0.955	
8.0	0.2	1.231	1.191	1.145	1.097	1.047	0.997	
12.0	0.3	1.268	1.231	1.188	1.142	1.092	1.040	
16.0	0.4	1.296	1.262	1.221	1.176	1.126	1.073	
20.0	0.5	1.325	1.295	1.256	1.212	1.163	1.110	
24.0	0.6	1.353	1.325	1.288	1.246	1.196	1.142	
28.5	0.7	1.383	1.358	1.323	1.282	1.233	1.178	
32.5	0.8	1.404	1.381	1.348	1.307	1.259	1.203	
36.5	0.9	1.424	1.404	1.372	1.333	1.285	1.229	
40.5	1.0	1.442	1.422	1.393	1.355	1.306	1.250	
44.5	1.1	1.459	1.442	1.414	1.376	1.328	1.271	
49.0	1.2	1.480	1.464	1.438	1.401	1.352	1.295	
57.0	1.4	1.505	1.492	1.467	1.431	1.383	1.325	
65.5	1.6	1.527	1.516	1.492	1.458	1.410	1.351	
74.0	1.8	1.548	1.540	1.518	1.485	1.437	1.378	
82.0	2.0	1.562	1.556	1.535	1.502	1.454	1.395	
103.5	2.5	1.593	1.589	1.571	1.539	1.493	1.433	
125.0	3.0	1.613	1.611	1.594	1.563	1.516	1.455	
169.0	4.0	1.641	1.642	1.628	1.598	1.552	1.490	
215.5	5.0	1.658	1.659	1.645	1.615	1.568	1.505	

Figure S30. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBAPhCOO (dissolved in the solution of receptor **R1**).

Exemplary UV-vis titration curve (absorbance at 338 nm)

Figure S31. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBAPhCOO (dissolved in the solution of receptor **R1**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to the six selected wavelengths using HypSpec:

log K = 4.3282 ± 0.0005

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 4.3349 ± 0.0003

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/10% H₂O with 0.075 M solution of TBA⁺PhCOO⁻ (dissolved in the solution of receptor **R1**).

Figure S32. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of TBAPhCOO (dissolved in the solution of receptor **R1**).

Raw Data	9
-----------------	---

Added volume of	Equivalents			Waveleng	th [nm]		
titrant solution	of	337	337 338 339 340 341				
[µl]	TBAPhCOO			Absorb	ance		
0	0.0	1.214	1.155	1.096	1.041	0.985	0.938
2	0.5	1.235	1.178	1.120	1.066	1.010	0.961
4	1.0	1.258	1.201	1.144	1.089	1.034	0.984
8	2.0	1.294	1.241	1.184	1.131	1.073	1.022
12	3.0	1.328	1.276	1.221	1.167	1.109	1.055
16	4.0	1.356	1.306	1.252	1.197	1.139	1.084
20	5.0	1.384	1.335	1.281	1.226	1.167	1.110
24	6.0	1.408	1.360	1.308	1.252	1.193	1.135
28	6.9	1.430	1.383	1.332	1.277	1.215	1.156
32	7.9	1.451	1.405	1.354	1.299	1.237	1.176
37	9	1.475	1.431	1.380	1.324	1.261	1.200
41	10	1.490	1.447	1.396	1.341	1.277	1.215
62	15	1.560	1.521	1.472	1.416	1.350	1.283
82	20	1.607	1.571	1.523	1.466	1.399	1.330
104	25	1.645	1.610	1.564	1.508	1.438	1.366
214	50	1.746	1.717	1.672	1.615	1.542	1.465
334	75	1.792	1.766	1.723	1.664	1.589	1.509
465	101	1.820	1.794	1.752	1.694	1.617	1.536
600	125	1.838	1.814	1.771	1.713	1.635	1.553
750	150	1.850	1.826	1.783	1.725	1.647	1.563

Exemplary UV-vis titration curve (absorbance at 340 nm)

Figure S33. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of TBAPhCOO (dissolved in the solution of receptor **R1**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to the six selected wavelengths using HypSpec:

log K = 2.8328 ± 0.0001

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 2.7902 ± 0.0002

3.8 UV-vis titration of **R1** with TBACH₃COO.

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺CH₃COO⁻ (dissolved in the solution of receptor **R1**).

Stack of UV-vis spectra from the titration of R1 with TBACH_3COO in DMSO/0.5% $\rm H_2O$

Figure S34. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBACH₃COO (dissolved in the solution of receptor **R1**).

