Supporting Information

Deoxyfluorination with Superacids – Synthesis and Characterization of Protonated α -Fluorohydroxyacetic Acid

Alan Virmani, Alexander Nitzer, Christoph Jessen, and Andreas J. Kornath*

Abstract: α -Fluoroalcohols are a rare and unstable class of compounds, accessible mainly by fluorination of highly electrophilic carbonyl compounds. In this work, we report the syntheses of α -fluorohydroxyacetic acid (FHA) and its acyl fluoride (FHA-F) by reacting the dihydroxy species glyoxylic acid monohydrate (GAM) with SF₄. Surprisingly, only one of the geminal hydroxy groups is substituted when excess SF₄ is employed. Implementing GAM with the binary superacids HF/MF₅ (M = As, Sb) also leads to a single yet quantitative deoxyfluorination at the diol group. The reaction pathways are elucidated by NMR experiments, the characterization was carried out using NMR and vibrational spectroscopy as well as single-crystal X-ray diffraction.

Table of Contents

List of Figures

Figure S1. ¹ H NMR spectrum of GAM in D ₂ O at room temperature	6
Figure S2. ^{13}C (¹ H) NMR spectrum of GAM in D ₂ O at room temperature	6
Figure S3. ¹ H NMR spectrum of GAM in aHF at 0°C	7
Figure S4. ¹⁹ F NMR spectrum of GAM in aHF at 0°C	8
Figure S5. ¹³ C NMR spectrum of GAM in aHF at 0°C	8
Figure S6. ¹ H NMR spectrum of GAM with equimolar amounts of SF ₄ in aHF at -40°C.	9
Figure S7. ¹⁹ F NMR spectrum of GAM with equimolar amounts of SF ₄ in aHF at -40° C.	10
Figure S8. ¹³ C { ¹ H} NMR spectrum of GAM with equimolar amounts of SF₄ in aHF at −40°C	10
Figure S9. ¹ H NMR spectrum of GAM with a twofold amount of SF₄ in aHF at −40°C	11
Figure S10. ¹⁹ F NMR spectrum of GAM with a twofold amount of SF ₄ in aHF at -40° C	12
Figure S11. ¹³ C { ¹ H} NMR spectrum of GAM with a twofold amount of SF₄ in aHF at −40°C	12
Figure S12. ¹ H NMR spectrum of 2 in SO₂ at −40°C.	13
Figure S13. ¹⁹ F NMR spectrum of 2 in SO ₂ at −40°C.	13
Figure S14. ¹³ C { ¹ H} NMR spectrum of 2 in SO ₂ at -40° C.	14
Figure S15. ¹ H NMR spectrum of 3 in aHF at −40°C	15
Figure S16. ¹⁹ F NMR spectrum of 3 in aHF at −40°C.	15
Figure S17. ¹³ C { ¹ H} NMR spectrum of 3 in aHF at −40°C	16
Figure S18. Reference spectrum of gaseous SF ₄	18
Figure S19. Projection of the asymmetric unit of 3. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms displayed as sphere of arbitrary radius.	eres 19
Figure S20. Hydrogen bonds of the cation in the crystal packing of 3. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms displayed as spheres of arbitrary radius.	s 20
Figure S21. Non-hydrogen bonded cation-anion interaction in the crystal packing of 3. Thermal ellipsoid displacement probability set at 50% hydrogen atoms displayed as spheres of arbitrary radius.	%, 20
Figure S22. Crystal packing of 3 with a view along the <i>b</i> -axis. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms display spheres of arbitrary radius	'ed as 20
Figure S23. Crystal packing of 3. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms displayed as spheres of arbitrary ra-	dius. 21
Figure S24. Optimization of the gas-phase structure of FHA. Calculated on the B3LYP/aug-cc-pVTZ level of theory.	23
Figure S25. Optimization of the gas-phase structure of FHA-F. Calculated on the B3LYP/aug-cc-pVTZ level of theory.	23
Figure S26. Optimization of the gas-phase structure of [FHA-1H] ⁺ . Calculated on the B3LYP/aug-cc-pVTZ level of theory	24

