RSC Advances

Supporting Information (SI)

Antimicrobial Properties and Biocompatibility of semi-synthetic Carbohydrate-based Ionic Hydrogels

Sina Lambrechta, Alina Gazizovab, Selin Karac,d, Johanna Meyerc,*, Stefan Joppa,*

E-mails: johanna.meyer@iftc.uni-hannover.de, stefan.jopp@uni-rostock.de

^a Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany.

^b Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany.

^c Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.

^d Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark.

Table of Contents

1	Synthetic procedures and analytical data	S3
1.1	NMR Spectra	S4
1.2	IR Spectra	S6
1.3	Hydrogel composition	S7
2	Antimicrobial Activity – Disk Diffusion Method	S8
3	Cell viability of L929 cells – CellTiter blue (CTB) viability assay	S11
3.1	Eluate tests	S11
3.2	Direct contact tests	S12
4	Microscopic analysis – Microscopic images of L929 cells	S13
4.1	Eluate tests	S13
4.2	Direct contact tests	S15
5	Cell staining (live/dead) assay – Calcein-AM/PI staining	S16
5.1	Eluate tests	S16
5.2	Direct contact tests	S19
6	LC-MS data	S20

1. Synthetic procedures and analytical data

Synthetic procedure for the synthesis of Methyl-6-iodo- α -D-glucopyranoside (1). Methyl- α -D-glucopyranoside (10 mmol), triphenylphosphine (15.5 mmol), iodine (14.5 mmol), and imidazole (20 mmol) were refluxed in THF (60 mL) for 4 h. The resulting solid was filtered off, the solvent was removed and the product (91 % yield) was obtained after column chromatography (CHCl₃/MeOH 12:1). 1 H-NMR (300 MHz, DMSO-d₆): δ = 2.87–2.95 (m, 1H); 3.16–3.27 (m, 3H); 3.31 (s, 3H, CH₃); 3.34–3.42 (m, 1H); 3.50–3.57 (m, 1H); 4.54 (d, 1H, 3 J = 3.65 Hz, H-1); 4.78 (d, 1H, 3 J = 6.43 Hz, OH); 4.86 (d, 1H, 3 J = 4.99 Hz, OH); 5.17 (d, 1H, 3 J = 5.83 Hz, OH). 13 C-NMR (75 MHz, DMSO-d₆): δ = 9.5 (C-6); 54.6 (CH₃); 70.9, 71.9, 72.7, 74.1 (C-2, C-3, C-4, C-5); 99.8 (C-1).

Synthetic procedure for the quaternization with imidazoles to 1-(Methyl-α-D-glucopyranosid-6-yl)-3-vinylimidazolium iodide (GVIM-I) (2). Methyl-6-iodo-α-D-glucopyranoside (3 mmol) and the *N*-vinylimidazole (5 mmol) were dissolved in DMF (5 mL) and stirred at 95 °C for 24 hours. After cooling down, ethyl acetate (40 mL) was added and the flask was stored in a fridge overnight. The solvent was decanted and the precipitated solid was repeatedly washed with ethyl acetate and dried under a high vacuum to achieve the product, yielding in a light-brown solid (73 % yield). ¹H-NMR (250 MHz, D₂O): δ = 3.25 (s, 3 H, OCH₃); 3.24–3.28 (m, 1H, H-4); 3.58 (dd, 1H, 3 J = 9.77 Hz, 3 J = 3.77 Hz, H-2); 3.66–3.75 (m, 1H, H-3); 3.95 (ddd, 1H, 3 J = 9.96 Hz, 3 J = 7.47 Hz, 3 J = 2.46 Hz, H-5); 4.50 (dd, 1H, 2 J = 14.55 Hz, 3 J = 7.38 Hz, H-6a); 4.70 (dd, 1H, 2 J = 14.55 Hz, 3 J = 2.55, H-6b); 4.85 (d, 1H, 3 J = 3.77 Hz, H-1); 5.49 (dd, 1H, 3 J = 8.68 Hz, 2 J = 2.84 Hz, Vinyl-CH₂); 5.86 (dd, 1H, 3 J = 15.58 Hz, 2 J = , Vinyl-CH₂); 7.2 (dd, 1H, 3 J = 15.58 Hz, 3 J = 8.70 Hz, Vinyl-CH); 7.70 (d, 1H, 3 J = 2.09 Hz, H_{Ar}); 7.86 (d, 1H, 3 J = 2.11 Hz, H_{Ar}); 9.16 (s, 1H, H_{Ar}). ¹³C-NMR (125 MHz, D₂O): δ = 50.2 (C-6); 55.1 (OCH₃); 69.2 (C-5); 70.5 (C-4); 71.0 (C-2); 72.8 (C-3); 99.3 (C-1); 109.8 (Vinyl-CH₂); 119.4, 123.8 (CH_{Ar}); 123.8 (Vinyl-CH); 135.0 (CH_{Ar}).

