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Materials

All the reactions were performed in an oven-dried round bottomed flask. Solvents, reagents 
and chemicals used for reactions in this paper were purchased from Sigma-
aldrich/Spectrochem Pvt. Ltd. and used without any further purification unless it is specified 
otherwise. Double distilled water was used for the preparation of all aqueous solutions. 
Reactions were monitored by thin-layer chromatography (TLC). TLC was performed using 
E. Merck pre-coated silica plates (60F-254) with 0.25 mm thickness and visualized using 
short-wave UV light or developing agents. 

Instrumentation

The structural validation of synthesised compounds was based on 1HNMR, 13CNMR, mass 
spectroscopy. Nuclear magnetic resonance (NMR) was acquired at 400 MHz and 100 MHz 
for 1H NMR and 13C NMR respectively using a JEOL JNM-ECS 400 spectrometer 
instrument with DMSO-d6 and CDCl3 as solvents. TMS was taken as the reference in NMR, 
and data were processed with its delta software. Coupling constant (J) is reported in Hertz 
and chemical shift values are reported in ppm for 1H NMR, and multiplicities are as follows: 
s (singlet), d (doublet), dd (doubledoublet), t (triplet) and m (multiplet). 13C CP-MAS was 
obtained through JEOL ECZR at 600 MHz. High resolution mass spectroscopy was 
generated by XEVO G2-XS QTOF spectrometer, Thermo Fisher Scientific Q Exactive 
spectrometer, Impact HD (Bruker) ESI QTOF high resolution mass spectrometer.

FT-IR experiments were carried out in the range of 400-4000 cm-1 (Thermo Scientific; 
Model: INCOLET iS50) spectrometer. The powder X-ray diffraction (PXRD) studies were 
performed on Bruker diffractometer (D8 Discover) at room temperature and 2θ range 
0−100° (scanning rate = 2°/min, λ = 0.15406 nm, 40 kV, 40 mA). The thermal stability of 
ionic liquid was determined using a PerkinElmer Pyris diamond TGA/ differential thermal 
analyser. For obtaining the data, the sample was heated from room temperature to 1000 C in 
N2 atmosphere at a heating rate of 10 C min-1 and gas flow of 200 mL min-1. Carl Zeiss, 
India (Jeol Japan Mode: JSM 6610LV) was used to obtain the SEM images.
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Table S1. Comparison of the present work with previous literature for the esterification of 
acid to their corresponding esters.

Entry Catalyst Solvent Temperature Time Yield(
%)

Ref

1 Triphosgene DCM 40C 2h 95% S1

2 TMSCl - RT 24h 89% S2

3 [Pd(cinnamyl)Cl]2,

IBnF·HBr

1,4-dioxane 100C 36h 75% S3

4 Pd(PPh3)4 140C 27h 64% S4

5 (CN-OA-m) DMSO -40C, white 
LED

14h 92% S5

6 Sulfated Zirconium 
Catalyst

- 60 C 6h 75% S6

7 silicotungstic acid; 
H4SiW12O40·nH2O(ST

A)

- 98 C(reflux) 4h 91% S7

8 N,N’-
diisopropylcarbodiimi

de

Water RT 4h 92% S8

9 XtalFluor-E TFE in 
CH2Cl2

RT 16h 84% S9

10 [Ir(cod)Cl]2 CH2Cl2 RT 12h 88% S10

11 PPh3/I2 Acetonitrile Reflux, MW 30 mins 93% S11

12 Silica-IL Cyclohexane Reflux, 93 C 3h 86% S12

13 [Bmim][dca] - 60 C 120h 65% S13

14 IL - 85 C 3h 91.5% S14

15 Chitosan-IL6 - RT 30 96% P.
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mins W.

Table S2. Optimization of reaction conditions for the amount of catalyst using benzoic acid 
A1 and ethanol B1 as the model substrate.a

Entry Catalyst (mg) Yield(%)b

1 Chitosan-IL6 (5mg) 92

2 Chitosan-IL6 (10mg) 96

3 Chitosan-IL6 (15mg) 96

4 Chitosan-IL6 (20mg) 96

aReaction conditions: Benzoic acid A1 (1 mmol), ethanol B1 (1 mmol), catalyst, room 
temperature for 30 mins. bIsolated yield.

