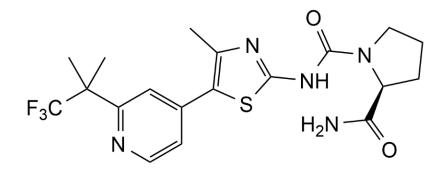
Supplementary information

Development, cross-validation and greenness assessment of capillary electrophoresis method for determination of alpelisib in pharmaceutical dosage forms – an alternative to liquid chromatography


Zvonimir Mlinarić ^a, Lu Turković ^a, Ivor Babić ^a, Tajana Silovski ^{b,c}, Nina Kočevar Glavač ^d, Miranda Sertić ^a

^a University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, Ante Kovačića 1, 10000 Zagreb, Croatia

^b University Hospital Centre Zagreb, Department of Oncology, Kišpatićeva 12, 10000 Zagreb, Croatia

^c University of Zagreb School of Medicine, Šalata 2, 10000 Zagreb, Croatia

^d University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia

Figure S1. Chemical structure of alpelisib. Drawn by ChemDraw Professional 15.0 (PerkinElmer, Shelton, CT, USA)

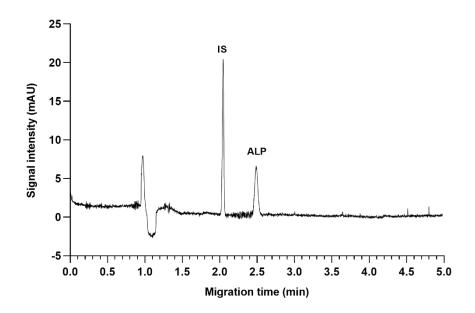
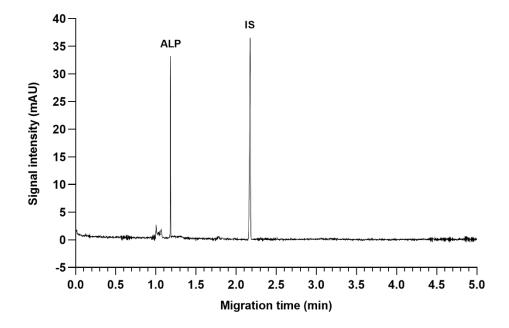



Figure S2. MEKC electropherogram of ALP and IS, 25 mM borate at pH 9.3, 20 mM SDS, 30 kV, 30 °C

Figure S3. Electropherogram of ALP and IS, 25 mM borate at pH 9.3, 10% MeOH, 30 mM borate, 30 °C, 30 kV

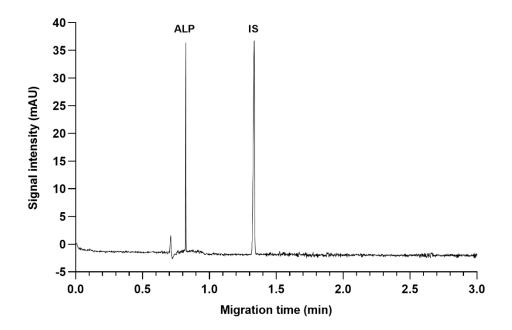


Figure S4. Electropherogram of ALP pharmaceutical dosage form with added IS at 50 μ g/mL, 25 mM borate at pH 9.3, 30 kV, 30 °C

Figure S5. Chromatogram of ALP pharmaceutical dosage form with added IS at 50 $\mu g/mL$, detection at 315 nm

Principle	Weight	CE	LC	
Sampling	1	External sample preparation (reduced steps)	n External sample preparation (reduced steps)	
Amount of sample (g or mL)	2	0.02	0.02	
Positioning of analytical device	1	at-line at-line		
Major steps	1	3 or fewer	3 or fewer	
Automation; sample preparation	1	semi-automatic, not semi-automatic, not miniaturized miniaturized		
Derivatization	1	no	no	
Amount of waste (g or mL)	2	0.15 mL	16 mL	
Number of analytes, samples per hour	2	1 analyte, 7 samples per 1 analyte, 3 samples per hour		
Energy	2	0,015 kWh	LC	
Bio-based reagents	1	Some are bio-based	Some are bio-based	
Use of toxic reagents	2	Yes, 0.01 mL	Yes, 9.5 mL	
Threats	1	Highly flammable	Highly flammable	

Table S1. Inputs for calculation of AGREE scores for CE and LC methods

 Table S2. AGREE scores for individual greenness criteria for CE and HPLC methods

Principle	Weight (w_i)	CE score (s_i)	LC score (s_i)
Sampling	1	0.30	0.30
Amount of sample (g or mL)	2	1.00	1.00
Positioning of analytical device	1	0.33	0.33
Major steps	1	1.00	1.00
Automation; sample preparation	1	0.25	0.25
Derivatization	1	1.00	1.00
Amount of waste (g or mL)	2	0.9488	0.3231
Number of analytes, samples per hour	2	0.4210	0.2152
Energy	2	1.00	0.50
Bio-based reagents	1	0.50	0.50
Use of toxic reagents	2	0.80	0.2108
Threats	1	0.80	0.80

AGREE score can be calculated according to the following equation where W_i is the weight factor for the greenness principle *i* with a corresponding individual score S_i .

$$AGREE\ score\ =\ \frac{\sum_{i=1}^{12} w_i s_i}{\sum_{i=1}^{12} w_i}$$

AGREE scores for CE and HPLC methods are then calculated as follows:

$$AGREE \ score \ (CE) = \frac{\sum_{i=1}^{12} w_i s_i}{\sum_{i=1}^{12} w_i} = \frac{12.5196}{17} = 0.7364$$
$$AGREE \ score \ (HPLC) = \frac{\sum_{i=1}^{12} w_i s_i}{\sum_{i=1}^{12} w_i} = \frac{8.6782}{17} = 0.5105$$