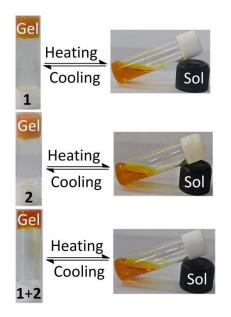
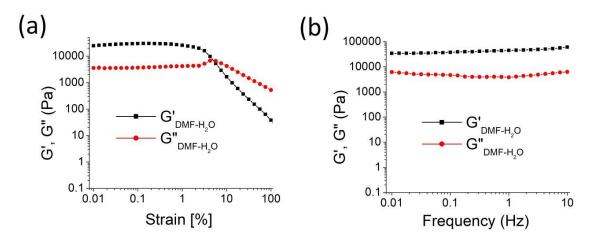
Supporting Information


6-Aminocoumarin derived Schiff base gelators: Aggregation and sensing of CN⁻, Fe³⁺, Cu²⁺ and CO₂ under different conditions

Eshani Paul, Rameez Raza, Subrata Ranjan Dhara, Nabajyoti Baildya and Kumaresh Ghosh*


Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: <u>ghosh_k2003@yahoo.co.in</u>; kumareshchem18@klyuniv.ac.in

TableS1. Results of gelation test for compounds 1 and compound 2.

Solvents	Compound 1	Compound 2	
CHCl ₃	S	PS	
MeOH	I	Ι	
THF	S	PS	
DMF	S	S	
DMSO	S	S	
CH ₃ CN	S	S	
1,4-Dioxane	S	S	
Toluene	I	PS	
DMF-H ₂ O (2:1,v/v)	G (5 mg/mL) ($T_g = 75 \text{ °C}$)	G (6 mg/mL) $(T_g = 78 \text{ °C})$	
DMSO-H ₂ O (2:1,v/v)	G (4 mg/mL) ($T_g = >80 \circ C$)	G (5 mg/mL)($T_g = >80 \text{ °C}$)	
Dioxane-H ₂ O (2:1,v/v)	G (5 mg/mL) ($T_g = 68 \text{ °C}$)	G (6 mg/mL) ($T_g = 70 \text{ °C}$)	
S = Soluble; G = Gel	(minimum gelation concentration); PS=	Partially soluble; I= Insoluble.	

Figure S1.Thermo-reversibility of gel 1 ($c = 1.35 \text{ x } 10^{-2} \text{ M}$), gel 2 ($c = 1.2 \text{ x } 1 \text{ } 0^{-2} \text{ M}$) and mixed gel of 1 and 2 in DMF-H₂O (2: 1, v/v).

Figure S2. Rheology study of the mixed gel of 1 and 2 in DMF-H₂O (2: 1, v/v): (a) amplitude sweep (at constant frequency of 1 Hz) and (b) frequency sweep (at constant 0.01% strain) experiments.

Gel in Solvent	Critical strain (%)	Crossover (% strain)	G' _{av} (Pa)*	G" _{av} (Pa)*	G''_{av}/G'_{av}
Mixed gel in DMF-H ₂ O	1.01	5.10	41852	6212.8	0.148
G'_{av} and G''_{av} values were calculated from frequency sweep data.					

Table S2. Summary of rheological properties of mixed gel of 1 and 2.

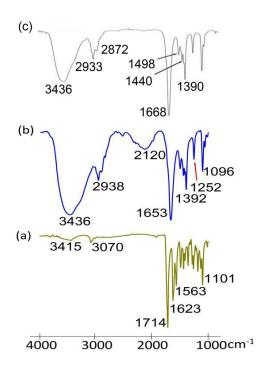
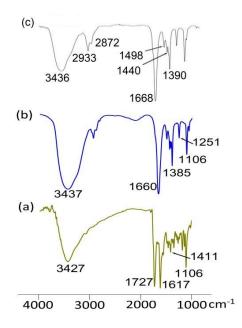



Figure S3. Comparison of FT-IR spectra of 1 in the (a) powder and (b) gel state in DMF-H₂O (2:1, v/v). In the series (c) indicates the FT-IR of DMF solvent.

Figure S4. Comparison of FT-IR spectra of **2** in the (a) powder and (b) gel state in DMF-H₂O (2:1, v/v). In the series (c) indicates the FT-IR of DMF solvent.