Added	Equivalents	Wavelength [nm]									
volume of titrant	of	340	341	342	343	350	351				
solution [µl]	IBACH ₃ COO		Absorbance								
0.0	0.0	1.219	1.219	1.108	1.052	0.995	0.941				
4.0	0.1	1.25	1.250	1.152	1.101	1.047	0.995				
8.0	0.2	1.286	1.286	1.201	1.154	1.104	1.053				
12.0	0.3	1.324	1.324	1.252	1.210	1.162	1.112				
16.0	0.4	1.359	1.359	1.298	1.261	1.216	1.167				
20.0	0.5	1.396	1.396	1.346	1.312	1.270	1.222				
24.0	0.6	1.432	1.432	1.391	1.361	1.321	1.273				
28.5	0.7	1.467	1.467	1.436	1.409	1.372	1.325				
32.5	0.8	1.498	1.498	1.475	1.451	1.415	1.369				
36.5	0.9	1.517	1.517	1.501	1.479	1.445	1.399				
40.5	1.0	1.538	1.538	1.527	1.508	1.474	1.429				
44.5	1.1	1.558	1.558	1.552	1.533	1.501	1.456				
49.0	1.2	1.578	1.578	1.576	1.559	1.528	1.483				
57.0	1.4	1.61	1.610	1.616	1.601	1.571	1.527				
65.5	1.6	1.633	1.633	1.643	1.630	1.602	1.556				
74.0	1.8	1.651	1.651	1.664	1.651	1.625	1.580				
82.0	2.0	1.663	1.663	1.678	1.668	1.640	1.596				
103.5	2.5	1.687	1.687	1.705	1.695	1.669	1.625				
125.0	3.0	1.699	1.699	1.721	1.711	1.684	1.640				
169.0	4.0	1.719	1.719	1.742	1.734	1.708	1.663				
215.5	5.0	1.73	1.730	1.755	1.748	1.721	1.677				
340.5	7.6	1.219	1.219	1.108	1.052	0.995	0.941				
465.5	10.1	1.25	1.250	1.152	1.101	1.047	0.995				

Exemplary UV-vis titration curve (absorbance at 340 nm)

Figure S35. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBACH₃COO (dissolved in the solution of receptor **R1**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to six selected wavelengths using HypSpec:

log K = 4.6014 ± 0.0012

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 4.7021 ± 0.0007

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/10% H₂O with 0.075 M solution of TBA⁺CH₃COO⁻ (dissolved in the solution of receptor **R1**).

Figure S36. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of TBACH₃COO (dissolved in the solution of receptor **R1**).

Added volume of	Equivalents			Wavelen	gth [nm]		
titrant solution	of	338	339	340	341	342	343
[µl]	TBACH ₃ COO			Absor	bance		
0	0.0	1.155	1.098	1.042	0.987	0.938	0.895
2	0.5	1.185	1.129	1.075	1.020	0.972	0.928
4	1.0	1.205	1.150	1.098	1.043	0.995	0.951
8	2.0	1.238	1.186	1.134	1.081	1.031	0.986
12	3.0	1.267	1.217	1.166	1.112	1.062	1.015
16	4.0	1.292	1.243	1.193	1.139	1.089	1.040
20	5.0	1.316	1.268	1.218	1.164	1.113	1.063
24	6.0	1.337	1.290	1.241	1.187	1.135	1.084
28	6.9	1.356	1.310	1.262	1.207	1.155	1.102
32	7.9	1.374	1.329	1.281	1.226	1.173	1.120
37	9.1	1.394	1.351	1.303	1.248	1.194	1.140
41	10.1	1.408	1.366	1.318	1.264	1.209	1.155
62	15.2	1.473	1.434	1.387	1.332	1.276	1.217
82	20.0	1.520	1.483	1.438	1.381	1.324	1.262
104	25.1	1.559	1.524	1.479	1.422	1.363	1.299
214	49.9	1.668	1.637	1.594	1.536	1.472	1.401
334	75.1	1.726	1.698	1.655	1.595	1.528	1.454
465	100.6	1.759	1.732	1.690	1.629	1.561	1.484
600	125.0	1.787	1.760	1.718	1.656	1.586	1.509
750	150.0	1.805	1.778	1.735	1.673	1.603	1.524

Exemplary UV-vis titration curve (absorbance at 340 nm)

Figure S37. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of TBACH₃COO (dissolved in the solution of receptor **R1**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to six selected wavelengths using HypSpec:

log K = 2.7366 ± 0.0005

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 2.6776 ± 0.0004

3.9 UV-vis titration of **R1** with TBAH₂PO₄.

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺H₂PO₄⁻ (dissolved in the solution of receptor **R1**).