List of Tables

Table S1. Experimental vibrational frequencies $[cm^{-1}]$ of $[FHA-1H][AsF_6]$ (3) and calculated frequencies of $[FHA-1H]^+$ (B3LYP/aug-cc-pVTZ theory).	level of 17
Table S2. Experimental and calculated IR frequencies [cm ⁻¹] of FHA-F (2). Calculated on the B3LYP/aug-cc-pVTZ level of theory	
Table S3. Quantum chemically calculated vibrational frequencies of 1. Calculated on the B3LYP/aug-cc-pVTZ level of theory	19
Table S4. Bond lengths [Å], bond angles, and torsion angles [°] of 3.	21
Table S5. Summary of the X-ray diffraction data collection and refinement.	22
Table S6: Standard orientation of FHA. Calculated on the B3LYP/aug-cc-pVTZ level of theory.	23
Table S7. Standard orientation of FHA-F. Calculated on the B3LYP/aug-cc-pVTZ level of theory.	23
Table S8. Standard orientation of [FHA-1H]*. Calculated on the B3LYP/aug-cc-pVTZ level of theory.	24

Experimental Procedures

Caution! Avoid contact with any of these materials. Hydrogen fluoride will be formed by the hydrolysis of these compounds. HF burns the skin and causes irreparable damage. Safety precautions should be taken when using and handling these materials.

Apparatus and Materials

All reactions were carried out at standard Schlenk conditions by using sealed 6 mm FEP/PFA reactors closed with a stainless-steel valve and a stainless-steel vacuum line. All vessels have been dried with fluorine prior to each reaction or NMR measurement. Glyoxylic acid monohydrate (abcr) was stored under a nitrogen atmosphere. SF_4 (abcr) was used as purchased, and antimony pentafluoride (VWR) was distilled three times prior to use. Arsenic pentafluoride was synthesized from the elements and purified by fractionated distillation.

Raman spectra were rendered with a Bruker MultiRAM FT-Raman spectrometer with an Nd:YAG laser excitation up to 1000 mW (λ = 1064 nm) in a usable range between 200 cm⁻¹ and 4000 cm⁻¹. A measurement was performed after transferring the sample into a cooled (-196°C) glass cell under a nitrogen atmosphere and subsequent evacuation of the glass cell.

Low-temperature IR-spectroscopic investigations were carried out with a Bruker Vertex-80V FTIR spectrometer using a cooled cell with a singlecrystal CsBr plate on which small amounts of the samples were placed.¹

Single-crystal X-ray structure investigations were carried out with an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (50 kV, 40 mA) and a KappaCCD detector. The measurements were performed with Mo- K_{α} radiation ($\lambda = 0.71073$ Å). For data collection, the software CrysAlis CCD,² for data reduction the software CrysAlis RED³ was used. The solution and refinement were performed with the programs SHELXT⁴ and SHELXL-97⁵ implemented in the WinGX software package⁶ and checked with the software PLATON.⁷ The absorption correction was achieved with the SCALE3 ABSPACK multi-scan method.⁸

Quantum chemical calculations were performed with the Gaussian 16 program package.⁹ Calculations were carried out employing the method B3LYP and the basis sets aug-cc-pVTZ. For visualization of the structures and vibrational modes, the program GaussView 6.0¹⁰ was employed.

NMR spectra were recorded either on a Jeol ECX400 NMR or a Bruker AV400 NMR instrument. For visualization and evaluation, the software MestReNova Version 14.0.0 was used.¹¹ The spectrometers were externally referenced to CFCl₃ for ¹⁹F and to tetramethylsilane for ¹H and ¹³C NMR spectra. NMR measurements were prepared by dissolving the sample in aHF or SO₂ at the respective temperature and subsequently transferring the solution under a nitrogen atmosphere into a sealed 4 mm FEP tube at -78° C. After cooling down to -196° C the FEP tube was flame-sealed *in vacuo*. Immediately before the NMR measurement, the sealed FEP tube was put in a standard glass NMR tube loaded with 0.2 mL acetone-d₆ as an external reference and warmed to the designated temperature.