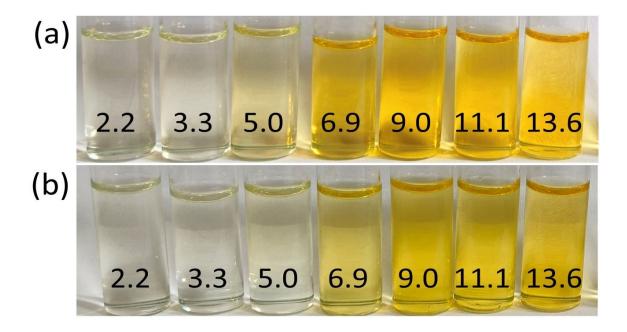


Figure S5. Change in color of solutions of 1 (a) and 2 (b) at different pH values in DMF: H_2O (2:1, v/v).

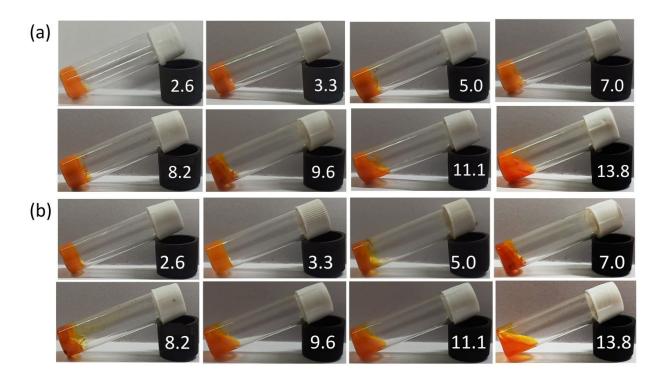
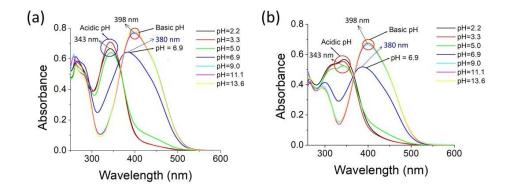
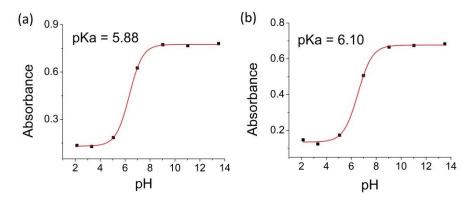
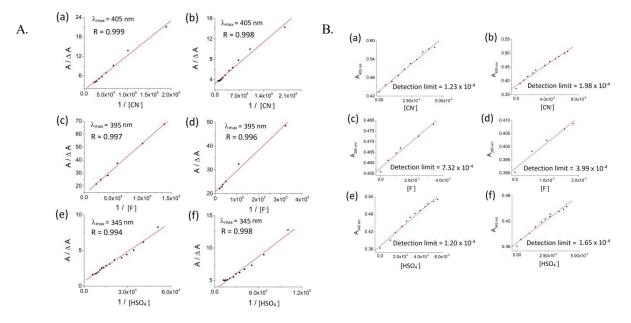


Figure S6. pH variation in DMF-H₂O (2: 1, v/v) gels of 1(a) and 2 (b).

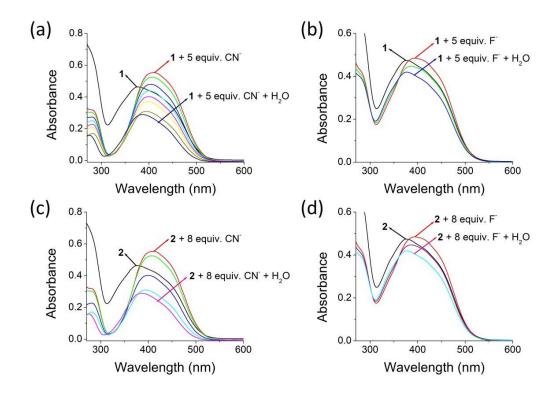

Figure S7. Change in absorbances of 1 (a) and 2 (b) ($c = 2.50 \text{ x } 10^{-5} \text{ M}$) in DMF-H₂O (2:1,v/v) at different pH values.

Figure S8. Change in absorbances of **1** and **2** at 380 nm 385 nm, respectively in response to pH change in DMF: $H_2O(2: 1, v/v)$ to determine pKa values.

Figure S9. Benesi-Hildebrand plots of A. compound **1** (a, c, e) and compound **2** (b, d, f) using UV-vis titration data; B. Detection limits for the anions (CN⁻, F⁻ and HSO₄⁻; $c = 1.0 \times 10^{-3} \text{ M}$) with **1** (a, c and e) and **2** (b, d and f) ($c = 2.5.0 \times 10^{-5} \text{ M}$) from UV-vis in DMF-H₂O (2: 1, v/v).

