1	Supporting Information
2	
3 4 5	Anti-Hepatocellular Carcinoma Activities of Novel Hydrazone Derivatives Via Downregulation of Interleukin-6
5 6 7 8 0	Ahmed Nabil ^{* 1,2,3} , Marwa Abdel-Motaal ^{*4,5} , Ayman Hassan ³ , Mohamed M. Elshemy ⁶ , Medhat asem ⁷ , Mariam Elwan ⁸ , Mitsuhiro Ebara ^{1,9, 10} , Mohammed Abdelmageed ^{11, 12} , Gamal Shiha ^{3, 13} , Hassan M. E. Azzazy ^{14*}
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	 ¹Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan. ²Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt. ³Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt. ⁴Chemistry Department, College of Science, Qassim University, Qassim, Buraydah, 51452 Saudi Arabia. ⁵Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt. ⁶Faculty of Science, Menoufia University, Menoufia, Egypt. ⁷Department of Civil Engineering, College of Engineering and Information Technology, Onaizah Colleges, Qassim, Saudi Arabia. ⁸Egyptian Ministry of Health, El Mansoura, Dakahlia, Egypt. ⁹Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan. ¹⁰Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan. ¹¹Department of Pharmacology and Toxicology, Faculty of Pharmacy, Buraydah Colleges, Qassim, Saudi Arabia ¹²Hot Laboratory Center, Atomic Energy Authority, Cairo, Egypt ¹³Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, School of Sciences & Engineering, The American University in Cairo, New Cairo, New Cairo, Egypt.
33 34 35 36 37 38 39 40	*Correspondence may be addressed to: Marwa Abdel-Motaal; <u>ma.mohammed@qu.edu.sa</u> , <u>dr_marwachem@mans.edu.eg</u> , Tel +966569909737 Ahmed Nabil; <u>TOLBA.AhmedNabil@nims.go.jp</u> Tel.: (008180-3540-4321, +201000618349) Hassan M. E. Azzazy; <u>hazzazy@aucegypt.edu</u> , Tel: 00201000565727
41	
42	
43	
	1

Table of contents: 46 Figure S1. Spectral analyses of different hydrazone derivatives. 47 Table S1. Physicochemical and spectroscopy data for the synthesized compounds 48 Figure S2. Caspase 3 assay. 49 Figure S3. Cell cycle analysis.

74 Figure S1. Spectral analyses of different hydrazone derivatives.

FTIR and ¹H-NMR (500 MHz, DMSO) spectra of compound 3c.

¹H-NMR (500 MHz, DMSO), and ¹³C-NMR (125 MHz, DMSO) of compound 11.

179 FTIR, ¹H-NMR (500 MHz, DMSO), and ¹³C-NMR (125 MHz, DMSO) of compound 16.

193 FTIR, ¹H-NMR (500 MHz, DMSO), and ¹³C-NMR (125 MHz, DMSO) of compound 18.

compound	Color	Yield	Мр	IR (KBr, v/cm ⁻¹),
	Recrystallization	%	С	¹ H, ¹³ C NMR (DMSO-d6, δ ppm).
	solvent			MS (EI): (m/z, %)
2	White needles	92%;	85	IR : 3425, 3395 (NH2), 1604 (C=N).
	(ethanol)			1H NMR: 0.6-1.07 (m, 8H, 4CH2), 2.25 (m,
				4H, 2CH , NH2).
				13C-NMR: 5.6, 7.24, 9.36, 11.45 and 165.8.
				MS (EI): (m/z, %), 124 (M+-1, 1), 108 (100).
3a	yellow needles	78	164-6	IR: 2967-2840 (CH aliphatic), 1659, 160
	(Ethanol)			(2C=N).
				MS (EI): (m/z, %), 241 (M ⁺ -1, 9.08), 16
				(100).
3b	Yellow crystals	92	>250	IR: 2961-2830 (CH aliphatic), 160
	(Ethanol)			(2C=N). MS (EI): (m/z, %), 257 (M ⁺ , 23)
3c	buff needles	81	104	IR: 2927-2850 (CH aliphatic), 1656-165
	(Ethanol)			(2C=N).
				MS (EI): (m/z, %), 202 (M ⁺ , 60).
4	Dark red crystals	88	>300	IR: 3277(NH), 1723, 1613 (C=O, C=N).
	(Ethanol)			¹ H NMR : 0.9-1.3 (m, 10H, H-aliph), 6.8
				7.5 (m, 4H, H-Ar) and 10.9(s, 1H, NH).
				¹³ C-NMR: 7.36, 9.2, 13.13, 110.6, 111.12
				122.05, 127.8, 128.2, 134.4, 144.73, 145.1
				and 163.4.
				MS (EI): (m/z, %), 253 (M ⁺ , 100).
5	Bright yellow	95	205-7	IR: 3445(OH), 1622 (2 C=N).
	crystals			¹ H NMR : 6.9-7.6(m, 8H, H-Ar), 8.9(s, 2H
	(Ethanol)			CH=N), and 11.1(s, 2H, OH).