1.1 NMR Spectra

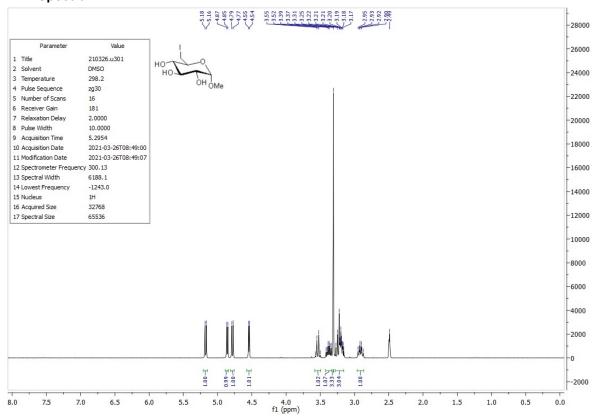


Figure S1. ¹H-NMR (DMSO) spectrum of compound Methyl-6-iodo-α-D-glucopyranoside 1.

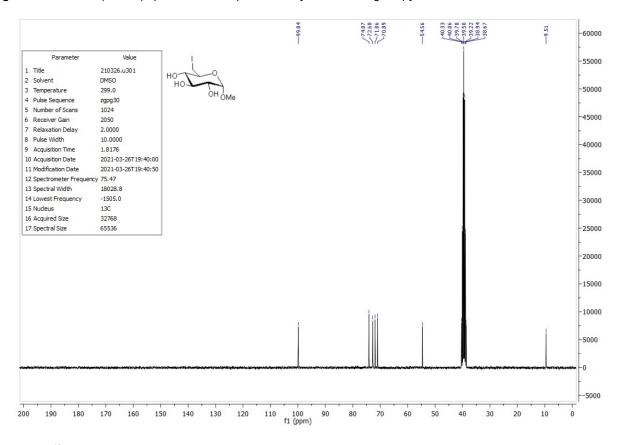


Figure S2. 13 C-NMR (DMSO) spectrum of compound Methyl-6-iodo- α -D-glucopyranoside 1.

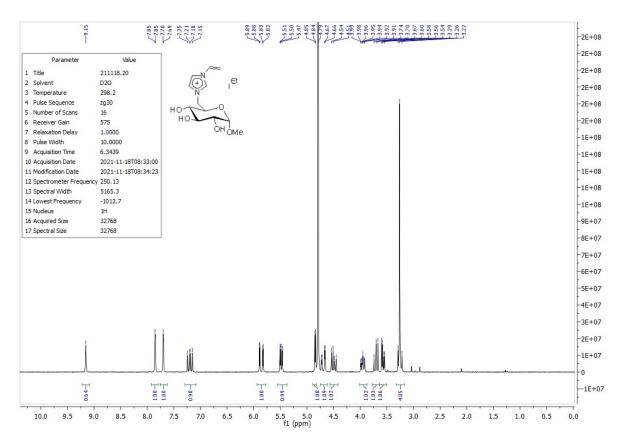
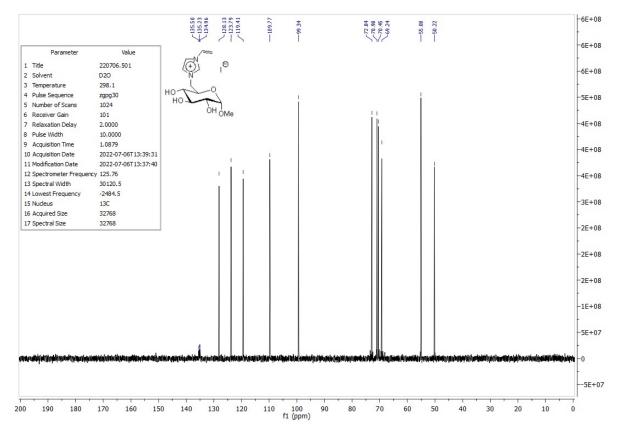



Figure S3. $^{1}\text{H-NMR}$ (D $_{2}\text{O}$) spectrum of compound 1-(Methyl- α -D-glucopyranosid-6-yl)-3-vinylimidazolium iodide (GVIM-I) 2

Figure S4. 13 C-NMR (D₂O) spectrum of compound 1-(Methyl- α -D-glucopyranosid-6-yl)-3-vinylimidazolium iodide (GVIM-I) **2**.