Stack of UV-vis spectra from the titration of R1 with TBAH_2PO_4 in DMSO/0.5% H_2O

Figure S38. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBAH₂PO₄ (dissolved in the solution of receptor **R1**).

Added volume of	Equivalents			Wavelen	gth [nm]		
titrant solution	of	338	339	340	341	342	350
[µl]	$TBAH_2PO_4$			Absorl	bance		
0.0	0.0	1.111	1.057	1.000	0.947	0.898	0.577
4.0	0.1	1.170	1.120	1.067	1.016	0.967	0.625
8.0	0.2	1.234	1.190	1.140	1.091	1.043	0.677
12.0	0.3	1.298	1.258	1.213	1.166	1.118	0.729
16.0	0.4	1.355	1.319	1.278	1.233	1.185	0.775
20.0	0.5	1.408	1.378	1.340	1.297	1.249	0.820
24.0	0.6	1.459	1.433	1.398	1.356	1.309	0.862
28.5	0.7	1.513	1.490	1.459	1.419	1.372	0.906
32.5	0.8	1.556	1.536	1.507	1.469	1.422	0.941
36.5	0.9	1.591	1.575	1.548	1.512	1.465	0.971
40.5	1.0	1.623	1.609	1.584	1.548	1.503	0.996
44.5	1.1	1.647	1.636	1.613	1.578	1.532	1.018
49.0	1.2	1.674	1.664	1.644	1.608	1.564	1.039
57.0	1.4	1.707	1.700	1.680	1.648	1.603	1.068
65.5	1.6	1.728	1.723	1.706	1.674	1.629	1.088
74.0	1.8	1.745	1.741	1.724	1.693	1.648	1.101
82.0	2.0	1.759	1.756	1.739	1.709	1.665	1.114
103.5	2.5	1.779	1.779	1.765	1.735	1.691	1.133
125.0	3.0	1.790	1.790	1.777	1.749	1.705	1.145
169.0	4.0	1.802	1.803	1.792	1.763	1.720	1.159
215.5	5.0	1.809	1.812	1.801	1.773	1.730	1.166
340.5	7.6	1.816	1.818	1.809	1.781	1.739	1.178
465.5	10.1	1.820	1.823	1.813	1.787	1.746	1.184

Exemplary UV-vis titration curve (absorbance at 340 nm)

Figure S39. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBAH₂PO₄ (dissolved in the solution of receptor **R1**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to the six selected wavelengths using HypSpec:

log K = 4.9617 ± 0.0015

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 4.9211 ± 0.0002

$$\log K = 4.941$$

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/0.5% H₂O with 0.075 M solution of TBA⁺H₂PO₄⁻ (dissolved in the solution of receptor **R1**).

Figure S40. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of TBAH₂PO₄ (dissolved in the solution of receptor **R1**).

Added volume of		Wavelength [nm]						
titrant solution	Equivalents	340	341	342	355	356	357	
[μl]	OT IBAH ₂ PO ₄			Absor	bance			
0	0.0	1.033	0.978	0.931	0.387	0.349	0.313	
2	0.5	1.060	1.006	0.958	0.399	0.359	0.321	
4	1.0	1.083	1.029	0.981	0.411	0.370	0.330	
8	2.0	1.128	1.075	1.027	0.433	0.388	0.344	
12	3.0	1.168	1.116	1.067	0.451	0.404	0.357	
16	4.0	1.204	1.152	1.103	0.468	0.418	0.369	
20	5.0	1.237	1.185	1.135	0.484	0.432	0.379	
24	6.0	1.265	1.214	1.164	0.496	0.442	0.387	
28	6.9	1.292	1.241	1.190	0.509	0.453	0.396	
32	7.9	1.315	1.264	1.214	0.519	0.461	0.403	
37	9.1	1.342	1.291	1.241	0.532	0.472	0.411	
41	10.1	1.361	1.311	1.260	0.541	0.479	0.417	
62	15.2	1.443	1.395	1.343	0.579	0.511	0.442	
82	20.0	1.498	1.450	1.398	0.604	0.532	0.460	
104	25.1	1.543	1.495	1.442	0.625	0.550	0.474	
214	49.9	1.659	1.614	1.560	0.681	0.597	0.512	
334	75.1	1.713	1.669	1.615	0.708	0.621	0.532	
465	100.6	1.742	1.698	1.644	0.723	0.633	0.542	
600	125.0	1.761	1.719	1.665	0.733	0.643	0.549	
750	150.0	1.776	1.734	1.680	0.743	0.651	0.557	