Synthesis of α -Fluorohydroxyacetic Acid

First, the FEP reactor was dried chemically with F_2 . Sulfur tetrafluoride (108 mg, 1.00 mmol) and anhydrous hydrogen fluoride (approximately 0.5 mL) were then successively condensed into the reactions vessel at -196° C and agitated at -40° C. After cooling down to -196° C, glyoxylic acid monohydrate (92.05 mg, 1.00 mmol) was added under a nitrogen atmosphere and dissolved at -40° C. Volatile by-products and excess hydrogen fluoride were removed under a dynamic vacuum at -78° C overnight, leaving a colorless, amorphous glass-like residue.

Synthesis of α -Fluorohydroxyacetic Fluoride

First, the FEP reactor was dried chemically with F_2 . Sulfur tetrafluoride (216 mg, 2.00 mmol) and anhydrous hydrogen fluoride (approximately 0.5 mL) were then successively condensed into the reactions vessel at -196° C and agitated at -40° C. After cooling down to -196° C, glyoxylic acid monohydrate (92.05 mg, 1.00 mmol) was added under a nitrogen atmosphere and dissolved at -40° C. Volatile by-products and excess hydrogen fluoride were removed under a dynamic vacuum at -78° C overnight, leaving a colorless, amorphous glass-like residue.

Synthesis of Protonated α -Fluorohydroxyacetic Acid

For the synthesis of protonated α -fluorohydroxyacetic acid, arsenic pentafluoride (510 mg, 3.00 mmol) (**3**) was condensed into a reactor (FEP tube), followed by excess anhydrous hydrogen fluoride (aHF) at -196°C. The mixture was warmed up to 0°C to form the superacidic medium. After cooling down to -196°C again, glyoxylic acid monohydrate (92 mg, 1.00 mmol) was added and subsequently dissolved at -45°C. After warming up to 0°C, the mixture was agitated again and dried overnight at -78°C under a dynamic vacuum, leaving a colorless powder.

Results and Discussion

NMR Spectroscopy

Glyoxylic Acid Monohydrate (GAM) in D₂O

¹H NMR (400 MHz, Deuterium Oxide) δ [ppm] = 5.35 (s, 1H). ¹³C {¹H} NMR (101 MHz, Deuterium Oxide) δ [ppm] = 173.17, 86.14.

Figure S1. ¹H NMR spectrum of GAM in D₂O at room temperature.

Figure S2. $^{13}\text{C}\left\{^{1}\text{H}\right\}$ NMR spectrum of GAM in D_2O at room temperature.

¹**H** NMR (400 MHz, aHF) δ [ppm] = 5.96 (d, *J* = 6.0 Hz), 5.87 (d, *J* = 8.1 Hz), 5.78 (s), 5.72 (s), 5.63 (d, *J* = 5.6 Hz), 5.57 (s), 5.50 (s). ¹⁹**F** NMR (376 MHz, aHF) δ [ppm] = -129.63 (dd, *J* = 58.5, 22.3 Hz), -134.85 (d, *J* = 61.6 Hz). ¹³**C** {¹**H**} NMR (101 MHz, aHF) δ [ppm] = 171.57 (d, *J* = 32.6 Hz), 169.11, 168.48, 168.32, 100.43 (d, *J* = 65.2 Hz), 99.11, 98.70, 98.07 (d, *J* = 64.8 Hz), 96.88.

5.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S3. ¹H NMR spectrum of GAM in aHF at 0°C.

Figure S5. ¹³C NMR spectrum of GAM in aHF at 0°C.

2,2-Fluorohydroxyacetic Acid (1)

¹H NMR (400 MHz, aHF) δ [ppm] = 5.57 (d, *J* = 54.4 Hz, H1), 3.30 (s, br, H2). ¹⁹F NMR (376 MHz, aHF) δ [ppm] = -130.38 (d, *J* = 54.2 Hz, F1). ¹³C {¹H} NMR (101 MHz, aHF) δ [ppm] = 170.98 (d, *J* = 32.7 Hz, C1), 96.95 (d, *J* = 225.1 Hz, C2).

5.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S6. ^1H NMR spectrum of GAM with equimolar amounts of SF4 in aHF at –40°C.

Figure S7. ^{19}F NMR spectrum of GAM with equimolar amounts of SF4 in aHF at –40°C.

Figure S8. ^{13}C {1H} NMR spectrum of GAM with equimolar amounts of SF4 in aHF at –40°C.