Gram scale synthesis.

For the practical application of the produced esters, we synthesised a few value-added 
compounds on a gram scale (Figure S1) 15,16. The reactions were conducted at a scale of 100 
mmol using 50 mg of the catalyst. The reactions proceeded easily with yields of 85% for 
diisopropyl azodicarboxylate over a period of 6 hours, and 86% for methyl nicotinate over a 
period of 5 hours. Considering esters of amino acids, methyl cysteinate produced a 93% yield 
over the course of 8 hours, whereas glucose pentaacetate produced 92% yield over the course 
of 12 hours. These results demonstrate the proposed protocol's practicality and operational 
simplicity even at higher reaction scales. 
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Figure S1. Practical application of a few value-added esters synthesized in gram scale. 
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Figure S2. Plausible mechanism for Chitosan-IL6 catalysed selective esterification of glycine 
amino acid and ethanol to ethyl glycinate. 

To capture an insight into the reaction route of Chitosan-IL6 catalysed esterification of amino 
acid we hereby present a feasible mechanism (Figure S2) from theoretical dimensions. We 
here consider glycine D1 and ethanol B to obtain ethyl glycinate E1. At the starting acetic 
acid protonates the oxygen of glycine which is in zwitter ion form. The oxygen of carbonyl 
then extracts a proton from the carboxylic group of Chitosan-IL6, which is followed by the 
interaction of ethanolic OH with the carbonyl C of glycine. This leads to proton exchange 
between glycine and ethanol molecules and followed by the elimination of water molecule. 
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Finally, the desorption of glycinate from Chitosan-IL6 results in the synthesis of the desired 
product and continuing the active use of the catalyst in further cycles. 
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Figure S3. Plausible mechanism for Chitosan-IL6 catalysed selective esterification of acetic 
anhydride and carbohydrate to carbohydrate esters.

Figure S3 outlines a plausible mechanistic pathway for the Chitosan-IL6 catalysed 
esterification of carbohydrates based on the discussed controlled reactions. The oxygen of 
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one of the carbonyl C interacts with the ionic liquid first, followed by the interaction of OH 
of carbohydrate. This causes a proton transfer from carbohydrate OH to acetic anhydride's 
oxygen. This is followed by the loss of acetic acid and final desorption of the ester moiety 
from the catalyst to obtain the desired product. 

Table S3. Recyclability test of Chitosan IL6 catalyzed esterification of benzoic acid and 
ethanol to ethyl benzoate C1.a

Catalytic run Yield(%)b

1 96

2 96

3 96

4 96

5 96

6 95

7 95

8 94

9 93

10 93

aReaction conditions: Carboxylic acid (1 mmol), alcohol (1 mmol), Chitosan-IL6 (10 mg) 
under neat conditions at RT for appropriate time. bIsolated yield. 
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Figure S4. IR (a), XRD (b) and SEM(c) image of reused catalyst.

Determination of acidity of Chitosan-IL6

The density of total acidic sites on Chitosan-IL6 was calculated by back acid–base titration17. 
First, 100 mg of Chitosan-IL6 was added to 10 mL of freshly prepared 0.05 N NaOH solution 
and the resulting mixture was stirred for 3 h at RT. Subsequently, the mixture was 
centrifuged at 8000 rpm for 2 min and washed two times with double distilled water. The 
filtrate containing excess NaOH solution was then back titrated with freshly prepared 0.1 N 
HCl solution till neutralization point, monitored by using phenolphthalein indicator to 
evaluate the total concentration of acidic sites in Chitosan-IL6.

Calculation of acidic strength of Chitosan-IL6

It was found that 1.3 mL of 0.1 N HCl was required to reach the neutralization point. 

VNaOH X SNaOH = VHCl X SHCl 

VNaOH X 0.05 = 1.3 X 0.1 

VNaOH = 2.6 mL 
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Therefore, the volume of NaOH required to neutralize the acidic sites in Chitosan-IL6 = (10-
2.6) mL = 7.4 mL. 

VNaOH X SNaOH = V Chitosan-IL6 X S Chitosan-IL6 

7.4 X 0.05 =10 X S Chitosan-IL6 

S Chitosan-IL6 = 0.037 N 

The equivalent weight of carboxylic acid group (-COOH) is 45. 

