Supplementary Information for

Extraction and Complexation studies with 2,6-bis(5-(tertbutyl)-1*H*-pyrazol-3-yl)pyridine in the presence of 2-bromohexanoic acid.

Jonas Stracke,^{a,b} Patrik Weßling,^b Thomas Sittel,^a Paul Meiners,^b Andreas Geist,^a and Petra J. Panak.^{a,b}

^aKarlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany

^bHeidelberg University, Institut für Physikalische Chemie, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany

KEYWORDS Actinides, Lanthanides, Lipophilic ligands, Complexation, Selectivity, N-Donor ligand.

Corresponding Authors:

Jonas Stracke: Jonas.stracke@kit.edu

Table of contents

TRLFS Cm(III)	3
TRLFS Eu(III)	5

TRLFS Cm(III)

Figure S1: Fluorescence lifetime of $[Cm(C4-BPP)_3]^{3+}$ in the organic phase after extraction. Organic phase 1.0×10^{-2} mol/L C4-BPP and 5.0×10^{-1} mol/L 2-bromohexanoic acid in TPH/1-octanol (10 vol.%). Aqueous phase 3.0×10^{-1} mol/L nitric acid. A/O = 1. T = 293 K.

Figure S2: Normalized fluorescence spectra of Cm(III) in the aqueous phase after extraction. Organic phase 1.0×10^{-2} mol/L C4-BPP and 5.0×10^{-1} mol/L 2-bromohexanoic acid in TPH/1-octanol (10 vol.%). Aqueous phase 3.0×10^{-1} mol/L nitric acid. A/O = 1. T = 293 K.

Figure S3: Fluorescence lifetime of $[Cm(solv.)]^{3+}$ in the aqueous phase after extraction. Organic phase 1.0×10^{-2} mol/L C4-BPP and 5.0×10^{-1} mol/L 2-bromohexanoic acid in TPH/1-octanol (10 vol.%). Aqueous phase 3.0×10^{-1} mol/L nitric acid. A/O = 1. T = 293 K.

TRLFS Eu(III)

Figure S4: Fluorescence lifetime of $[Eu(C4-BPP)_2(2\text{-bromohexanoate})_m]^{(3-m)+}$ (*m* =1-3) in the organic phase after extraction. Organic phase 1.0×10^{-2} mol/L C4-BPP and 5.0×10^{-1} mol/L 2-bromohexanoic acid in TPH/1-octanol (10 vol.%). Aqueous phase 3.0×10^{-1} mol/L nitric acid. A/O = 1. T = 293 K.

Figure S5: Normalized fluorescence spectra of the ${}^{7}F_{1}$ and ${}^{7}F_{2}$ emission bands of Eu(III) in the aqueous phase after extraction. Organic phase 1.0×10^{-2} mol/L C4-BPP and 5.0×10^{-1} mol/L 2-bromohexanoic acid in TPH/1-octanol (10 vol.%). Aqueous phase 3.0×10^{-1} mol/L nitric acid. A/O = 1. T = 293 K.

Figure S6: Fluorescence lifetime of $[Eu(solv.)]^{3+}$ in the aqueous phase after extraction. Organic phase 1.0×10^{-2} mol/L C4-BPP and 5.0×10^{-1} mol/L 2-bromohexanoic acid in TPH/1-octanol (10 vol.%). Aqueous phase 3.0×10^{-1} mol/L nitric acid. A/O = 1. T = 293 K.

Figure S7: Fluorescence lifetime of $[Eu(C4-BPP)_n(2-bromohexanoate)_m]^{(3-m)+}$ (n = 0, 2; m = 1-3) in methanol containing 1.5 vol.% water and 0.5 mol/L 2-bromohexanoic acid. [C4-BPP] = 0 mol/L (n = 0), 1.00×10^{-2} mol/L (n = 2), $[Eu]_{ini} = 1.0 \times 10^{-5}$ mol/L. (2-bromohexanoate is abbreviated as 2-bromo).

Figure S8: Normalized single component spectra of the $[Eu(C4-BPP)_n(2-bromohexanoate)_m]^{(3-m)+}$ (n = 0-2, m = 1-3) complexes in methanol containing 1.5 vol.% water and $5.0 \times 10^{-1} \text{ mol/L}$ 2-bromohexanoic acid. $[Eu(III)]_{ini} = 1.0 \times 10^{-5} \text{ mol/L}$. (2-bromohexanoate is abbreviated as 2-bromo).

Figure S9: Slope analyses for the complexation of Eu(III) with C4-BPP in methanol containing 1.5 vol.% water and 5.0×10^{-1} mol/L 2-bromohexanoic acid. Plot of $\log([Eu(C4-BPP)_n(2-bromohexanoate)_m]^{(3-m)+}/[Eu(C4-BPP)_{n-1}(2-bromohexanoate)_m]^{(3-m)+})$ (m = 1-3) vs. the logarithm of the free C4-BPP concentration (2-bromohexanoate is abbreviated as 2-bromo).

Figure S10: Fluorescence lifetime of $[Eu(C4-BPP)_n(2\text{-bromohexanoate})_m]^{(3-m)+}$ (n = 2, 3; m = 0-3) in methanol containing 1.5 vol.% water and 3.98×10^{-2} mol/L C4-BPP. [2-bromohexanoic acid] = 0 mol/L $(n = 0), 5.01 \times 10^{-1}$ mol/L $(n = 2), [Eu]_{ini} = 1.0 \times 10^{-5}$ mol/L. (2-bromohexanoate is abbreviated as 2-bromo).