Figure S10. Change in absorbance of (a) **1**.CN⁻ensemble (b) **1**.F⁻ ensemble and (c) **2**.CN⁻ensemble (d) **2**. F⁻ensemble [prepared from addition of 5 equiv. amounts of CN⁻ and F⁻ ($c = 1.0 \times 10^{-3} \text{ M}$) to **1** ($c = 2.50 \times 10^{-5} \text{ M}$) and 8 equiv. amounts of CN⁻ and F⁻ ($c = 1.0 \times 10^{-3} \text{ M}$) to **2** ($c = 2.50 \times 10^{-5} \text{ M}$), respectively in DMF-H₂O (2: 1, v/v)] upon addition of H₂O.

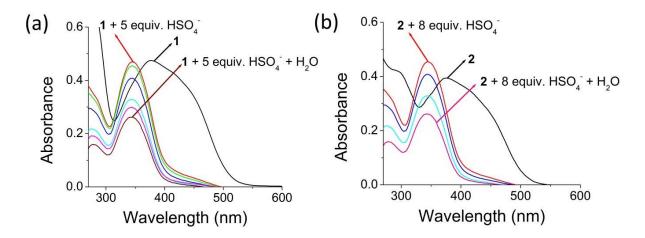
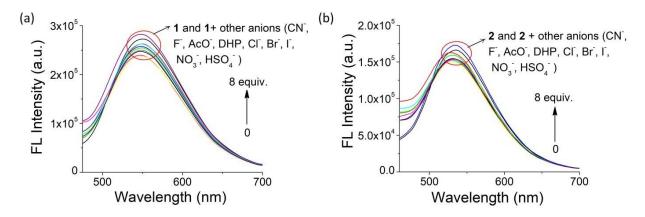
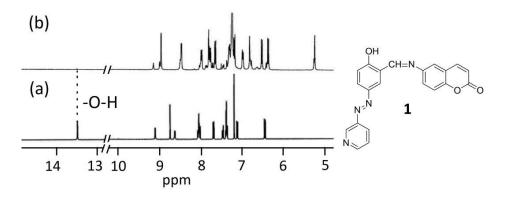
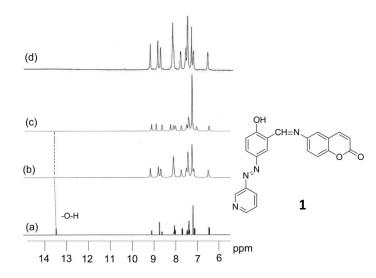
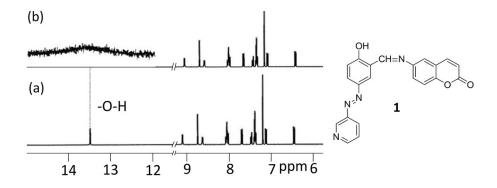
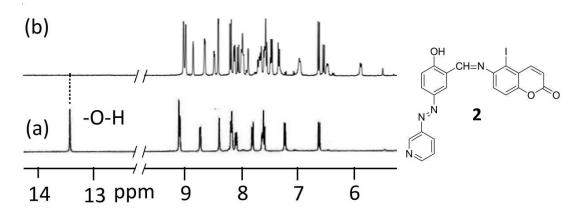
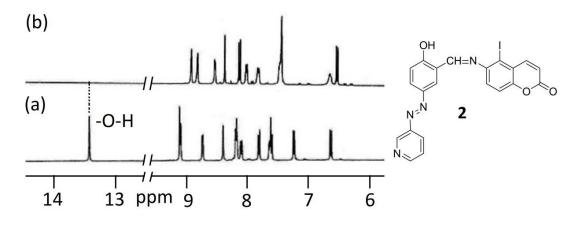




Figure S11. Change in absorbances of the ensembles of HSO_4^- with 1 and 2 [prepared from addition of 5 equiv. amounts of HSO_4^- ($c = 1.0 \times 10^{-3} \text{ M}$) to 1 ($c = 2.50 \times 10^{-5} \text{ M}$) and 8 equiv. amounts of HSO_4^- ($c = 1.0 \times 10^{-3} \text{ M}$) to 2 ($c = 2.50 \times 10^{-5} \text{ M}$) in DMF-H₂O (2: 1, v/v)] upon addition of H₂O.