That is, 1000 mL of 1 N Chitosan-IL6 would contain 45 g free carboxylic acid sites. 

So, 10 mL of 0.037 N Chitosan-IL6 solution contains 0.01665 g free carboxylic acid sites. 

0.01665 g free carboxylic acid sites= 0.37 mmol free carboxylic acid sites. 

100 mg sample of Chitosan-IL6 contains 0.37 mmol free carboxylic acid. 

Thus, 1000 mg sample of Chitosan-IL6 would contain 3.7 mmol free carboxylic acid sites. 

That is, total acid sites in Chitosan-IL6 = 3.7 mmol g -1.

Calculation of TOF of Chitosan-IL6

1000 mg (1g) of Chitosan-IL6 contains 3.7 mmol acid sites

To determine TOF 18 of Chitosan-IL6 we considered the model reaction of benzoic acid A1 

(1mmol) and ethanol B1 (1mmol) in the presence of 10 mg of catalyst (Chitosan-IL6) at RT 

to yield ethyl benzoate C1.

As the yield of this product is 96%,

The turn over number (TON) of C1 is = 

𝑚𝑚𝑜𝑙 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑚𝑚𝑜𝑙 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 𝑖𝑛 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡

1g Chitosan-IL6 has 3.7 mmol active sites, so 10 mg of Chitosan-IL6 has = 0.037 mmol active 

sites.

TON =  = 25.94 (as the yield of product is 96%, mmol of product = 0.96)

0.96
0.037
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And turn over frequency (TOF) of C1 is =  = h-1 = 51.88 h-1

𝑇𝑂𝑁
𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

25.94
30/60

Table S4. TOF values Chitosan-IL6 for the products C1-C29a

Entry Product Code Yield (%)b Time (h) TOF (h-1)

1 C1 96 0.5 51.88

2 C2 95 0.58 44.26

3 C3 94 0.58 43.80

4 C4 92 0.58 42.87

5 C5 98 0.42 63.06

6 C6 97 0.42 62.42

7 C7 97 0.42 62.42

8 C8 99 0.33 81.08

9 C9 98 0.33 80.26

10 C10 96 0.5 51.88

11 C11 97 0.42 62.42

12 C12 97 0.42 62.42

13 C13 89 0.66 36.44

14 C14 90 0.66 36.85

15 C15 93 0.66 38.08

16 C16 85 0.83 27.68

17 C17 89 0.83 28.98

18 C18 90 0.75 32.43
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19 C19 92 0.75 33.15

20 C20 84 0.83 27.35

21 C21 90 0.83 29.31

22 C22 89 0.83 28.98

23 C23 88 0.83 28.65

24 C24 86 0.83 28.00

25 C25 86 0.83 28.00

26 C26 87 0.83 28.33

27 C27 90 0.83 29.31

28 C28 85 0.83 27.68

29 C29 89 0.83 28.98

aReaction conditions: Carboxylic acid (1 mmol), alcohol (1mmol), Chitosan-IL6 (10 mg) 

under neat conditions at RT for appropriate time. bIsolated yield

Table S5. TOF values Chitosan-IL6 for the products D1-D12a

Entry Product Code Yield (%)b Time (h) TOF (h-1)

1 D1 94 3.5 7.26

2 D2 96 3 8.65

3 D3 94 3.5 7.26

4 D4 96 3 8.65

5 D5 95 3.5 7.33

6 D6 95 3.5 7.33

7 D7 96 3.5 7.41
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8 D8 90 3 8.11

9 D9 99 2 13.38

10 D10 98 2 13.24

11 D11 98 2 13.24

12 D12 95 3 8.56

aReaction conditions: Amino acid (1 mmol), alcohol (1mmol), Chitosan-IL6 (10 mg), acetic 
acid (3 drops) under neat conditions at RT for appropriate time. bIsolated yield. 