Exemplary UV-vis titration curve (absorbance at 340 nm)

Figure S41. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of TBAH₂PO₄ (dissolved in the solution of receptor **R1**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to the six selected wavelengths using HypSpec:

log K = 2.8381 ± 0.0002

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 2.8207 ± 0.0005

3.10 UV-vis titration of **R1** with (TBA)₂SO₄.

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/0.5% H₂O with 0.0075 M solution of $(TBA^+)_2SO_4^{2-}$ (dissolved in the solution of receptor **R1**).

Figure S42. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of (TBA)₂SO₄ (dissolved in the solution of receptor **R1**).

	Raw	Data
--	-----	------

Added volume of	E. Salasta (Wavelength [nm]						
titrant solution	Equivalents of	346	347	338	349	556	357	
[µl]	(TBA)2504			Absor	bance			
0.0	0.0	0.788	0.754	0.717	0.677	0.390	0.353	
4.0	0.1	0.831	0.795	0.757	0.717	0.420	0.380	
8.0	0.2	0.892	0.855	0.816	0.775	0.464	0.421	
12.0	0.3	0.955	0.917	0.877	0.836	0.511	0.463	
16.0	0.4	1.027	0.988	0.947	0.905	0.565	0.512	
20.0	0.5	1.096	1.057	1.016	0.973	0.619	0.561	
24.0	0.6	1.166	1.127	1.085	1.042	0.678	0.615	
28.5	0.7	1.235	1.197	1.156	1.113	0.739	0.672	
32.5	0.8	1.294	1.256	1.215	1.173	0.795	0.722	
36.5	0.9	1.357	1.320	1.280	1.237	0.850	0.775	
40.5	1.0	1.410	1.375	1.336	1.294	0.906	0.829	
44.5	1.1	1.462	1.428	1.390	1.349	0.956	0.877	
49.0	1.2	1.518	1.485	1.448	1.408	1.014	0.930	
57.0	1.4	1.598	1.569	1.535	1.496	1.102	1.015	
65.5	1.6	1.661	1.634	1.601	1.563	1.165	1.075	
74.0	1.8	1.704	1.678	1.645	1.607	1.205	1.112	
82.0	2.0	1.724	1.700	1.668	1.628	1.223	1.128	
103.5	2.5	1.753	1.730	1.697	1.658	1.246	1.149	
125.0	3.0	1.768	1.742	1.709	1.670	1.253	1.155	
169.0	4.0	1.777	1.752	1.719	1.679	1.259	1.160	
215.5	5.0	1.781	1.756	1.723	1.684	1.262	1.162	

Exemplary UV-vis titration curves at 349 nm and 385 nm

Figure S43. Binding isotherms from the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of (TBA)₂SO₄ (dissolved in the solution of receptor **R1**), for two wavelengths 349 nm and 385 nm.

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/10% H₂O with 0.075 M solution of $(TBA^+)_2SO_4^{2-}$ (dissolved in the solution of receptor **R1**).

Stack of UV-vis spectra from the titration of R1 with TBA_2SO_4 in DMSO/10% H_2O

Figure S44. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of (TBA)₂SO₄ (dissolved in the solution of receptor **R1**).