2,2-Fluorohydroxyacetyl Fluoride (2)

$$\begin{array}{c} F_{-}^{1} & H^{1} \\ H^{2}O^{-}C_{-}^{2}C_{-}^{1}F^{2} \\ 0 \\ \end{array}$$

¹**H** NMR (400 MHz, SO₂) δ [ppm] = 7.00 (d, *J* = 51.2 Hz, H1). ¹⁹**F** NMR (376 MHz, SO₂) δ [ppm] = 23.63 (d, *J* = 16.3 Hz), 22.97 (d, *J* = 14.1 Hz, F2), -134.67 (d, *J* = 53.7 Hz F1). ¹³**C** {¹**H**} NMR (101 MHz, SO₂) δ [ppm] = 154.33 (dd, *J* = 368.7 Hz, 34.8 Hz, C1), 92.59 (dd, *J* = 241.3 Hz, 82.4 Hz, C2).

2 is generated by dissolving a twofold amount of SF₄ (with respect to GAM) in aHF and successively adding GAM at -40° C. After removing all volatile products like SOF₂ and the solvent overnight, the residue was redissolved in aHF. ¹H, ¹⁹F, and ¹³C NMR spectra (Figure S9, Figure S10, and Figure S11) were measured at -40° C. The ¹⁹F NMR spectrum indicates an HF addition to **2**, illustrated in Equation S1.

The signal at -138.79 ppm with a dt-splitting pattern (${}^{2}J_{HF} = 53.7$ Hz, ${}^{3}J_{FF} = 9.35$ Hz) is assigned to the F1 atom of the HF-adduct (**4**). The triplet coupling was calculated manually. The 19 F signal of the F2 atom occurs at -83.46 ppm and is consistent with reported perfluorinated alcohols.¹² The respective proton signal is observed at 6.28 ppm with a dd-splitting pattern (${}^{2}J_{HF} = 51.0$ Hz, ${}^{3}J_{HF} = 3.7$ Hz). The 13 C resonance of the CHF(OH) group is noticed at 91.31 ppm (dd, ${}^{1}J_{CF} = 242.9$ Hz, ${}^{2}J_{CF} = 80.2$ Hz). The equilibrium displayed in Equation S1 is shifted to **2** by removing the solvent, successively warming the residue up to 0°C, and trapping the gas phase into a second vessel at -196° C. The condensate was dissolved in SO₂, and NMR spectra (Figure S12, Figure S13, and Figure S14) show **2** as the only organic compound.

Figure S11. ^{13}C {1H} NMR spectrum of GAM with a twofold amount of SF4 in aHF at –40°C.

Figure S14. ${}^{13}C$ { ${}^{1}H$ } NMR spectrum of 2 in SO₂ at -40°C.

Protonated α -Fluorohydroxyacetic Acid [FHA-1H][AsF₆] (**3**)

¹H NMR (400 MHz, aHF): δ [ppm] = 9.48 (s, H₃O⁺) 5.61 (d, *J* = 54.9 Hz; ²*J*_{HF}, H1), 3.39 (s, H2). ¹⁹F NMR (376 MHz, aHF): δ [ppm] = -128.88 (d, *J* = 53.9 Hz; ²*J*_{HF}, F1). ¹³C {¹H} NMR (101 MHz, aHF): δ [ppm] = 184.90 (d, *J* = 34.0 Hz; ²*J*_{CF}, C1), 97.00 (d, *J* = 227.1 Hz; ¹*J*_{CF}, C2).

Figure S16. $^{19}{\sf F}$ NMR spectrum of 3 in aHF at –40°C.

Figure S17. ^{13}C { ^{1}H } NMR spectrum of 3 in aHF at -40°C.