Table S6. TOF values Chitosan-IL6 for the products E1-E7a

Entry Product Code Yield (%)b Time (h) TOF (h-1)

1 E1 98 1 26.49

2 E2 96 1 25.95

3 E3 96 1 25.95

4 E4 95 1 25.67

5 E5 93 0.83 30.28

6 E6 92 0.83 29.96

7 E7 90 2 12.16

aReaction conditions: Acetic anhydride (4-5 mmol), carbohydrate (1 mmol), Chitosan-IL6 (10 
mg) under neat conditions at RT for appropriate time. bIsolated yield. 
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Figure S5.  N2 adsorption/desorption isotherm of (a) Chitosan and (b) Chitosan IL6 and Pore 

size distribution of (c) Chitosan and (d) Chitosan IL6

1H NMR, 13C NMR and MS spectra of all compounds.
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FigureS6. 1H NMR spectrum of 1,4-bis(5-carboxypentyl)pyrazine-1,4-diium ([BCPPD][Br])
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Figure S7. 1H NMR spectrum of Ethyl benzoate C1.
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Figure S8. 13C NMR spectrum of Ethyl benzoate C1.

Figure S9. 1H NMR spectrum of Methyl 4-aminobenzoate C2.
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Figure S10. 13C NMR spectrum of Methyl 4-aminobenzoate C2.
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Figure S11. 1H NMR spectrum of Methyl 4-methylbenzoate C3.

Figure S12. 13C NMR spectrum of Methyl 4-methylbenzoate C3.
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Figure S13. 1H NMR spectrum of Methyl 4-methoxybenzoate C4.

Figure S14. 13C NMR spectrum of Methyl 4-methoxybenzoate C4.
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Figure S15. 1H NMR spectrum of Methyl 4-cyanobenzoate C5.
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Figure S16. 13C NMR spectrum of Methyl 4-cyanobenzoate C5.
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Figure S17. 1H NMR spectrum of Methyl 4-chlorobenzoate C6.

Figure S18. 13C NMR spectrum of Methyl 4-chlorobenzoate C6.
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Figure S19. 1H NMR spectrum of Methyl 4-formylbenzoate C7.

Figure S20. 13C NMR spectrum of Methyl 4-formylbenzoate C7.
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Figure S21. 1H NMR spectrum of Methyl 2-nitrobenzoate C8.
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Figure S22. 13C NMR spectrum of Methyl 2-nitrobenzoate C8.
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Figure S23. 1H NMR spectrum of Methyl 4-fluoro-3-nitrobenzoate C9.
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Figure S24. 13C NMR spectrum of Methyl 4-fluoro-3-nitrobenzoate C9.
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Figure S25. 1H NMR spectrum of Methyl 3-phenylpropiolate C10.
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Figure S26. 13C NMR spectrum of Methyl 3-phenylpropiolate C10.
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Figure S27. 1H NMR spectrum of Methyl (E)-3-(3-fluorophenyl)acrylate C11.
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Figure S28. 13C NMR spectrum of Methyl (E)-3-(3-fluorophenyl)acrylate C11.
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Figure S29. 1H NMR spectrum of Methyl (E)-3-(4-fluorophenyl)acrylate C12.
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Figure S30. 13C NMR spectrum of Methyl (E)-3-(4-fluorophenyl)acrylate C12.
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Figure S31. 1H NMR spectrum of Methyl nicotinate C13.
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Figure S32. 13C NMR spectrum of Methyl nicotinate C13.
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Figure S33. 1H NMR spectrum of Methyl 6-hydroxynicotinate C14.

Figure S34. 13C NMR spectrum of Methyl 6-hydroxynicotinate C14.
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Figure S35. 1H NMR spectrum of Ethyl 1H-indole-2-carboxylate C15.
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Figure S36. 13C NMR spectrum of Ethyl 1H-indole-2-carboxylate C15.

N
H

O

O

O

O O



S40

Figure S37. 1H NMR spectrum of Ethyl 3-oxobutanoate C16.

Figure S38. 13C NMR spectrum of Ethyl 3-oxobutanoate C16.
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Figure S39. 1H NMR spectrum of Diethyl 2-bromomalonate C17.
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Figure S40. 13C NMR spectrum of Diethyl 2-bromomalonate C17.
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Figure S41. 1H NMR spectrum of Ethyl 2,3-dibromopropanoate C18.

Figure S42. 13C NMR spectrum of Ethyl 2,3-dibromopropanoate C18.