Added volume of	Faultin lands of	Wavelength [nm]							
titrant solution		338	339	340	341	349	385		
[μl]	(TBA)2504			Absor	bance				
0	0.0	1.117	1.060	1.006	0.953	0.621	0.059		
2	0.5	1.131	1.077	1.024	0.971	0.758	0.092		
4	1.0	1.148	1.094	1.042	0.989	0.893	0.109		
8	2.0	1.176	1.124	1.072	1.019	1.098	0.129		
12	3.0	1.202	1.151	1.101	1.048	1.213	0.137		
16	4.0	1.229	1.179	1.129	1.076	1.278	0.140		
20	5.0	1.249	1.201	1.151	1.098	1.320	0.143		
24	6.0	1.270	1.222	1.173	1.119	1.347	0.147		
28	6.9	1.289	1.243	1.194	1.140	1.371	0.146		
32	7.9	1.308	1.263	1.214	1.160	1.391	0.145		
37	9.1	1.329	1.285	1.236	1.182	1.407	0.144		
41	10.1	1.344	1.301	1.253	1.198	1.418	0.144		
62	15.2	1.408	1.368	1.321	1.266	1.450	0.142		
82	20.0	1.455	1.417	1.371	1.316	1.468	0.140		
104	25.1	1.495	1.458	1.413	1.356	1.480	0.137		
214	49.9	1.605	1.573	1.529	1.471	1.508	0.131		
334	75.1	1.662	1.633	1.590	1.531	1.522	0.127		
465	100.6	1.701	1.673	1.630	1.570	1.535	0.125		
600	125.0	1.727	1.699	1.657	1.596	1.545	0.124		
750	150.0	1.754	1.726	1.683	1.621	1.553	0.124		

The absorbance intensity from the UV-vis titration curves at 349 nm and 385 nm

Figure S45. The absorbance intensity from the titration of 10⁻⁴ M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of (TBA)₂SO₄ (dissolved in the solution of receptor **R1**), for two wavelengths 349 nm and 385 nm.

3.11 UV-vis titration of **R1** with TBAOH.

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺OH⁻ (dissolved in the solution of **R1**).

Stack of UV-vis spectra from the titration of R1 with TBAOH in DMSO/0.5% H_2O

Figure S46. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBAOH (dissolved in the solution of receptor **R1**).

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/10% H₂O with 0.075 M solution of TBA⁺OH⁻ (dissolved in the solution of **R1**).

Stack of UV-vis spectra from the titration of R1 with TBAOH in DMSO/10% H_2O

Figure S47. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/10% H₂O with 0.075 M solution of TBAOH (dissolved in the solution of receptor **R1**).

3.12 UV-vis titration of **R1** with TBAHSO₄.

UV-vis titration of 10^{-4} M solution of **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺HSO₄⁻ (dissolved in the solution of receptor **R1**).

Stack of UV-vis spectra from the titration of R1 with TBAHSO₄ in DMSO/0.5%H₂O

Figure S48. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.0075 M solution of TBAHSO₄ (dissolved in the solution of receptor **R1**).

3.13 UV-vis titration of **R2** with TBAH₂PO₄.

UV-vis titration of 10^{-4} M solution of **R2** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺H₂PO₄⁻ (dissolved in the solution of receptor **R2**).

Stack of UV-vis spectra from the titration of R2 with $TBAH_2PO_4$ in DMSO/0.5%H₂O

Figure S49. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R2** in DMSO/0.5% H₂O with 0.0075 M solution of TBAH₂PO₄ (dissolved in the solution of receptor **R2**).

Added volume of	Equivalents	Wavelength [nm]					
titrant solution	of	338	339	340	341	342	350
[μL]	TBAPhCOO			Absor	bance		
0	0.0	1.222	1.163	1.103	1.043	0.990	0.623
4	0.1	1.281	1.227	1.171	1.113	1.060	0.671
8	0.2	1.341	1.291	1.238	1.183	1.130	0.718
12	0.3	1.400	1.355	1.306	1.252	1.199	0.765
16	0.4	1.459	1.419	1.373	1.321	1.268	0.812
20	0.5	1.508	1.472	1.428	1.378	1.326	0.851
24	0.6	1.557	1.525	1.484	1.436	1.384	0.891
28	0.7	1.602	1.573	1.534	1.488	1.436	0.926
32	0.8	1.643	1.617	1.581	1.536	1.484	0.960
37	0.9	1.691	1.669	1.636	1.591	1.540	0.999
41	1.0	1.720	1.699	1.668	1.625	1.574	1.023
45	1.1	1.746	1.728	1.698	1.656	1.605	1.044
49	1.2	1.770	1.753	1.726	1.684	1.633	1.064
57	1.4	1.809	1.796	1.770	1.731	1.680	1.097
65	1.6	1.841	1.830	1.806	1.767	1.716	1.122
74	1.8	1.864	1.855	1.833	1.795	1.745	1.143
82	2.0	1.881	1.874	1.853	1.815	1.766	1.158
103	2.5	1.908	1.903	1.884	1.847	1.798	1.182
125	3.0	1.926	1.922	1.904	1.869	1.820	1.198
169	4.0	1.945	1.943	1.926	1.891	1.843	1.216
214	5.0	1.955	1.954	1.938	1.905	1.856	1.228