1.2 ATR-IR spectra

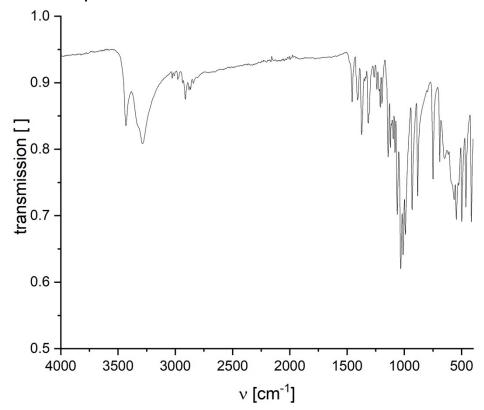


Figure S5. ATR-FTIR spectrum of compound 1.

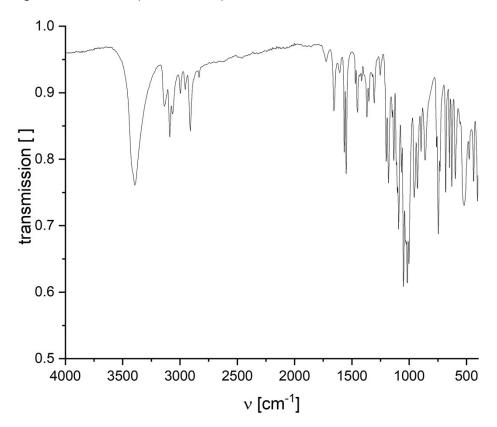


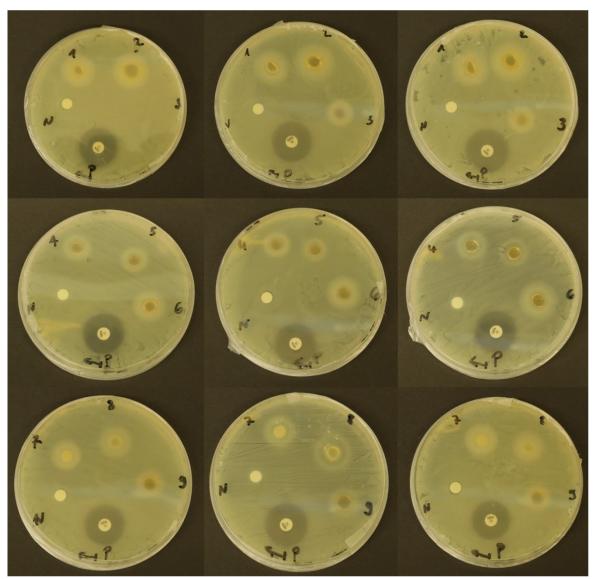
Figure S6. ATR-FTIR spectrum of compound 2.

1.2 Weighing scales for hydrogel production

Table S1. Weighing-in scale for the production of hydrogels with LAP as initiator, according to i).

	GVIM-I		PBS	Crosslinker		LAP	
	c [mol/l]	m [mg]	V [µl]	c [mol%]	V [µl]	c [w%]	m [mg]
EGDA	1.25	100	200	10	3.9	3.1	9.4
PEGDA 250	1.25	100	200	10	5.7	2.0	6.1
PEGDA 700	1.25	100	200	10	15.7	0.5	1.6
MBAA	1.25	100	200	10	3.9	1.0	3.0
PEGDA 575	1.25	100	200	10	12.9	0.5	1.6

Table S2. Weighing-in scale for the production of hydrogels with APS/TEMED as initiator, according to ii).


Table 02: Weighing in coals for the production of hydrogete with the contract of according to his								
	GVIM-I		PBS	Crosslinker		APS/TEMED		
	c [mol/l]	m [mg]	V [µl]	c [mol%]	V [µl]	c _{total} [w%]	V _{APS} [µI]	V _{TEMED} [μΙ]
MBAA	1.25	100	172.1	13.0	5.0	10.7	27.9 ^a	27.9
PEGDA	1.25	100	162.5	10.4	13.4	6.8	37.5 ^b	18.0
575								

Note to APS solution: a) 400 mg in 1 ml PBS and b) 200 mg in 1 ml PBS.