Table S1: Physicochemical properties and spectroscopy data of the synthesized compounds.

				MS (EI): (m/z, %), 240 (M ⁺ , 17), a 185(100).
6a	White crystals	62	160-162	IR (KBr, v/cm ⁻¹): 1601, 1685 (2 C=N), 33
	(Ethanol)			broad (NH ₂ , NH).
				¹ H NMR: 1.02 1.4 (m, 10H, H-aliphat
				and 3.8(s, 3H, OCH ₃), 5.8 (s, 1H, CH), 6
				7.8 (m, 4H, H-Ar), 8.6 (s, 2H, NH ₂) and 9
				(s, 1H, NH).
				MS (EI): (m/z, %), 268 (M ⁺ -OCH ₃ , 6.6).
7a	Yellow crystals	75	238-240	IR (KBr, v/cm ⁻¹): 3419, 3351 (2NH), 32
	(Ethanol)			3190 (NH ₂), 1679, 1613 (C=O, C=N).
				¹ H NMR: 1.0-1.055 (m, 10H, H-aliphat
				6.8-7.3 (m, 4H, H-Ar), 10.5 (s, 1H, N
				10.6 (s, 1H, NH) and 11.1 (s, 2H, NH ₂) .
				¹³ C-NMR: 10-20, 109.9, 111.03, 117
				119.98,162.7, 178.66 and 181.13.
				MS (EI): (m/z, %), 313 (M++2, 8.4).
6b	Brown crystals	62	>250°c	IR: 3469 (NH), 3196, 3351(CH aromat
	(Ethanol)			1639, 1605 (C=N).
				¹ H NMR: 1.0-1.055 (m, 10H, H-aliphat
				3.1(s, 3H, OCH ₃), 6.8-7.3 (m, 4H, H-Ar),
				(s, 1H, NH).
				MS (EI): (m/z, %), 313 (M ⁺ +2, 8.4)
7b	Bage crystals	62	262-264	IR: 3438, 3238 (2NH), 1691, 1622 (C=
	(Ethanol)			C=N).
				¹ H NMR: 0.9-2.1 (m, 10H, H-aliphat
				10.11 (s, 1H, NH), 11.2 (s, 1H, NH) and 6

				8.2 (m, 9H, H-Ar).
				¹³ C-NMR: 17.8, 18.9, 23.3, 23.5, 32.14, 85.
				127.7, 128.6, 130.2, 140.5, 141.8, 142.
				146.5, 164.7, 165.2, 167.2, and 169.7.
				MS (EI): (m/z, %) 360 (M ⁺ - 1, 15.1).
8a	Faint yellow crystals	95	226-8	IR: 3443, 3320 (NH ₂), 3173, 3137 (2CH=N
	(Methanol)			1650, 1613 (C=N).
				¹ H NMR: 6.7-8.0 (m, 8H, H-Ar), 8.3 (s, 1)
				CH=N), 9.8(s, 1H, NH ₂) and 11.3 (s, 1)
				ОН).
				¹³ C-NMR: 116, 119.34, 120.37, 126.
				131.17, 139.7, 156.4 and 177.6.
				MS (EI): (m/z, %), 297 (M ⁺ , 2.5), 195(100
8b	Yellow crystals	55	198-200	IR: 1689,1623 (2 C=N).
	(methanol)			¹ H NMR: 6.9-7.6 (m, 8H, H-Ar), 8.99 (s, 1
				CH=N) and 11.1(s, 2H, 2OH).
				MS (EI): (m/z, %), 356 (M ⁺ , 20).
10a	Brown crystals	62	152-154	IR: 1704, 1643, 1600 (C=O, 2C=N).
	(Ethanol)			¹ H NMR: 1.9-2.0 (m, 13H, H-aliphat
				CH ₃) and 6.9-8.3 (m, 6H, H-Ar).
				¹³ C-NMR: 20.5, 23.8, 31.4, 32.6, 34.7, 72.2
				146.9, 149.8, 150.8, 151.1, 152.5, 153.0
				154.1, 154.9, 155.18, 155.53, 184.8, ar
				18873.
				MS (EI): (m/z, %), 289 (M ⁺ - 4, 10.6).
10b	Yellow crystals	74	158-160	IR: 1704,116455 (C=O,2 C=N).
	(acetic acid)			¹ H NMR: 0.8-2.1 (m, 10H, H-aliphattic
				1.8 (s.3H, CH ₂) and 7.4-8.3 (m. 11H, H-A

