Supporting Information

Electrochemical Performance and Structural Evolution of Spray Pyrolyzed Mn₃O₄ Thin Films in Different Aqueous Electrolytes: Effect of Anions and Cations

Pramitha Adoor.¹, Shreeganesh Subraya Hegde ², Badekai Ramachandra Bhat ², Sajan D. George³, Raviprakash Yeenduguli ^{1*}

^{1,*}Semiconductor and Photovoltaics Lab, Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India

²Catalysis and Materials Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, Karnataka, India

³Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India

*Corresponding Author: Dr Raviprakash Y – <u>raviprakash.y@manipal.edu</u>

Figure S1: Comparison of Raman spectra before and after cycling in different electrolytes (in higher wavenumber region).

Figure S2: XPS core spectra of (a) C 1s, (b) O 1s and (c) Mn 2p of the electrode before cycling.

Figure S3: XPS Survey spectra of the electrodes after cycling in different electrolytes.

Table S1: Peak position	n, FWHM and area	under the peaks obt	tained from XPS	deconvolution.
-------------------------	------------------	---------------------	-----------------	----------------

Electrolyte	Spin	Energy	Mn	Peak	FWHM	Area	Mn ³⁺ /	Mn ²⁺ /
used	orbit	difference	state	position		under	Mn ²⁺	Mn ⁴⁺
	split	(eV)				the		
						peak		
	Mn		Mn ²⁺	641.25	2.02	30050		
	2p _{3/2}		Mn ³⁺	642.73	2.00	19990		
Before			Mn ⁴⁺	644.40	2.90	10400		
cycling	Mn	11.75	Mn ²⁺	652.92	2.10	15500	0.66	2.88
	2p _{1/2}		Mn ³⁺	654.35	1.90	9300		
			Mn ⁴⁺	656.09	2.75	4600		
	Mn		Mn ²⁺	640.84	1.58	11646		
	2p _{3/2}		Mn ³⁺	642.09	2.05	25570		
			Mn ⁴⁺	643.44	2.84	12834		
Na ₂ SO ₄	Mn	11.79	Mn ²⁺	652.53	2.52	6827	2.19	0.91

	2p _{1/2}		Mn ³⁺	653.70	2.17	13504		
			Mn ⁴⁺	655.25	2.90	6561		
	Mn		Mn ²⁺	640.70	2.33	9030		
	2p _{3/2}		Mn ³⁺	641.97	2.04	21580		
			Mn ⁴⁺	643.15	3.00	15890		
NaCl	Mn	11.73	Mn ²⁺	652.33	2.35	4958	2.38	0.59
	2p _{1/2}		Mn ³⁺	653.57	2.10	11531		
			Mn ⁴⁺	654.80	3.00	7904		
	Mn		Mn ²⁺	640.74	2.00	10850		
	2p _{3/2}		Mn ³⁺	641.99	2.05	24799		
			Mn ⁴⁺	643.65	2.76	12169		
Li ₂ SO ₄	Mn	11.69	Mn ²⁺	652.31	2.15	5567	2.28	0.89
	2p _{1/2}		Mn ³⁺	653.56	2.10	12972		
			Mn ⁴⁺	655.32	3.00	6209		
	Mn		Mn ²⁺	641.10	2.04	6500		
	2p _{3/2}		Mn ³⁺	642.37	2.00	21624		
			Mn ⁴⁺	643.89	2.68	11000		
MgSO ₄	Mn	11.71	Mn ²⁺	652.70	2.22	4500	3.32	0.57
	2p _{1/2}		Mn ³⁺	654.00	2.15	11420		
			Mn ⁴⁺	655.60	2.80	5000		
	Mn		Mn ²⁺	640.94	1.85	9500		
	2p _{3/2}		Mn ³⁺	642.20	2.04	23675		
			Mn ⁴⁺	643.52	2.75	12560		
K ₂ SO ₄	Mn	11.71	Mn ²⁺	652.60	2.20	5390	2.49	0.75
	2p _{1/2}		Mn ³⁺	653.80	2.14	11891		
			Mn ⁴⁺	655.17	2.65	6150		

Figure S4: Different magnification SEM images of Mn_3O_4 thin film electrode before cycling

Figure S5: Different magnification SEM images of Mn_3O_4 thin film electrode after processed in (a) & (b) Na_2SO_4 , (c) & (d) NaCl, (e) & (f) Li_2SO_4 , (g) & (h) K_2SO_4 , and (i) & (j) $MgSO_4$ for 500 CV cycles at 50 mV/s.

Figure S6: Comparison of 1st and 500th CV cycles of the electrodes processed in (a) Na₂SO₄, (b) NaCl, (c) Li₂SO₄, (d) K₂SO₄ and (e) MgSO₄.