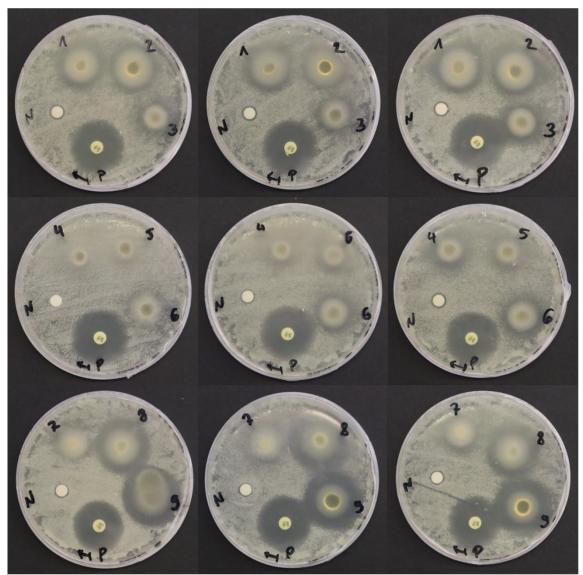

2. Antimicrobial Activity - Disk Diffusion Method

Figure S7. Overview of the disk diffusion tests against *B. subtilis* (P positive control Gentamicin; N negative control LB medium; 1 EGDA; 2 P250; 3 P575 10%; 4 P575 15%; 5 P575 20%; 6 P700; 7 MBAA LAP; 8 MBAA A/T; 9 P575 A/T).

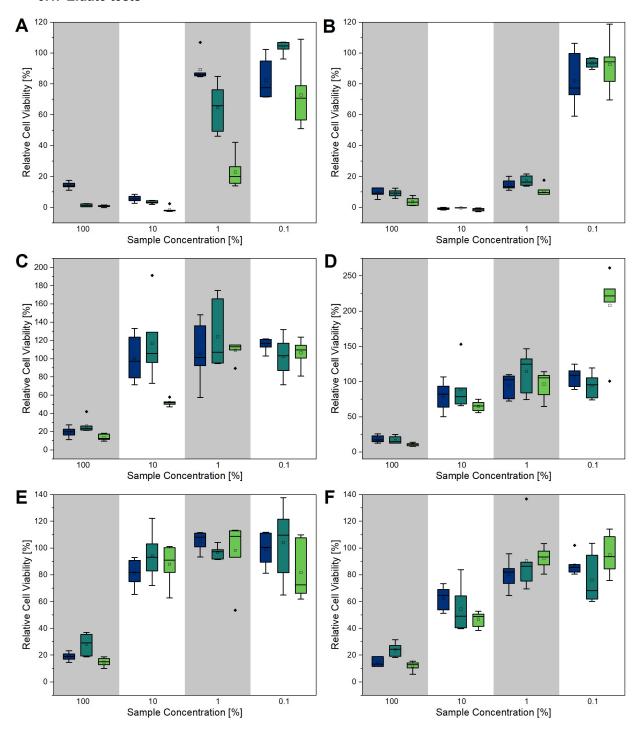


Figure S8. Overview of the disk diffusion tests against *E. coli* (P positive control Gentamicin; N negative control LB medium; 1 EGDA; 2 P250; 3 P575 10%; 4 P575 15%; 5 P575 20%; 6 P700; 7 MBAA LAP; 8 MBAA A/T; 9 P575 A/T).

Figure S9. Overview of the disk diffusion tests against *C. aurisi* (P positive control Amphotericin B; N negative control LB medium (+ 2% glucose); 1 EGDA; 2 P250; 3 P575 10%; 4 P575 15%; 5 P575 20%; 6 P700; 7 MBAA LAP; 8 MBAA A/T; 9 P575 A/T).

3. Cell viability of L929 cells - CellTiter blue (CTB) viability assay 3.1. Eluate tests

Figure S10. CTB of different hydrogel eluate samples: A EGDA; B P250; C P575 10%; D P575 15%; E P575 20%; F P700.

