Supplementary Information

for

Detection of Nitro-Aromatics using C₅N₂ as an Electrochemical Sensor: a DFT approach

Nabeela¹, Muhammad Ali Hashmi^{1,2*}, Ahmad Nauman Shah Saqib¹, Aqsa Kamran¹, Ahmed Lakhani^{3,**}

- ¹ Department of Chemistry, Division of Science & Technology, University of Education, 54770 Lahore, Pakistan
- ² School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- ³ Department of Biomedical and Health Sciences, Calumet College of St. Joseph, 2400, New York Ave, Whiting, IN, 46394, USA

* Correspondence: <u>muhammad.hashmi@ue.edu.pk</u> (MAH); <u>alakhani@ccsj.edu</u> (AL)

Fig. S1 : Optimized geometry of 1,3-DNB@ C_5N_2 with all positions. The positions are; central cavity (A), triazine site (B), benzene ring (C), hydrogenated benzene ring (D) and pyrazine ring (E).

Fig. S2: Optimized geometries of $PA@C_5N_2$ with all possible positions. The positions are; central cavity (A), triazine site (B), benzene ring (C), hydrogenated benzene ring (D) and pyrazine ring (E).

Fig. S3: Optimized geometries of $TNT@C_5N_2$ with all possible positions. The positions are; central cavity (A), triazine site (B), benzene ring (C), hydrogenated benzene ring (D) and pyrazine ring (E).

Table S1 Interaction energies of all analytes $@C_5N_2$ Complexes at possible positions. The positions are; central cavity (A), triazine site (B), benzene ring (C), hydrogenated benzene ring (D) and pyrazine ring (E).

Analyte at specific	Interaction Energies	Analyte at specific	Interaction Energies	Analyte at specific position of C ₅ N ₂	Interaction Energies
position of	(Kcal/mol)	position of	(Kcal/mol)	1	(Kcal/mol)
C_5N_2		C_5N_2			
TNT@C ₅ N ₂ -A	-25.01	PA@C ₅ N ₂ -A	-30.41	1-3-DNB@C ₅ N ₂ -A	-22.80
TNT@C ₅ N ₂ -E	-30.36	$PA@C_5N_2-E$	-30.38	1-3-DNB@C ₅ N ₂ -E	-21.82
TNT@C ₅ N ₂ -B	-30.92	PA@C ₅ N ₂ -B	-29.23	1-3-DNB@C ₅ N ₂ - B	-20.48
TNT@C ₅ N ₂ -C	-31.64	PA@C ₅ N ₂ -C	-34.37	1-3-DNB@C5N2-C	-22.38
TNT@C ₅ N ₂ -D	-30.35	PA@C ₅ N ₂ -D	-33.70	1-3-DNB@C ₅ N ₂ -D	-23.21

Table S2 QTAIM parameter for 1,3-DNB@C $_5N_2$ and TNT@C $_5N_2$

AnalyteC ₅ N ₂	$\nabla_2 \rho$	ρ	V(r)	Н	G(r)
1,3-DNB@C ₅ N ₂					
O 13 C 1	0.030	0.009	-0.006	0.0009	0.007
C 12 C6	0.030	0.010	-0.005	0.0012	0.006
C 8 C3	0.025	0.009	-0.004	0.0010	0.005
O11 N7	0.033	0.009	-0.007	0.0006	0.008
C 14 N4	0.019	0.008	-0.004	0.0004	0.004
C10 C5	0.027	0.011	-0.005	0.0008	0.006
C 9 C 2	0.025	0.008	-0.004	0.0011	0.005
$TNT@C_5N_2$					
O5 C10	0.028	0.008	-0.005	0.0009	0.006
O2 N6	0.025	0.007	-0.005	0.0008	0.005
N13 N11	0.037	0.010	-0.006	0.0014	0.008
N16 C18	0.028	0.009	-0.005	0.0010	0.006
H19 C21	0.028	0.010	-0.005	0.0007	0.006
O 17 C20	0.026	0.008	-0.005	0.0009	0.005
C15 N22	0.023	0.008	-0.004	0.0007	0.005
C14 C12	0.027	0.009	-0.004	0.0012	0.006
C4 C9	0.035	0.014	-0.007	0.0010	0.008
N3 C7	0.030	0.009	-0.005	0.0011	0.006
O1 N8	0.028	0.009	-0.006	0.0005	0.006

Analyte-Complex Systems	Recovery Time (298K)	Recovery Time (398K)	Recovery Time (473K)
PA@C ₅ N ₂	1.57 ×10 ¹¹ s	7.33×10 ⁴ s	74.74 s
TNT@C ₅ N ₂	1.56 ×10 ⁹ s	2.32 ×103s	4.10 s
1,3-DNB@C ₅ N ₂	1.03×10 ³ s	$1.13 \times 10^{-14} \text{ s}$	$5.24 \times 10^{-4} \text{ s}$

Table.S3 Recovery time of nitroaromatics at different temperatures (K)