Exemplary UV-vis titration curve (absorbance at 340 nm)

Figure S50. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R2** in DMSO/0.5%H₂O with 0.0075 M solution of TBAH₂PO₄ (dissolved in the solution of receptor **R2**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to the six selected wavelengths using HypSpec:

log K = 4.6986 ± 0.0005

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 4.7325 ± 0.0005

3.14 UV-vis titration of **R2** with TBAPhCOO.

UV-vis titration of 10^{-4} M solution of **R2** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺PhCOO⁻ (dissolved in the solution of receptor **R2**).

Stack of UV-vis spectra from the titration of R2 with TBAPhCOO in DMSO/ $0.5\%H_2O$

Figure S51. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R2** in DMSO/0.5% H₂O with 0.0075 M solution of TBAPhCOO (dissolved in the solution of receptor **R2**).

Added volume of	Equivalents	Wavelength [nm]					
titrant solution	of	336	337	338	339	340	341
[µL]	TBAPhCOO	Absorbance					
0	0.0	1.334	1.278	1.220	1.161	1.101	1.042
4	0.1	1.371	1.319	1.262	1.205	1.146	1.085
8	0.2	1.409	1.360	1.307	1.251	1.191	1.130
12	0.3	1.444	1.399	1.347	1.293	1.233	1.171
16	0.4	1.477	1.434	1.385	1.331	1.271	1.207
20	0.5	1.503	1.463	1.416	1.363	1.304	1.239
24	0.6	1.538	1.502	1.457	1.405	1.345	1.279
28	0.7	1.566	1.532	1.488	1.437	1.377	1.311
32	0.8	1.595	1.564	1.523	1.473	1.413	1.345
37	0.9	1.620	1.591	1.551	1.502	1.442	1.372
41	1.0	1.644	1.617	1.578	1.530	1.471	1.401
45	1.1	1.662	1.636	1.600	1.552	1.493	1.421
49	1.2	1.681	1.657	1.622	1.575	1.515	1.444
57	1.4	1.714	1.694	1.660	1.615	1.555	1.482
65	1.6	1.743	1.725	1.693	1.649	1.588	1.515
74	1.8	1.769	1.753	1.723	1.679	1.619	1.544
82	2.0	1.789	1.775	1.747	1.704	1.644	1.568
103	2.5	1.829	1.818	1.792	1.750	1.689	1.612
125	3.0	1.859	1.851	1.827	1.785	1.725	1.646
169	4.0	1.897	1.892	1.870	1.830	1.769	1.689
214	5.0	1.919	1.916	1.896	1.856	1.795	1.714
462	10.0	1.967	1.967	1.949	1.911	1.850	1.767

Exemplary UV-vis titration curve (absorbance at 338 nm)

Figure S52. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R2** in DMSO/0.5%H₂O with 0.0075 M solution of TBAPhCOO (dissolved in the solution of receptor **R2**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to the six selected wavelengths using HypSpec:

log K = 4.1921 ± 0.0004

a) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 4.2120 ± 0.0003

3.15 UV-vis titration of **R3** with TBAH₂PO₄.

UV-vis titration of 10^{-4} M solution of **R3** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺H₂PO₄⁻ (dissolved in the solution of receptor **R3**).

Stack of UV-vis spectra from the titration of R3 with $TBAH_2PO_4$ in DMSO/0.5%H₂O

Figure S53. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R3** in DMSO/0.5% H₂O with 0.0075 M solution of TBAH₂PO₄ (dissolved in the solution of receptor **R3**).