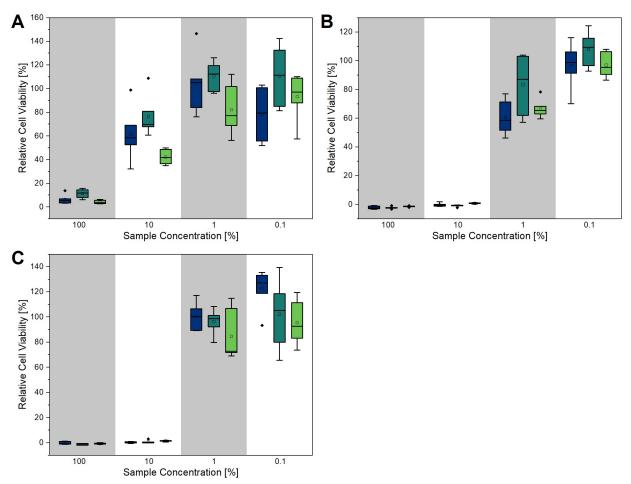
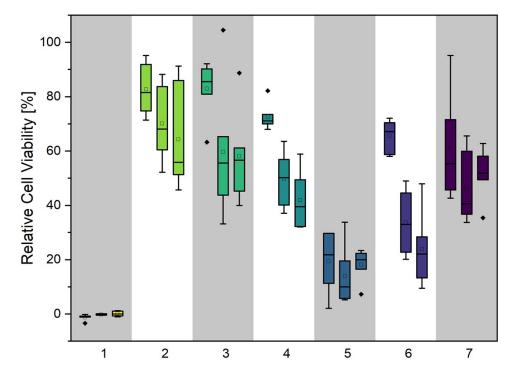



Figure S11. CTB of different hydrogel eluate samples: A MBAA; B MBAA A/T; C P575 AT.

3.2. Direct Contact tests

Figure S12. CTB of all 3 biological replicates of different treated hydrogels with **1** no treatment, **2** washing in DMEM 72 h, **3** washing in DMEM 3x24 h, **4** washing in EtOH (70%) 24 h and in DMEM 2x24 h, **5** UV irradiation 1 h, **6** UV irradiation 1 h and washing in DMEM 3x24 h, **7** UV irradiation 1 h, washing in EtOH (70%) and in DMEM 3x24 h.

