Synthesis of Supramolecular Polymers with Calix[4]arene and β -Cyclodextrin and Their Application in Heavy Metal Ions Absorption

Jian-Jian Bian^a, Shi-jin Tang^a, Jiao Miao^a, Rui Lin^{*b}, Guo-li Huang, Ming-yu Teng^{*a} and Xiao-mei Li^{*a}

^aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500,

China. (phone: +86 871 65941087; fax: +86 871 65941088)

^bImage and Text Information Center, Yunnan Normal University, Kunming 650500, China

(phone/fax: +86 871 65912939)

Corresponding Authors

Rui Lin, Email: <u>532712149@qq.com</u>

Ming-yu Teng, Email: myteng@ynnu.edu.cn

Xiao-mei Li, Email: 425931826@qq.com

Contents

I. NMR spectraS	2
II. Adsorption rate of 5 chosen heavy metal ions in different pH solutions by title	
supramolecular polymersS1	3

I. NMR spectra

Figure S1.2 The ¹H NMR spectrum of b1

Figure S1.3 The ¹H NMR spectrum of b2

Figure S1.4 The ¹H NMR spectrum of b3

Figure S1.5 The ¹H NMR spectrum of b4

Figure S1.6 The ¹H NMR spectrum of f1

Figure S1.7 The ¹H NMR spectrum of f2

Figure S1.8 The ¹H NMR spectrum of BC4PUPy

Figure S1.10 The ¹H NMR spectrum of BC4HUPy

10 200 190 180 170 160 180 180 180 130 120 110 100 90 80 70 60 80 40 30 20 10 0 -10

Figure S1.12 The ¹H NMR spectrum of C4PUPy

Figure S1.16 The ¹H NMR spectrum of β -CDPUPy

Figure S1.18 The $\,^1\text{H}$ NMR spectrum of $\beta\text{-CDBUPy}$

Figure S1.19 The $\,^1\text{H}$ NMR spectrum of $\beta\text{-CDHUPy}$

II. Adsorption rate of 5 chosen heavy metal ions in different pH solutions by title supramolecular polymers

Figure S2.1 Adsorption rate of Pb^{2+} in different pH solutions by supramolecular polymers with calixarene as main body (6 h)

Figure S2.2 Adsorption rate of Pb^{2+} in different pH solutions by supramolecular polymers with β -CD as main body(6 h)

Figure S2.3 Adsorption rate of Cd^{2+} in different pH solutions by supramolecular polymers with calixarene as main body (6 h)

Figure S2.4 Adsorption rate of Cd^{2+} in different pH solutions by supramolecular polymers with $\beta\text{-CD}$ as main body ~(6~h)

Figure S2.5 Adsorption rate of Zn^{2+} in different pH solutions by supramolecular polymers with calixarene as main body (6 h)

Figure S2.6 Adsorption rate of Zn^{2+} in different pH solutions by supramolecular polymers with $\beta\text{-CD}$ as main body(6 h)

Figure S2.7 Adsorption rate of Ni^{2+} in different pH solutions by supramolecular polymers with calixarene as main body (6 h)

Figure S2.8 Adsorption rate of Ni^{2+} in different pH solutions by supramolecular polymers with β -CD as main body(6 h)

Figure S2.9 Adsorption rate of Cu^{2+} in different pH solutions by supramolecular polymers with calixarene as main body (6 h)

Figure S2.10 Adsorption rate of Cu²⁺ in different pH solutions by supramolecular polymers with β -CD as main body(6 h)