Br
Br

O

O



S44

Figure S43. 1H NMR spectrum of Ethyl 2-bromo-2,2-difluoroacetate C19.

O

O
F

Br

F



S45

Figure S44. 13C NMR spectrum of Ethyl 2-bromo-2,2-difluoroacetate C19.
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Figure S45. 1H NMR spectrum of Ethyl 2-methyl-3-oxobutanoate C20.

Figure S46. 13C NMR spectrum of Ethyl 2-methyl-3-oxobutanoate C20.

O O

O



S47

Figure S47. 1H NMR spectrum of Ethyl 2-bromoacetate C21.
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Figure S48. 13C NMR spectrum of Ethyl 2-bromoacetate C21.
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Figure S49. 1H NMR spectrum of Ethyl 3-bromopropanoate C22.

Figure S50. 13C NMR spectrum of Ethyl 3-bromopropanoate C22.
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Figure S51. 1H NMR spectrum of Ethyl 4-bromobutanoate C23.
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Figure S52. 13C NMR spectrum of Ethyl 4-bromobutanoate C23.
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Figure S53. 1H NMR spectrum of Ethyl 5-bromopentanoate C24.

Figure S54. 13C NMR spectrum of Ethyl 5-bromopentanoate C24.
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Figure S55. 1H NMR spectrum of Ethyl 6-bromohexanoate C25.
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Figure S56. 13C NMR spectrum of Ethyl 6-bromohexanoate C25.
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Figure S57. 1H NMR spectrum of Ethyl 4-oxopiperidine-1-carboxylate C26.

Figure S58. 13C NMR spectrum of Ethyl 4-oxopiperidine-1-carboxylate C26.
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Figure S59. 1H NMR spectrum of Methyl 2-bromoacetate C27.
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Figure S60. 13C NMR spectrum of Methyl 2-bromoacetate C27.
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Figure S61. 1H NMR spectrum of Methyl 6-aminohexanoate C28.

Figure S62. 13C NMR spectrum of Methyl 6-aminohexanoate C28.
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Figure S63. 1H NMR spectrum of Diisopropyl (E)-diazene-1,2-dicarboxylate C29.
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Figure S64. 13C NMR spectrum of Di-isopropyl (E)-diazene-1,2-dicarboxylate C29.

O N

O
N O

O



S61

Figure S65. 1H NMR spectrum of Ethyl glycinate D1.
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Figure S66. 13C NMR spectrum of Ethyl glycinate D1.
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Figure S67. 1H NMR spectrum of Methyl alaninate D2.

Figure S68. 13C NMR spectrum of Methyl alaninate D2.
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Figure S69. 1H NMR spectrum of Methyl serinate D3.

HO
NH2

O

O



S65

Figure S70. 13C NMR spectrum of Methyl serinate D3.
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Figure S71. 1H NMR spectrum of Methyl cysteinate D4.

Figure S72. 13C NMR spectrum of Methyl cysteinate D4.
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Figure S73. 1H NMR spectrum of Methyl valinate D5.
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Figure S74. 13C NMR spectrum of Methyl valinate D5.
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Figure S75. 1H NMR spectrum of Methyl leucinate D6.
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Figure S76. 13C NMR spectrum of Methyl leucinate D6.
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Figure S77. 1H NMR spectrum of Methyl 2-amino-3-methylpentanoate D7.

Figure S78. 13C NMR spectrum of Methyl 2-amino-3-methylpentanoate D7.
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Figure S79. 1H NMR spectrum of Methyl prolinate D8.
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Figure S80. 13C NMR spectrum of Methyl prolinate D8.

O

O

NH

HO
NH2

O

O



S74

Figure S81. 1H NMR spectrum of Methyl tyrosinate D9.

Figure S82. 13C NMR spectrum of Methyl tyrosinate D9.
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Figure S83. 1H NMR spectrum of Methyl tryptophanate D10.
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Figure S84. 13C NMR spectrum of Methyl tryptophanate D10.
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Figure S85. 1H NMR spectrum of Dimethyl aspartate D11.

Figure S86. 13C NMR spectrum of Dimethyl aspartate D11.
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Figure S87. 1H NMR spectrum of Methyl lysinate D12.
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Figure S88. 13C NMR spectrum of Methyl lysinate D12.
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Figure S89. 1H NMR spectrum of Glucose pentaacetate E1.