4. Microscopic images of L929 cells

4.1. Eluate tests

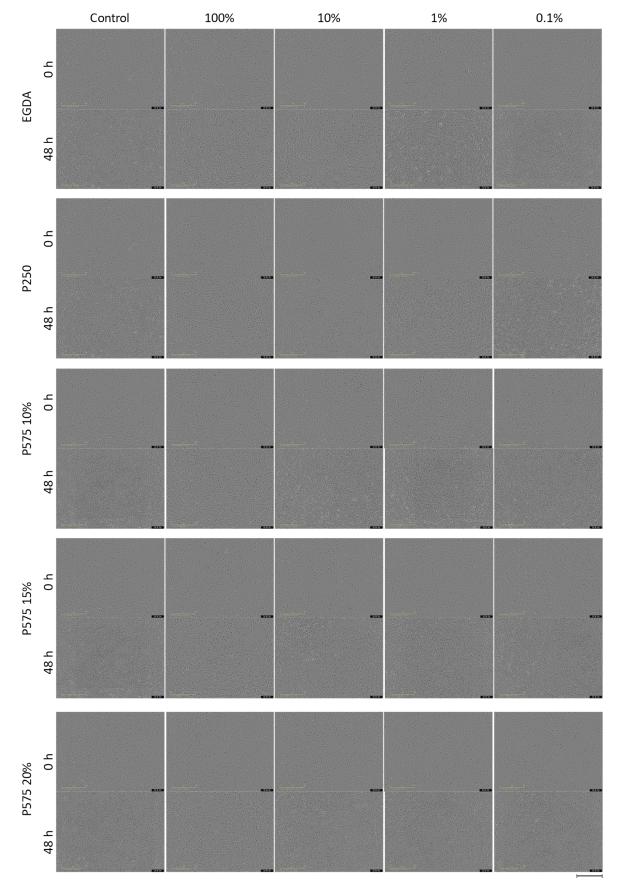
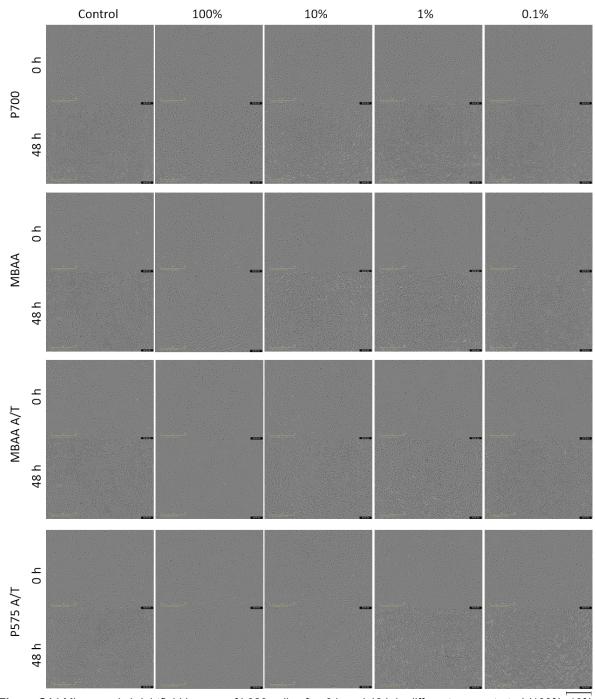
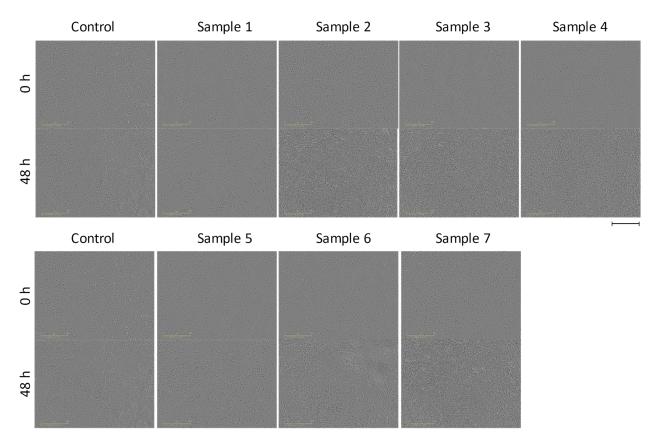
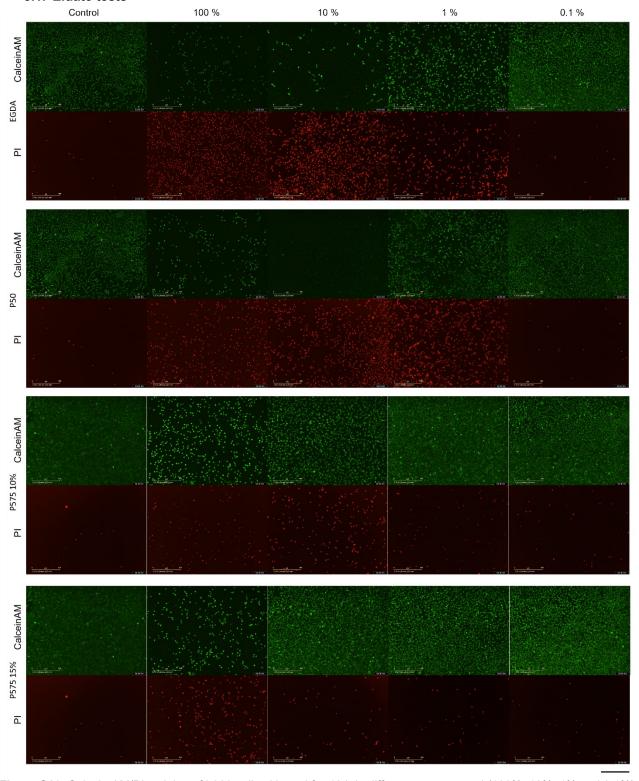




Figure S13. Microscopic brightfield images of L929 cells after 0 h and 48 h in different concentrated (100%, 10%, 1%, and 0.1%) hydrogel eluates (EGDA, PEGDA 250, PEGDA 575 10%, PEGDA 575 15%, and PEGDA 20%). Scale bar 400 μ m.


Figure S14.Microscopic brightfield images of L929 cells after 0 h and 48 h in different concentrated (100%, 10%, 1%, and 0.1%) hydrogel eluates (PEGDA 700, MBAA, MBAA A/T, and PEGDA 575 A/T). Scale bar 400 μm.