Vibrational Spectroscopy

Table S1. Experimental vibrational frequencies [cm ⁻¹] of [FHA-1H][AsF ₆] (3) and calculated frequencies of [FHA-1H] ⁺ (B3LYP/aug-cc-pVTZ level of theory).			
[FHA-1H][AsF ₆]		[FHA-1H] ⁺	
IR (exp.) ^[a]	Raman (exp.) ^[a]	ν̃ (IR/Ra) (calc.) ^{[b],[c]}	Assignment
		3769 (212/82)	v(OH)
		3615 (256/84)	v(OH)
		3484 (336/31)	v(OH)
	3127 (6)		
	3013 (11)	3067 (5/70)	v(CH)
1705 (m)		1685 (268/1)	v _{as} (CO)
	1623 (4)		
1541 (m)	1567 (7)	1567 (169/4)	v _s (CO)
1412 (m)	1407 (2)	1422 (74/1)	ω(CH)
1362 (m)	1335 (7)	1354 (10/3)	δ(CCH)
1225 (m)	1247 (3)	1241 (198/6)	δ(COH)
	1206 (2)	1193 (33/4)	δ(COH)
1165 (m)	1185 (10)	1189 (175/2)	δ(FCH)
1151 (m)	1162 (3)	1154 (102/1)	v(CO)
1022 (m)	1027 (4)	1066 (146/5)	v(CF)
1007 (m)			
897 (m)	903 (8)	883 (27/4)	v(CC)
854 (m)			
814 (m)		798 (25/0)	ү(ОН)
764 (m)	747 (14)	760 (123/4)	δ(CCO ₂)
696 (s)		693 (116/2)	δ(CCO)
		608 (5/1)	δ(CCO)
552 (m)		549 (49/1)	δ(COC)
	469 (13)	440 (0/1)	δ(CCO)
		324 (117/1)	ү(ОН)
		303 (61/0)	δ(CCO)
		238 (1/1)	δ(CCF)
		58 (3/1)	τ(CC)
	711 (97)		[AsF ₆] [−]
675 (m)	676 (100)		[AsF ₆]⁻
	566 (31)		[AsF ₆]⁻
	369 (68)		[AsF ₆]⁻
[-] Alchury detterne fam (D. totan etc.)		a second se	

[a] Abbreviations for IR intensities: vs = very strong, s = strong, m = medium, w = weak. Experimental Raman intensities are relative to a scale of 1 to 100. [b] Calculated on the B3LYP/aug-cc-pVTZ level of theory. [c] IR intensities in km/mol; Raman intensities in Å⁴/u.

|--|

FHA-F (exp.) ^[a]	FHA-F (calc.) ^{[b],[c]}	Assignment
	3800 (79)	v(OH)
	3080 (19)	v(CH)
1894 (m)	1907 (246)	v(C=O)
	1453 (15)	δ(CH)
1373 (m)	1362 (10)	ω(CH)
1360 (m)		
1348 (m)		
1250 (m)	1278 (73)	δ(CCH)
1173 (w)	1189 (257)	v(CF)
1128 (m)	1131 (84)	v(C–O)
1051 (m)		
1016 (m)	1012 (177)	v(CF)
822 (m)	832 (53)	v(CC)
744 (m)	765 (42)	γ(COF)
689 (m)	693 (46)	δ(COF)
590 (w)		
581 (w)	579 (23)	δ(COF)
571 (w)		
517 (w)		
498 (m)		
474 (w)		
438 (m)		
420 (m)	418 (16)	δ(CCO)
	321 (98)	ω(OH)
	255 (3)	δ(CCF)
	235 (3)	δ(CCF)
	48 (4)	τ(CC)
1286 (m)		SF ₄
885 (w)		SF ₄
708 (m)		SF ₄
623 (m)		SF ₄
609 (vs)		SF ₄
552 (m)		SF ₄
534 (m)		SF ₄
[a] Abbroviations for IR intensitios: vs - vo	wetrong c - strong m - modium w - wook	[b] Calculated on the B2LVD/aug on pVT7

[a] Abbreviations for IR intensities: vs = very strong, s = strong, m = medium, w = weak. [b] Calculated on the B3LYP/aug-cc-pVTZ level of theory. [c] IR intensities in km/mol.

Figure S18. Reference spectrum of gaseous SF_4 .

 \tilde{v} [cm⁻¹]= 1284 (m), 884 (w), 729 (vw), 622 (m), 612 (m), 603 (m), 555 (m), 544 (m), 532 (m), 406 (m), 397 (m).

Table S3. Quantum chemically calculated vibrational frequencies of 1. Calculated on the B3LYP/aug-cc-pVTZ level of theory.

