Green tea capped magnetite nanoparticles for selective and sensitive recognition of \mathbf{Ag}^{+}

Ankita Doi,^a Mainak Ganguly^{b*}, and Priyanka Sharma^b

^aDepartment of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India

^bDepartment of Chemistry, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India

Figure S1: Fluorescence spectra of GTEFe in the presence of different metal ions.

 λ_{ex} 290 nm and [metal ion= 10⁻³ M]

Figure S2: UV-Vis spectrum of GTE, GTEFe, AgGTEFe. GTE $\lambda_{max} = 274$, GTEFe $\lambda_{max} = 270$, and AgGTEFe $\lambda_{max} = 264$ nm

Figure S3: UV-Vis spectra of GTEFe in the presence of different metal ions

Figure S4: UV-Vis spectrum with GTE, GTEFe with [Ag⁺]

Figure S5: XRD plot of AgGTEFe

 Table S1: Detection of Ag^+ with physico-chemical properties and applications

S. no.	Response type	Percentage of organic solvent in working solution	$\lambda_{ex}/\lambda_{em}$ (nm)	LOD of [Ag ⁺]	Linear detectio n range (concent ration)	Applications
1.	Quenching fluorescenc e	100% aqueous solution ¹	598/622 nm	5 ×10 ⁻¹⁵ M	5×10^{-15} to 8 × 10^{-13} M	NA
2.	Enhanceme nt Fluorescenc e	Semicarbazide ²	290/ 420 nm	7.7 μΜ	10 ⁻³ M to 10 ⁻⁷ M	Real water analysis (rainwater, tap, drinking, and Ganga)
2.	Enhanceme nt fluorescenc e	3% of OPDA (, o- phenylenediamine) ³	365/568 nm	60 nM	60 nM to 60 μM	Sewage water
3.	Quenching fluorescenc e	50% DMSO ⁴	310/527 nm	6.37 × 10 ⁻⁵ M	0–20 μM	NA
4.	Quenching fluorescenc e	100% THF ⁵	435/530 nm	5 × 10-7 M	0.1 to 4.2 equiv.	NA
5.	Quenching fluorescenc e	10% Ethanol ⁶	619/760 nm	3 × 10 ⁻⁸ M	-	Tap and lake water
6.	Quenching fluorescenc e	100% aqueous solution ⁷	307/358 nm	2.70 × 10 ⁻⁶ M	0 to 24 μΜ	NA
7.	Enhanceme nt fluorescenc e	50% MeOH ⁸	370/400 nm	1.28 × 10 ⁻¹⁰ M	-	Ground, tap water, andlive cells
8.	Enhanceme nt fluorescenc e	20% Ethanol ⁹	530/584 nm	1.29 × 10 ⁻⁸ M	0.050- 0.54 ppm	Sanitizer gel and fabric softener
9.	Enhanceme nt fluorescenc e	100% Methanol ¹⁰	520/576 nm	2.3 × 10 ⁻⁷ M	-	NA
10.	Enhanceme nt fluorescenc e	100% aqueous solution ¹¹	330/506 nm	1.07 × 10 ⁻⁷ M	0- 107 nM	NA
11.	Ratiometric	100% aqueous solution ¹²	405/481	Not	-	Live cells

			and 565	measured		
			nm			
12.	Ratiometric	70% MeOH ¹³	405/481	6.29×10^{-6}	-	NA
			and 565	М		
			nm			
13.	Ratiometric	100% Methanol ¹⁴	470/510	1.5×10^{-6}	-	NA
			and 525	М		
			nm			
14.	Ratiometric	100% THF ¹⁵	480/630	Not	-	NA
			and 671	measured		
			nm			
15.	Ratiometric	100% aqueous solution ¹⁶	450/500	3.7×10^{-9}	0-180	Tap and
		_	and 535	M	nM	ground water
			nm			
16.	Enhanceme	100% water (present work)	290/400	1.0×10^{-7}	10-4 -	
	nt		and 467	M	10 ⁻⁷ M	
	fluorescenc		nm			
	e					

Figure S6: Effect of counter anions of sodium salts on the fluorescence of AgGTEFe.

Figure S7: (a) DLS spectra of GTFe (b) DLS spectra of of AgGTEFe.

Figure S8: Fluorescence spectra of gallic acid, gallic acid + Fe^{3+} , and gallic acid + $Fe^{3+} + Ag^+$

Figure S9: Fluorescence spectra of GTE and GTE + Ag^+

Figure S 10: Fluorescence intensity of LIPTON GTE, GTEFe, and AgGTEFe

Supporting references

- A. D. Arulraj, R. Devasenathipathy, S. M. Chen, V. S. Vasantha and S. F. Wang, *Sens. Bio-Sensing Res.*, 2015, 6, 19–24.
- 2 S. Priyanka, M. Ganguly and A. Doi, *Appl. Nanosci.*, 2024, 1–13.
- 3 X. Yang and E. Wang, Anal. Chem., 2011, 83, 5005–5011.
- 4 S. Zhang, X. Wu, Q. Niu, Z. Guo, T. Li and H. Liu, J. Fluoresc., 2017, 27, 729–737.
- 5 W. Cui, L. Wang, G. Xiang, L. Zhou, X. An and D. Cao, Sensors Actuators B. Chem., 2015, 207, 281–290.
- 6 Y. Zhang, Q. Wang, G. Chen, P. Shi and W. Wang, Polyhedron, 2019, 169, 247–252.
- 7 Y. Zhang, A. Ye, Y. Yao and C. Yao, , DOI:10.3390/s19020247.
- 8 N. Bhuvanesh, S. Suresh, P. R. Kumar, E. M. Mothi, K. Kannan, V. R. Kannan and R. Nandhakumar, "Journal Photochem. Photobiol. A Chem., 2018, **360**, 6–12.
- 9 A. Chatterjee, M. Santra, N. Won, S. Kim, J. K. Kim and S. Bin Kim, 2009, 2040–2041.
- 10 Y. Guo, S. Wang, H. Du, X. Chen and H. Fei, *Biomacromolecules*, 2019, 20, 558–565.
- 11 L. N. Neupane, P. Thirupathi, S. Jang, M. J. Jang, J. H. Kim and K. H. Lee, *Talanta*, 2011, **85**, 1566–1574.
- 12 H. Wang, L. Xue and H. Jiang, Org. Lett., 2011, 13, 3844–3847.
- 13 B. Lotfi, A. Tarlani, P. Akbari-Moghaddam, M. Mirza-Aghayan, A. A. Peyghan, J. Muzart and R. Zadmard, Biosens. Bioelectron., 2017, 90, 290–297.
- 14 A. N. Kursunlu and E. Güler, J. Mol. Struct., 2017, 1134, 345–349.
- 15 A. Coskun and E. U. Akkaya, J. Am. Chem. Soc., 2005, 127, 10464–10465.
- 16 P. K. Mehta, L. N. Neupane, S. H. Park and K. H. Lee, J. Hazard. Mater., 2021, 411, 125041.