4.2. Direct contact tests

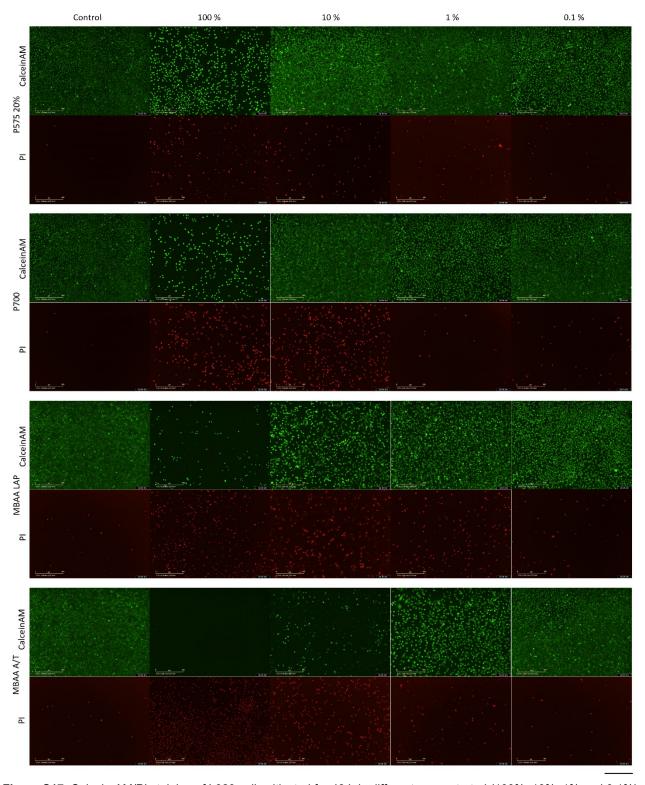


Figure S15. Microscopic brightfield images of L929 cells after 0 h and 48 h contact with different treated hydrogels with 1 no treatment, 2 washing in DMEM 72 h, 3 washing in DMEM 3x24 h, 4 washing in EtOH (70%) 24 h and in DMEM 2x24 h, 5 UV irradiation 1 h, 6 UV irradiation 1 h and washing in DMEM 3x24 h, 7 UV irradiation 1 h, washing in EtOH (70%) and in DMEM 3x24 h.

5. Cell staining (live/dead assay) - Calcein-AM/PI staining 5.1. Eluate tests

Figure S16. Calcein-AM/PI staining of L929 cell cultivated for 48 h in different concentrated (100%, 10%, 1% and 0.1%) hydrogel eluates from EGDA, PEGDA 250, PEGDA 575 10% and PEGDA 575 15% prepared with LAP (scale bar $400 \mu m$).

Figure S17. Calcein-AM/PI staining of L929 cell cultivated for 48 h in different concentrated (100%, 10%, 1% and 0.1%) hydrogel eluates from PEGDA 575 20% and PEGDA 700 and MBAA prepared with LAP and MBAA prepared with APT/TEMED (scale bar 400 μ m).

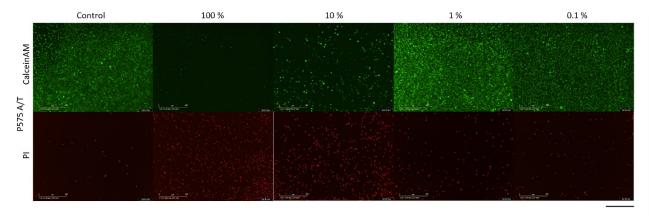
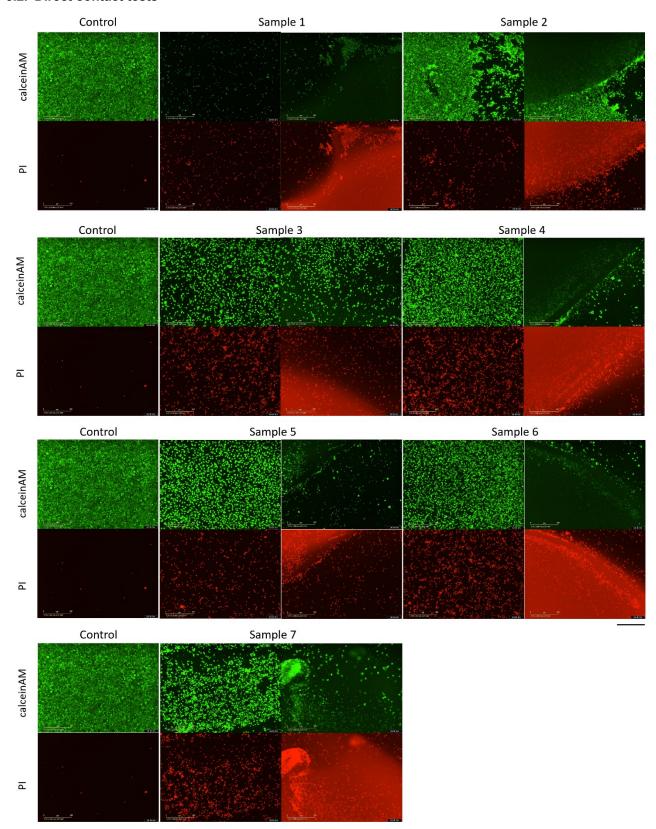