Figure S12. Change in emissions (λ_{exc} = 380 nm) of **1** (a) and **2** (b) ($c = 2.50 \times 10^{-5} \text{ M}$) in DMF-H₂O (2:1,v/v) upon addition of tetrabutylammonium salts of other anions.

Figure S13. Partial ¹H NMR (400 MHz) of 1 ($c = 1.08 \times 10^{-2} \text{ M}$) in the absence (a) and presence (b) of 1 equiv. amount of CN⁻(c = 0.223 M) in CDCl₃.


Figure S14. Partial ¹H NMR (400 MHz) of 1 ($c = 1.08 \times 10^{-2}$ M) in the absence (a) and presence (b) of 0.20 equiv., (c) 0.50 equiv. and (d) 1 equiv. amount of F⁻ (c = 0.380 M) in CDCl₃.

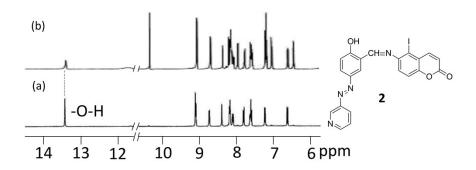

Figure S15. Partial ¹H NMR (400 MHz) of 1 ($c = 1.08 \times 10^{-2}$ M) (a) in the absence and (b) presence of 1equiv. amount of HSO₄- (c = 0.353 M) in CDCl₃.

Figure S16. Partial ¹H NMR (400 MHz) of **2** ($c = 6.0 \times 10^{-3}$ M) in the absence (a) and presence (b) of 1equiv. amount of CN⁻(c = 0.223 M) in DMSO-d₆.

Figure S17. Partial ¹H NMR (400 MHz) of **2** ($c = 6.0 \times 10^{-3}$ M) in the absence (a) and presence (b) of 1 equiv. amount of F⁻(c = 0.380 M) in DMSO-d₆.

Figure S18. Partial ¹H NMR (400 MHz) of **2** ($c = 6.0 \times 10^{-3} \text{ M}$) in the absence (a) and presence (b) of 1equiv. amount of HSO₄⁻ (c = 0.353 M) in DMSO-d₆.

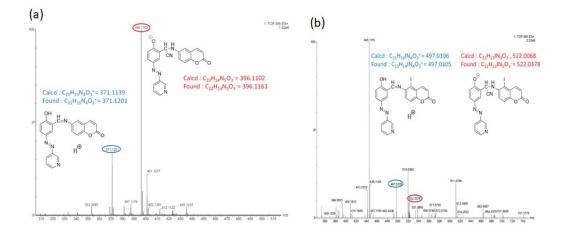


Figure S19. Mass spectra of the cyanide adducts of (a) 1 and (b) 2.

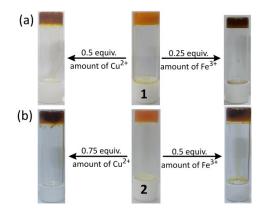


Figure S20. Gel-to-gel color change for DMF-H₂O (2: 1, v/v) gels of 1 (5 mg/mL) and 2 (6 mg/mL) upon addition of minimum amount of Cu(ClO₄)₂ and Fe(ClO₄)₃.

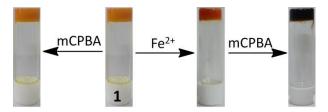


Figure S21. Treatment of *m*-CPBA in Fe²⁺- induced gel of 1 in DMF-H₂O (2:1,v/v).

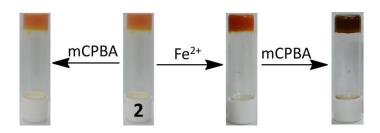
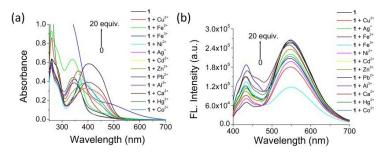
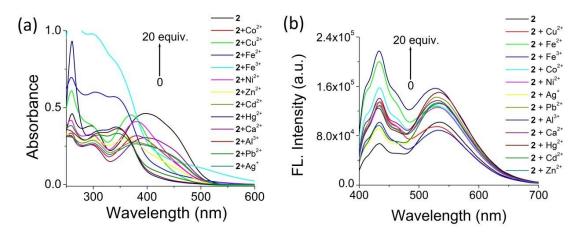




Figure S22. Treatment of *m*-CPBA in Fe²⁺- induced gel of 2 in DMF-H₂O (2:1, v/v).