Added volume of	Equivalents	Wavelength [nm]					
titrant solution	of	338	339	340	341	342	350
[µL]	TBAPhCOO	Absorbance					
0	0.0	1.662	1.634	1.599	1.558	1.515	1.043
4	0.1	1.681	1.657	1.628	1.592	1.553	1.124
8	0.2	1.702	1.683	1.657	1.625	1.591	1.203
12	0.3	1.722	1.708	1.687	1.661	1.632	1.295
16	0.4	1.741	1.731	1.715	1.694	1.670	1.382
20	0.5	1.757	1.752	1.740	1.724	1.705	1.463
24	0.6	1.774	1.773	1.766	1.754	1.739	1.537
28	0.7	1.796	1.798	1.794	1.786	1.776	1.611
32	0.8	1.807	1.812	1.812	1.808	1.801	1.670
37	0.9	1.821	1.830	1.834	1.834	1.832	1.742
41	1.0	1.831	1.842	1.849	1.852	1.852	1.786
45	1.1	1.839	1.853	1.861	1.867	1.869	1.824
49	1.2	1.844	1.859	1.870	1.877	1.881	1.853
57	1.4	1.853	1.871	1.884	1.894	1.902	1.901
65	1.6	1.859	1.878	1.893	1.905	1.914	1.931
74	1.8	1.862	1.883	1.900	1.913	1.924	1.954
82	2.0	1.863	1.884	1.902	1.916	1.928	1.966
103	2.5	1.862	1.886	1.905	1.920	1.933	1.986
125	3.0	1.861	1.884	1.905	1.921	1.935	1.995
169	4.0	1.857	1.881	1.902	1.920	1.935	2.005
214	5.0	1.855	1.880	1.901	1.919	1.935	2.010
462	10.0	1.853	1.879	1.901	1.920	1.936	2.020

Exemplary UV-vis titration curve (absorbance at 340 nm)

Figure S54. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R3** in DMSO/0.5%H₂O with 0.0075 M solution of TBAH₂PO₄ (dissolved in the solution of receptor **R3**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to the six selected wavelengths using HypSpec:

log K = 5.1614 ± 0.0024

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 5.2184 ± 0.0041

3.16 UV-vis titration of **R3** with TBAPhCOO.

UV-vis titration of 10^{-4} M solution of **R3** in DMSO/0.5% H₂O with 0.0075 M solution of TBA⁺PhCOO⁻ (dissolved in the solution of receptor **R3**).

Stack of UV-vis spectra from the titration of R3 with TBAPhCOO in DMSO/0.5%H $_2O$

Figure S55. Stack of UV-vis spectra obtained during the titration of 10^{-4} M solution of receptor **R3** in DMSO/0.5% H₂O with 0.0075 M solution of TBAPhCOO (dissolved in the solution of receptor **R3**).

Added volume of	Equivalents	Wavelength [nm]					
titrant solution	of	336	337	338	339	340	341
[µL]	TBAPhCOO		Absorbance				
0	0.0	1.688	1.676	1.654	1.627	1.593	1.553
4	0.1	1.686	1.676	1.658	1.634	1.603	1.566
8	0.2	1.694	1.687	1.671	1.651	1.624	1.591
12	0.3	1.695	1.691	1.679	1.661	1.637	1.608
16	0.4	1.703	1.700	1.690	1.674	1.653	1.626
20	0.5	1.705	1.705	1.698	1.686	1.668	1.645
24	0.6	1.713	1.716	1.711	1.701	1.686	1.666
28	0.7	1.716	1.720	1.717	1.710	1.697	1.680
32	0.8	1.723	1.729	1.729	1.724	1.713	1.698
37	0.9	1.732	1.740	1.743	1.739	1.732	1.720
41	1.0	1.734	1.744	1.748	1.746	1.740	1.730
45	1.1	1.744	1.755	1.760	1.761	1.756	1.748
49	1.2	1.743	1.756	1.763	1.764	1.761	1.754
57	1.4	1.752	1.766	1.776	1.779	1.779	1.775
65	1.6	1.760	1.776	1.787	1.792	1.793	1.792
74	1.8	1.765	1.783	1.796	1.803	1.806	1.807
82	2.0	1.771	1.790	1.804	1.813	1.817	1.819
103	2.5	1.783	1.804	1.820	1.831	1.838	1.843
125	3.0	1.791	1.813	1.831	1.843	1.852	1.859
169	4.0	1.806	1.830	1.849	1.863	1.874	1.883
214	5.0	1.820	1.845	1.865	1.880	1.893	1.903
462	10.0	1.859	1.887	1.908	1.924	1.938	1.950

Exemplary UV-vis titration curve (absorbance at 338 nm)

Figure S56. Fitting of 1:1 (receptor:anion) model to the results of the titration of 10^{-4} M solution of receptor **R3** in DMSO/0.5%H₂O with 0.0075 M solution of TBAPhCOO (dissolved in the solution of receptor **R3**).