Figure S18 Calcein-AM/PI staining of L929 cell cultivated for 48 h in different concentrated (100%, 10%, 1% and 0.1%) hydrogel eluates from PEGDA 575 prepared with APT/TEMED (scale bar 400 μ m).

5.2. Direct contact tests

Figure S19. Calcein-AM/PI staining of L929 cell cultivated for 48 h in contact with different treated hydrogels with 1 no treatment, 2 washing in DMEM 72 h, 3 washing in DMEM 3x24 h, 4 washing in EtOH (70%) 24 h and in DMEM 2x24 h, 5 UV irradiation 1 h, 6 UV irradiation 1 h and washing in DMEM 3x24 h, 7 UV irradiation 1 h, washing in EtOH (70%) and in DMEM 3x24 h. For each sample, a picture is shown with and without hydrogel (scale bar $400 \ \mu m$).

6. LC-MS

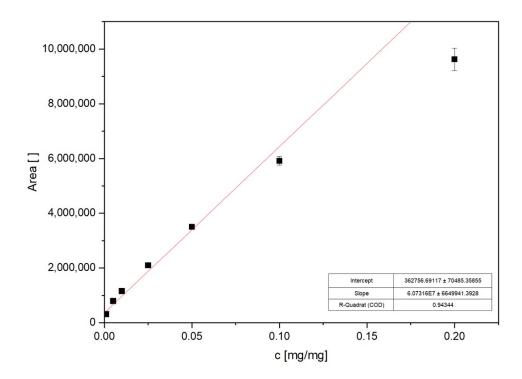
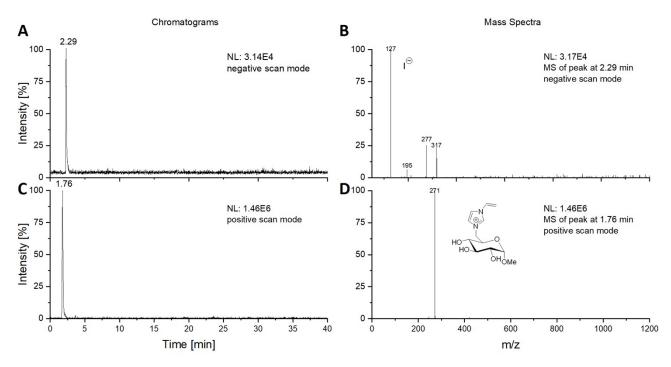
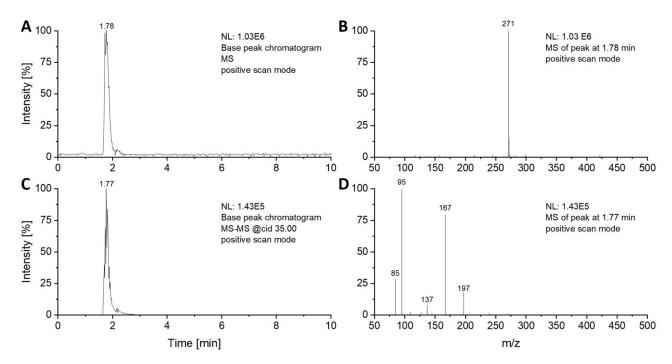




Figure S20. Calibration of GVIM-I via LC-MSMS.

Figure S21. **A** Chromatogram of pure GVIM-I in negative scan mode, **B** Mass spectrum corresponding to A, **C** Chromatogram of pure GVIM-I in positive scan mode and **D** Mass spectrum corresponding to C.

Figure S22. **A** Chromatogram of sample B1 48 h in positive scan mode (MS), **B** mass spectra (MS) of sample B1 48 h corresponding to A, **C** Chromatogram of sample B1 48 h in positive scan mode (MSMS) and **D** mass spectra (MSMS) of sample B1 48 h corresponding to C.