				CH=C).
				¹³ C-NMR (DMSO-d6): δ ppm 10-20, 14.02
				20.5, 21.06, 125.1-133.7 Ar-C, 163.06
				165.8, 167.3, 169.12, and 172.03.
				MS (EI): (m/z, %), 352 (M ⁺ , 1.9).
11	Faint yellow needles	82	230-232	IR: 1675, 1660 (C=O, C=N).
	(Ethanol)			¹ H NMR: 1.02-2.1 (m, 13H, H-aliphatic
				CH ₃) and 7.9-8.2 (m, 4H, H-Ar).
				¹³ C-NMR: 10.55-70.5, 148.1, 154.37, 155.9
				and 203.8.
				MS (EI): (m/z, %), 267 (M ⁺ , 3.6).
13	Buff crystals	89	185-186	IR: 3450 (2NH), 3428 (NH), 1687, 160
	(Methanol)			(2C=O).
				¹ H NMR: 1.2-1.5 (m, 10H, H-aliphatic)
				6.1(s, 1H, NH), 7.7-8.01 (m, 1H, H-Ar), and
				11.52(s, 1H, NH).
				¹³ C-NMR: 16.6-77, 18.1, 20.1, 20.9, 110.99
				125.3, 125.93, 130.56, 131.87, 134.47
				159.48, 181,24 and 184.73.
				MS (EI): (m/z, %), 296 (M ⁺ , 1.5).
14	White crystals	72	>250	IR: 3459(OH), 1746, 1660, 1605 (2C=C
	(Acetic acid)			C=N). ¹ H NMR: 0.6-1.8 (m, 10H, H
				aliphatic), 7.8-8.1 (m, 5H, H-Ar) 77.9 (
				1H, NH) and 11.5 (s, 1H, COOH).
				¹³ C-NMR: 18.6, 77.28, 131.5, 131.7, 132.3
				149.2, 152.6, 152.8, 152.9, and 165.6.
				MS (FI): $(m/z \ %) \ 272 \ (M^+ \ 25)$

15	Brown crystals	55	>260°	IR: 1799, 1728, 1634 (2C=O, C=N).
	(Methanol)			¹ H NMR: 0.8-2.1 (m, 10H, H-aliphatic), 6.7
				(dd, 2H, H-Ar).
				¹³ C-NMR: 34.2-82.8, 175.01, 153.65, 188.85
				and 194.0.
				MS (EI): (m/z, %), 204 (M ⁺ , 56).
16	White needles	82	245-8	IR: 1735 (2C=O).
	(DMF)			¹ H-NMR (DMSO-d6) δ ppm 1.8-3.5 (m,
				14H, H-aliph).
				¹³ C-NMR: 26.3-72, 172.0 and 172.2.
				MS (EI): (m/z, %), 206 (M ⁺ , 62).
17	White crystals	65	125-126	IR (KBr, v/cm ⁻¹):3198 (NH), 2264($-C \equiv N$),
	(Ethanol)			1679 (C=N).
				¹ H NMR : 0.6-2.03 (m, 10H, H-aliphatic),
				3.9 (s, 2H, CH ₂) and 10.86 (s, 1H, NH).
				¹³ C-NMR (DMSO-d6): δ ppm 5.92, 6.86,
				10.5, 11.03, 24.57, 36.2, 116.24, 157.92,
				163.2, 165.3, and 171.6.
				MS (EI): (m/z, %), 191 (M ⁺ , 13), 123(100).
18	Brown pellets	33	210-11	IR: 3337(NH), 3166, 3100 (NH ₂), 1689,
	(Ethanol)			1654 (C=O, C=N).
				¹ H NMR : 0.8-1.8 (m, 10H, H-aliphatic),
				4.1(s, 1H, CH-N), 5.6 (s, 1H, NH), 5.8 (S,
				1H, H-Ar) and 9.8(s, 2H, NH ₂).
				¹³ C-NMR: 10.17, 18.6, 21.17, 36.27, 56.08,
				74.23, 157.0, 159.3 and 171.7.
				MS (EI): (m/z, %), 193 (M ⁺ , 1.5), 69 (100).

20	Brown needles	45	135-2°c	IR: 3432 (NH), 1675, 1660 (C=O, C=N).
	(Ethanol)			¹ H NMR: 0.8 -1.8 (m, 13H, H-aliphatic
				CH ₃), 7.7-7.9 (m, 4H, H-Ar) and 8.2 (s, 1H
				NH).
				MS (EI): (m/z, %), 326 (M ⁺ , 100).

223 Figure S2. Caspase 3 assay.

224 Compound 16

107.2

233 Compound 18

Compound 13

255 Compound 8a

266 Compound 4

281 Figure S3. Cell cycle analysis.

282

283 Media (No treatment)

295 Sorafenib

- 2.00

306 Compound 16