  

Figure S90. 13C NMR spectrum of Glucose pentaacetate E1.
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Figure S91. 1H NMR spectrum of Mannose pentaacetate E2.
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Figure S92. 13C NMR spectrum of Mannose pentaacetate E2.
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Figure S93. 1H NMR spectrum of Gulose pentaacetate E3.
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Figure S94. 13C NMR spectrum of Gulose pentaacetate E3.
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Figure S95. 1H NMR spectrum of Galactose pentaacetate E4.
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Figure S96. 13C NMR spectrum of Galactose pentaacetate E4.
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Figure S97. 1H NMR spectrum of Ribose tetraacetate E5.
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Figure S98. 13C NMR spectrum of Ribose tetraacetate E5.
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Figure S99. 1H NMR spectrum of Lyxose tetraacetate E6.
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Figure S100. 13C NMR spectrum of Lyxose tetraacetate E6.
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Figure S101. 1H NMR spectrum of Lactose octaacetate E7.
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Figure S102. 13C NMR spectrum of Lactose octaacetate E7.
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Figure S103. Mass spectrum of Methyl 4-aminobenzoate C2.

Figure S104. Mass spectrum of Methyl 4-methoxybenzoate C4.
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Figure S105. Mass spectrum of Methyl 4-cyanobenzoate C5.

Figure S106. Mass spectrum of Methyl 4-chlorobenzoate C6.
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Figure S107. Mass spectrum of Methyl 4-formylbenzoate C7.
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Figure S108. Mass spectrum of Methyl 2-nitrobenzoate C8.

Figure S109. Mass spectrum of Methyl 4-fluoro-3-nitrobenzoate C9.
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Figure S110. Mass spectrum of Methyl 3-phenylpropiolate C10

Figure S111. Mass spectrum of Methyl (E)-3-(3-fluorophenyl)acrylate C11.
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Figure S112. Mass spectrum of Methyl nicotinate C13.
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Figure S113. Mass spectrum of Methyl 6-hydroxynicotinate C14.
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Figure S114. Mass spectrum of Ethyl 1H-indole-2-carboxylate C15.
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Figure S115. Mass spectrum of Ethyl 3-oxobutanoate C16.

Figure S116. Mass spectrum of Diethyl 2-bromomalonate C17.
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Figure S117. Mass spectrum of Ethyl 2,3-dibromopropanoate C18.
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Figure S118. Mass spectrum of Ethyl 2-bromoacetate C21.
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Figure S119. Mass spectrum of Ethyl 3-bromopropanoate C22.
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Figure S120. Mass spectrum of Ethyl 4-bromobutanoate C23.
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Figure S121. Mass spectrum of Ethyl 5-bromopentanoate C24.
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Figure S122. Mass spectrum of Ethyl 6-bromohexanoate C25.
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Figure S123. Mass spectrum of Ethyl 4-oxopiperidine-1-carboxylate C26.
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Figure S124. Mass spectrum of Methyl 6-aminohexanoate C28.
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Figure S125. Mass spectrum of Diisopropyl (E)-diazene-1,2-dicarboxylate C29.

Figure S126. Mass spectrum of Ethyl glycinate D1.
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Figure S127. Mass spectrum of Methyl alaninate D2.
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Figure S128. Mass spectrum of Methyl serinate D3.
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Figure S129. Mass spectrum of Methyl valinate D5.

NH2
O

O



S114

Figure S130. Mass spectrum of Methyl leucinate D6.
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Figure S131.  Mass spectrum of Methyl 2-amino-3-methylpentanoate D7.
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Figure S132. Mass spectrum of Methyl prolinate D8.
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Figure S133. Mass spectrum of Methyl tyrosinate D9.
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Figure S134. Mass spectrum of Methyl tryptophanate D10.
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Figure S135. Mass spectrum of Dimethyl aspartate D11.
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Figure S136. Mass spectrum of Methyl lysinate D12.

Figure S137. Mass spectrum of Glucose pentaacetate E1.
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Figure S138. Mass spectrum of Galactose pentaacetate E4.
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Figure S139. Mass spectrum of Lactose octaacetate E7.
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