Electronic Supporting Information

for

CHEMICAL MODIFICATION OF SELENIUM-CONTAINING AMINO ACIDS CAUSED BY NON-THERMAL DIELECTRIC-BARRIER DISCHARGE ATMOSPHERIC-PRESSURE PLASMA

by

Fahd Afzal^a, Dariusz Śmiłowicz^b, Friederike Kogelheide^c, Anna Lena Schöne^c, Katharina Stapelmann^d, Peter Awakowicz^c, Nils Metzler-Nolte^{*,a}

^a Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany

^b Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

^c Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44780, Bochum, Germany

^d Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States

Contents

1.	The scheme of the plasma source	p.S2
2.	Characterisation of zinc(II) complex	p.S2-S4
3.	Influence of plasma on zinc(II) complex	p.S4-S6
4.	Stability experiments of substrates	p.S7-S8
5.	Influence of plasma on substrates in the presence of iron complexes	p.S8-S9
6.	Influence of plasma on GSSG in the presence of zinc complex	p.S10-S12
7.	FT-IR data of substrates after cold plasma treatment	p.S13-S15
8.	Literature	p.S16

Figure S1. The scheme of the plasma source.^{1,2,3}

Exact Mass: 466.10 Molecular Weight: 467.78

Figure S2. Structure of complex C.

Figure S3. HPLC chromatogram of complex C.

Figure S4. ESI-MS spectrum (positive mode) of complex C.

Figure S5. ESI-MS spectrum (negative mode) of complex C.

Figure S6. HPLC chromatogram of complex C after 2 min of cold plasma treatment.

Figure S7. ESI-MS spectrum (positive mode) of complex C after 2 min of cold plasma treatment

Figure S8. ESI-MS spectrum (negative mode) of complex C after 2 min of cold plasma treatment.

Figure S9. ESI-MS spectrum (positive mode) of complex C after 20 min of cold plasma treatment.

Figure S10. ESI-MS spectrum (negative mode) of complex C after 20 min of cold plasma treatment.

Figure S11. HPLC chromatogram of compound 1 after 5 min of stability experiments.

Figure S12. HPLC chromatogram of compound 2 after 5 min of stability experiments.

Figure S13. HPLC chromatogram of compound 3 after 5 min of stability experiments.

Figure S14. ESI-MS spectrum (negative mode) of compound 1 in the presence of iron(III) after 1 min of cold plasma treatment.

Figure S15. ESI-MS spectrum (negative mode) of compound 3 alone after 3 min of cold plasma treatment.

Figure S16. ESI-MS spectrum (negative mode) of compound 3 in the presence of iron(III) after 3 min of cold plasma treatment.

Figure S17. ESI-MS spectrum (negative mode) of GSSG.

Figure S18. ESI-MS spectrum (positive mode) of GSSG in the presence of zinc(II) complex before cold plasma treatment.

Figure S19. ESI-MS spectrum (negative mode) of GSSG in the presence of zinc(II) complex after 1 min of cold plasma treatment.

Figure S20. ESI-MS spectrum (negative mode) of GSSG in the presence of zinc(II) complex after 3 min of cold plasma treatment.

Figure S21. ESI-MS spectrum (negative mode) of GSSG in the presence of zinc(II) complex after 5 min of cold plasma treatment.

Figure S22. HPLC chromatogram of GSSG in the presence of zinc(II) complex after 5 min of cold plasma treatment.

Figure S23. Mean FTIR-spectra of plasma-treated compound **3** in the range of 700-4000 cm⁻¹ as a function of different treatment times. Standard deviation of the mean is shown as grey area at each graph.

Figure S24. Mean FTIR-spectra of plasma-treated compound **3** in the presence of complex **A** in the range of 700-4000 cm⁻¹ as a function of different treatment times.

Figure S25. Mean FTIR-spectra of plasma-treated compound **3** in the presence of complex **B** in the range of 700-4000 cm⁻¹ as a function of different treatment times.

References

1. Kogelheide, F.; Kartaschew, K.; Strack, M.; Baldus, S.; Metzler-Nolte, N.; Havenith, M.; Awakowicz, P.; Stapelmann, K.; Lackmann, J.-W., FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules. *Journal of Physics D: Applied Physics* **2016**, *49* (8), 084004.

2. Kogelheide, F.; Offerhaus, B.; Bibinov, N.; Krajinski, P.; Schücke, L.; Schulze, J.; Stapelmann, K.; Awakowicz, P., Characterisation of volume and surface dielectric barrier discharges in N2–O2 mixtures using optical emission spectroscopy. *Plasma Processes and Polymers* **2019**, e1900126.

3. Baldus, S.; Schroeder, D.; Bibinov, N.; Schulz-von der Gathen, V.; Awakowicz, P., Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach. *Journal of Physics D: Applied Physics* **2015**, *48* (27), 275203.