a) Binding constant K derived from simultaneous fitting of 1:1 model to the six selected wavelengths using HypSpec:

log K = 3.9909 ± 0.0026

b) Binding constant K derived from the experiment repeated according to the same methodology:

log K = 4.0325 ± 0.0030

4 Fluorescence studies of R1

To a solution of a host (2.5 ml, 10^{-5} M) in a screw-cap fluorescence cuvette made of SUPRASIL quartz (optical path length: 10 mm), appropriate aliquots of titrant (dissolved in the solution of the host to avoid dilution) were added using a 25 µl gas-tight microsyringe. Fluorescence spectra were obtained on Hitachi F-7000 spectrofluorometer. Excitation wavelength: 324 nm, scan speed: 1200 nm/min, temperature: 25°C.

Figure S57. Stack of fluorescence spectra obtained during the titration of 10^{-5} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.00375 M solutions of various TBA salts (dissolved in the solution of receptor **R1**).

Anion: OH⁻, Excitation: 324 nm.

Figure S58. Fluorescence spectra obtained during the titration of 10^{-5} M solution of receptor **R1** in DMSO/0.5% H₂O with 0.00375 M solutions of TBAOH salt (dissolved in the solution of receptor **R1**).

5 Determination of H₂PO₄⁻ in water using R1

A stock solution of sodium dihydrogen phosphate (NaH₂PO₄ × 2H₂O, 5 ml, 2.5 mM) was prepared in fresh Milli-Q water. This stock solution was then used to prepare 10 ml each of four diluted solutions, with concentrations of 0.05, 0.1, 0.25, and 0.5 mM (C₁-C₄). A mixture of DMSO (2.7 ml), aqueous H₂PO₄ solutions of varying concentrations (0.3 ml each, or pure Milli-Q water for the C_{H2PO4} = 0 mM), and 30 µL of **R1** in DMSO, was placed in a quartz cuvette to achieve a final concentration of **R1** = 10⁻⁵ M. The fluorescence intensity of each mixture was measured at 380 nm upon excitation at EX WL = 324 nm, and the obtained values were used to construct the calibration curve shown below:

Calibration curve for the determination of H₂PO₄ in water using R1 in DMSO

Figure S59. Calibration curve for dihydrogen phosphate solutions based on fluorescence emission at 380 nm for 10⁻⁵ M of R1.

A sample solution of dihydrogen phosphate in Milli-Q water, having a known concentration of 0.075 mM, was analyzed using the DMSO solution of **R1** and the calibration curve shown above.

Figure S60. Calibration curve for dihydrogen phosphate solutions based on fluorescence emission at 380 nm for 10⁻⁵ M of R1.

The absolute error of the method was calculated using the following equation:

$$\%_{error} = \frac{C_c - C_r}{C_r} \cdot 100\%,$$

where C_c is the concentration of $H_2PO_4^-$ calculated from the curve, and C_r is the real concentration of the sample.

$$\%_{error} = 3.7\%$$

Raw data

Sample	Fluorescence Intensity at 380 nm	$H_2PO_4^-$ Concentration (mM)				
C ₀	1223	0				
C1	1235	0.05				
C ₂	1253	0.10				
C ₃	1282	0.25				
C ₄	1365	0.50				
Sample	12/2	0.075 (actual)				
	1243	0.078 (calculated)				

The detection limit for $H_2PO_4^-$ was determined using the equation:

$$LOD = \frac{3SD}{a},$$

where SD is the standard deviation from three blank measurements, and a is the slope of the fluorescence intensity versus the sample concentration. The obtained detection limit was:

Standard deviation calculation:

$$SD = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N - 1}},$$

where:

 \bar{x} is the sample mean,

 x_i is the individual sample value,

N is number of samples
5.1 Determination of solubility of receptors R1, R2, R3 and R5.

All the receptors (approximately 2 mg) were weighted separately on a Mettler Toledo Excellence XA105DU analytical balance (readability 0.01 mg) in vials. Solvent was then added to each vial until a homogeneous solution was achieved in room temperature. The weight of the solvent used was recorded, and the solubility was calculated as the amount dissolved per 100 g of solvent.

Solvent	Solubility for 100 g of solvent [mg]			
	R1	R2	R3	R5
Acetonitrile	13.8	4.9	5.6	3.2
Ethyl acetate	13.6	10.8	33.4	4.4