Figure S23. Change in absorbance (a) and emission ($\lambda_{exc} = 380 \text{ nm}$) (b) of 1 ($c = 2.5 \text{ x } 10^{-5}\text{M}$) upon addition of 20 equiv. amounts of different metal ions ($c = 1 \text{ x } 10^{-3} \text{ M}$) in DMF-H₂O (2:1, v/v).

Figure S24. Change in absorbance (a) and emission ($\lambda_{exc} = 380 \text{ nm}$) (b) of **2** ($c = 2.5 \text{ x } 10^{-5}\text{M}$) upon addition of 20 equiv. amounts of different metal ions ($c = 1 \text{ x } 10^{-3} \text{ M}$) in DMF-H₂O (2:1, v/v).

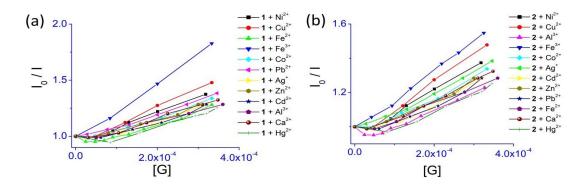
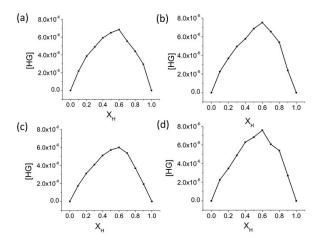
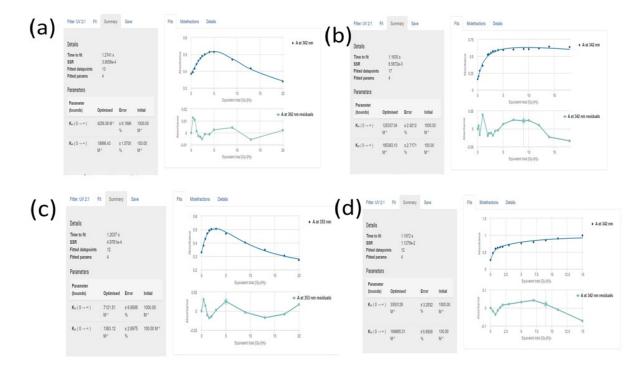




Figure S25. Stern-Volmer plots for compounds (a) 1 and (b) 2 with the different metal ions.

Figure S26. UV-vis Job plots for compound **1** with (a) Cu^{2+} and (b) Fe^{3+} ([H] = [G] = M) compound **2** with (a) Cu^{2+} and (b) Fe^{3+} in DMF-H₂O (2:1, v/v) where [H] = [G] = 2.5 x 10^{-5} M.

Figure S27. Non-linear fitting of UV-vis titration data for binding constant determination: (a) 1 with Cu^{2+} ions, (b) 1 with Fe^{3+} ions, (c) 2 with Cu^{2+} ions, (d) 2 with Fe^{3+} ions.

Empirical formula	C42H24CuI2N8O6		
Formula weight	1054.03 g/mol		
Temperature/K	298(2) K		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.4881(17)		
b/Å	9.0750(18)		
c/Å	14.960(3)		
α/°	93.295(6)		
β/°	105.306(6)		
γ/°	92.251(6)		
Volume/Å ³	1107.9(4)		
Z	1		
pcalcg/cm ³	1.580		
μ/mm ⁻¹	1.940		
F(000)	515		
Crystal size/mm ³	0.056 × 0.089 × 0.152		
Radiation	MoKα (λ = 0.71073)		
2@range for data collection/°	4.50° to 50.50°		
Index ranges	$-10 \le h \le 10, -10 \le k \le 10, -17 \le l \le 17$		
Reflections collected	20628		
Independent reflections	3938 [R(int) = 0.1270]		
Data/ restraints/ parameters	3938 / 0 / 268		
Goodness-of-fit on F ²	1.062		
Final R indexes $[I > = 2\sigma(I)]$	R1 = 0.1089, wR2 = 0.1656		
Final R indexes [all data]	R1 = 0.1975, wR2 = 0.1986		
Largest diff. peak/hole /e Å ⁻³	1.374/ -0.671		
CCDC Number	2361386		

Table S3.Crystallographic data and structure refinement of Cu^{2+} -complex of 2.