ν̃ (IR/Ra)	Assignment
3799 (67/124)	v(OH)
3732 (78/104)	v(OH)
3080 (21/71)	v(CH)
1823 (302/12)	v(C=O)
1461 (20/2)	δ(CCH)
1381 (47/3)	δ(COH)
1360 (19/3)	ω(CH)
1250 (52/4)	δ(COH)
1170 (261/2)	v(C–O)
1138 (88/4)	v(C–O)
1011 (191/3)	v(CF)
864 (23/10)	v(CC)
789 (70/0)	γ(CO)
660 (65/3)	δ(CCO)
591 (74/1)	ω(OH)
571 (28/2)	δ(CCO)
419 (17/1)	δ(COF)
326 (94/2)	ω(OH)
267 (11/1)	δ(CCO)
240 (3/1)	δ(CCF)
40 (5/1)	τ(CC)

Single-Crystal X-ray Structure Analysis

Crystal Structure of [FHA-1H][AsF₆]

Figure S19. Projection of the asymmetric unit of 3. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms displayed as spheres of arbitrary radius.

Figure S20. Hydrogen bonds of the cation in the crystal packing of 3. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms displayed as spheres of arbitrary radius.

Figure S21. Non-hydrogen bonded cation-anion interaction in the crystal packing of 3. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms displayed as spheres of arbitrary radius.

Figure S22. Crystal packing of 3 with a view along the *b*-axis. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms displayed as spheres of arbitrary radius.

Figure S23. Crystal packing of 3. Thermal ellipsoid displacement probability set at 50%, hydrogen atoms displayed as spheres of arbitrary radius.

Bond lengths [Å]			
C1–C2	1.515(5)	As1–F2	1.754(2)
C1–O1	1.258(4)	As1–F3	1.727(2)
C1–O2	1.272(4)	As1–F4	1.703(2)
C2–O3	1.355(5)	As1–F5	1.698(3)
C2–F1	1.376(5)	As1–F6	1.727(2)
		As1–F7	1.716(2)
Bond angles [°]			
01C1C2	117.4(3)	F3–As1–F2	89.03(13)
O2–C1–C2	122.0(3)	F4–As1–F6	90.47(12)
01–C1–O2	120.6(3)	F5–As1–F7	91.96(12)
O3–C2–C1	106.6(3)		
F1-C2-C1	106.1(4)		
03–C2–F1	111.9(4)		
Dihedral angles [°]			
03-C2-C1-O1	179.5(4)		
F1-C2-C1-O1	-61.2(5)		
03-C2-C1-O2	-1.0(6)		
F1-C2-C1-O2	118.3(4)		
Intermolecular interactions D(–H)···A [Å]			
O1(–H1)…F2	2.579(4)		
O2(–H2)…O3	2.587(4)		
O2(–H2)…F6 <i>i</i>	2.669(3)		
O3(–H3)…F3 <i>ii</i>	2.826(4)		
C1…F7	2.733(5)		

Table S4. Bond lengths [Å], bond angles, and torsion angles [°] of 3.

Table S5. Summary of the X-ray diffraction data collection and refinement.

	[C ₂ H ₄ FO ₃][AsF ₆]
Formula	C ₂ H ₄ F ₇ O ₃ As
M _r [g mol ⁻¹]	283.97
Crystal size [mm ³]	$0.80 \times 0.170 \times 0.150$
Crystal system	orthorhombisch
Space group	P212121
a [Å]	7.4858(3)
<i>b</i> [Å]	8.0027(3)
c [Å]	12.7743(5)
α [deg]	90
β [deg]	90
γ [deg]	90
V [Å ³]	765.27(5)
Z	4
$ ho_{\rm calc}$ [g cm ⁻³]	2.465
μ [mm ⁻¹]	4.549
λ(Mo-K _α) [Å]	0.71073
F(000)	544
Т [К]	121(2)
h,k,l range	-10:10, -11:11, -18:18
Refl. measured	2544
Refl. unique	2257
R _{int}	0.0437
Parameters	135
R(F)/wR(F ²) ^[a] (all reflexions)	0.0416/0.0631
Weighting scheme	calc
S (GooF) ^[d]	1.028
Residual density [e Å ⁻³]	0.797/-0.544
Device type	Oxford XCalibur
Solution	SHELXT ⁴
Refinement	SHELXL-2018/1 ⁵
CCDC	2173682

Theoretical Study

 α -Fluorohydroxyacetic Acid (FHA)

Figure S24. Optimization of the gas-phase structure of FHA. Calculated on the B3LYP/aug-cc-pVTZ level of theory.

