Efficient adsorption performance of uranium in wastewater by novel MXene material TiVCT_x and its aerogel composites

Xiaoxia Luo^{a,*}, Xianliang Ren^b, Hongwei Wang^{b,**}

^a Chongqing College of Mobile Communication, Chongqing, 401520, P.R. China

^b National Key Laboratory of Advanced Casting Technologies, Chongqing Key

Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics,

Chongqing University, Chongqing, 400044, P.R. China

E-mail addresses:20202701013@cqu.edu.cn (H. Wang); xiaoxialuo90@163.com (X.

Luo)

Chemical formula	Concentration (g L ⁻¹)
NaCl	26.726
MgCl ₂	2.26
MgNO ₃	5.845
$CaCl_2$	1.153

Table S1 Mocledn's artificial seawater formula (salinity 3.34%)

Adjusting the pH of a 100 mL, 125 mg/L U(VI) solution solely with NaOH reveals

minimal changes in U(VI) concentration across varying pH levels. Only a negligible amount of U(VI) precipitates, hence its effect on adsorption can be disregarded.

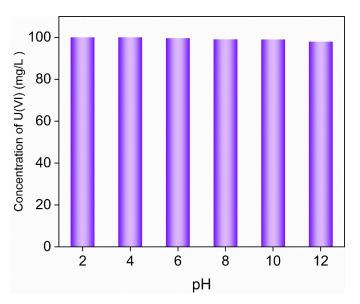


Fig. S1 The influence of NaOH-adjusted pH on U(VI) concentration.