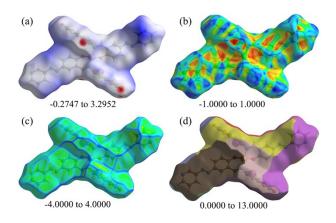
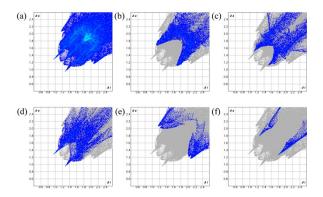
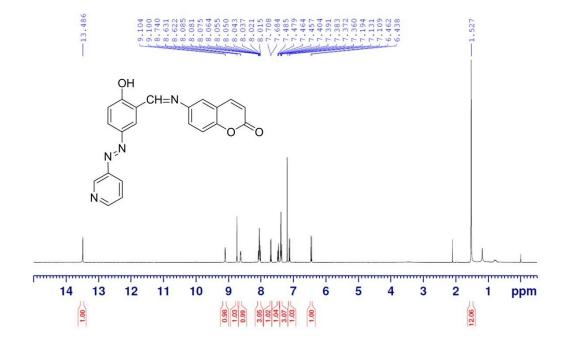




Figure S28. Hirshfeld surfaces of the complex (a) d_{norm}, (b) shape index, (c) curvedness, and (d) fragment patch.

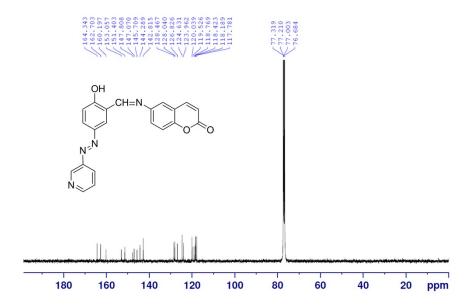
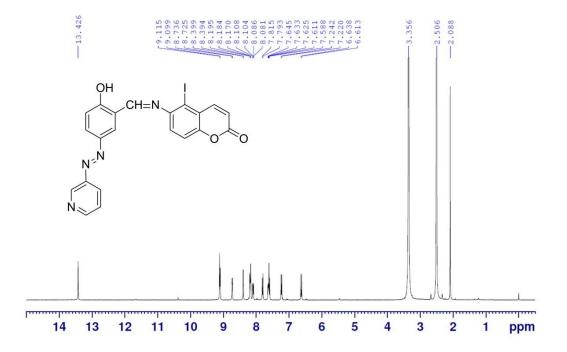
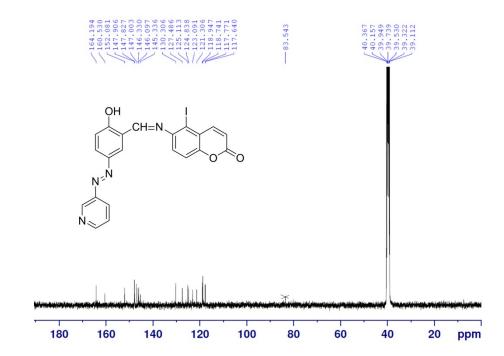
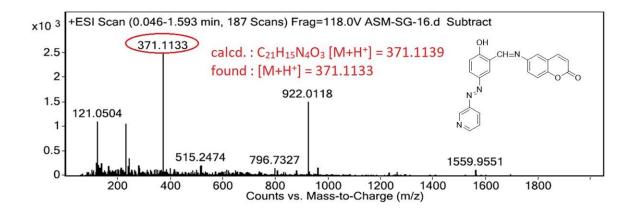
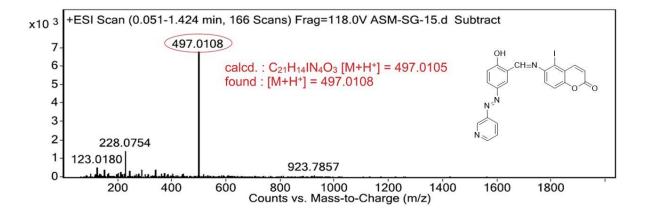


Figure S29. 2D fingerprint plots of the complex (a) all interactions, (b) $C \cdots H/H \cdots C$ interactions, (c) $N \cdots H/H \cdots N$ interactions, (d) $O \cdots H/H \cdots O$ interactions, (e) $I \cdots H/H \cdots I$ interactions, and (f) $I \cdots O/O \cdots I$ interactions.


¹H NMR (CDCl₃, 400 MHz) of 1


¹³C NMR (CDCl₃, 100 MHz) of 1


¹H NMR (DMSO-d₆, 400 MHz) of 2


¹³C NMR (DMSO-d₆, 100 MHz) of 2

Mass spectrum of 1

Mass spectrum of 2