Atomic Type	х	Y	Z
F	-1.244502	0.840437	-0.813111
0	1.067135	0.952424	0.707265
0	1.637915	-0.829520	-0.548746
0	-1.270126	-0.612020	0.939554
С	-0.695407	-0.320106	-0.276339
С	0.807254	-0.108723	-0.065397
н	-2.144245	-0.993753	0.803175
Н	-0.835056	-1.104689	-1.020467
н	2.029356	1.020418	0.801123

 Table S6: Standard orientation of FHA. Calculated on the B3LYP/aug-cc-pVTZ level of theory.

α-Fluorohydroxyacetic Acid (FHA-F)

Figure S25. Optimization of the gas-phase structure of FHA-F. Calculated on the B3LYP/aug-cc-pVTZ level of theory.

Atomic Type	х	Y	Z
F	-1.207018	0.951366	-0.689844
0	1.704702	-0.629905	-0.646942
0	-1.255582	-0.777422	0.790538
С	-0.671096	-0.284040	-0.349645
С	0.820887	-0.094466	-0.076235
н	-2.121126	-1.147330	0.583809
Н	-0.791198	-0.930881	-1.219306
F	1.031532	0.782841	0.916734

Protonated α -Fluorohydroxyacetic Acid ([FHA-1H]⁺)

Figure S26. Optimization of the gas-phase structure of [FHA-1H]⁺. Calculated on the B3LYP/aug-cc-pVTZ level of theory.

Atomic Type	Х	Y	Z
F	-1.093802	-1.203964	-0.538907
0	1.072924	1.210624	-0.363999
0	1.592691	-0.841310	0.270649
0	-1.386180	0.937700	0.174918
С	-0.739742	-0.251522	0.375409
С	0.734321	0.072000	0.080148
Н	0.281933	1.795160	-0.442466
Н	-2.296761	0.932295	0.500484
Н	2.509407	-0.597144	0.029094
н	-0.853324	-0.673612	1.377163

 Table S8. Standard orientation of [FHA-1H]*. Calculated on the B3LYP/aug-cc-pVTZ level of theory.

References

- 1 L. Bayersdorfer, R. Minkwitz and J. Jander, Eine Infrarot-Tieftemperaturkvette fr die Vermessung temperaturempfindlicher Gase, Flssigkeiten und Feststoffe, Z. Anorg. Allg. Chem., 1972, **392**, 137–142.
- 2 CrysAlisCCD, Version 1.171.35.11 (release 16-05-2011 CrysAlis 171.NET), Oxford Diffraction Ltd, UK, 2011.
- 3 CrysAlisRED, Version 1.171.35.11 (release 16-05-2011 CrysAlis 171.NET), Oxford Diffraction Ltd, UK, 2011.
- 4 G. M. Sheldrick, SHELXT integrated space-group and crystal-structure determination, *Acta crystallographica. Section A, Foundations and advances*, 2015, **71**, 3–8.
- 5 G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta crystallographica. Section C, Structural chemistry, 2015, 71, 3–8.
- 6 L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr., 1999, **32**, 837–838.
- 7 A. L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr., 2003, 36, 7–13.
- 8 SCALE3 ABSPACK, An Oxford Diffraction Program, Oxford Diffraction Ltd, UK, 2005.
- 9 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16 Rev. C.01*, Wallingford, CT, 2016.
- 10 Roy Dennington, Todd A. Keith and John M. Millam, GaussView 6, Semichem Inc., Shawnee Mission KS, 2019.
- 11 Mestrelab Research S.L., *MestReNova*, Santiago de Compostela, Spain, 2019.
- 12 A. F. Baxter, J. Schaab, K. O. Christe and R. Haiges, Perfluoroalcohols: The Preparation and Crystal Structures of Heptafluorocyclobutanol and Hexafluorocyclobutane-1,1-diol, *Angew. Chem. Int. Ed. Engl.*, 2018, **57**, 8174–8177.