Kinetic models		
Model	Equation	Parameters
Pseudo-first-order	$Q_t = Q_e \left(1 - e^{-k_1 t}\right)$	$Q_t \ (mg/g)$ is the adsorbed ions at time (t), and K_1 is the rate constant of the first-order adsorption (1/min)
Pseudo-second-order	$Q_t = \frac{Q_e^2 k_2 t}{1 + Q_e k_2 t}$	Qe is the quantity of adsorbed ions after equilibration (mg/g), and K_2 is the model rate constant (g/mg min).
Classic Isotherm models		
Model	Equation	Parameters
Langmuir	$Q_e = \frac{Q_{max} b C_e}{(1 + b C_e)}$	C_e is the rest ions concentrations (mg/L), Q_{max} is the theoritical maximum adsorption capacity (mg/g), and <i>b</i> is the Langmuir constant (L/mg)
Freundlich	$Q_e = K_f C_e^{1/n}$	$K_{\rm F}$ (mg/g) is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities
Dubinin–Radushkevich	$Q_e = Q_m e^{-\beta \varepsilon^2}$	β (mol ² /KJ ²) is the D-R constant, ε (KJ ² /mol ²) is the polanyil potential, and Q _m is the adsorption capacity (mg/g)
Advanced isotherm models		
Model	Equation	Parameters
Monolayer model with one	$nN_M = Q_o$	Q is the adsorbed quantities in mg/g
energy site (Model 1)	$Q = hN_0 = \frac{1}{1 + (\frac{C1/2}{C})^n} = \frac{1}{1 + (\frac{C1/2}{C})^n}$	n is the number of adsorbed ion per site
	6 6	Nm is the density of the effective receptor sites (mg/g)
Monolayer model with two energy sites (Model 2)	$Q = \frac{n_1 N_{1M}}{C_{1 n_1}} + \frac{n_2 N_{2M}}{C_{2 n_2}}$	\mathbf{Q}_{o} is the adsorption capacity at the saturation state in mg/g
	$1 + (\frac{-}{C})^{-1} + (\frac{-}{C})^{-2}$	C1/2 is the concentration of the ions at half saturation stage in $\mbox{mg/L}$
Double layer model with one energy site (Model 3)	$Q = Q_0 \frac{\left(\frac{C}{C1/2}\right)^n + 2\left(\frac{C}{C1/2}\right)^{2n}}{\frac{C}{C1/2}}$	C1 and C2 are the concentrations of the ions at the half saturation stage for the first active sites and the second active sites, respectively
	$1 + \left(\frac{1}{C1/2}\right)^n + \left(\frac{1}{C1/2}\right)^{2n}$	n1 and n2 are the adsorbed ions per site for the first active sites and the second active sites, respectively
Double layer model with two energy sites (Model 3)	$Q = Q_o \frac{(\frac{C}{C1})^n + 2(\frac{C}{C2})^{2n}}{1 + (\frac{C}{C1})^n + (\frac{C}{C2})^{2n}}$	

Table.S1. Nonlinear equations of kinetic, classic isotherm, and advanced isotherm models

Fig.S1. The speciation diagram of uranium at different pH values [47]