Discovery of new Hsp90-Cdc37 protein-protein interaction inhibitors: *In silico* screening and optimization of anticancer activity

Jaka Dernovšek^a, Nina Gradišek^a, Živa Zajec^a, Dunja Urbančič^a, Jernej Cingl^a, Tjaša Goričan^b, Simona Golič Grdadolnik^b, Tihomir Tomašič^{a,*}

 ^a Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
^b Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia

Table of Contents

1.	Virtual screening	.2
2.	Representative MST and K _d curves	.3
3.	Western blot images used for quantification	.5
4.	NMR with Hsp90β - supporting data	.7
5.	Representative HPLC traces of 8c and 13g	.9
6.	NMR spectra1	10
Lite	rature5	51

1. Virtual screening

Table S1. Compounds used for building the ligand-based pharmacophore model. Original numbering from the publication is used.^[1]

cpd	SMILES
17h	O=S(N(CC(OC)=O)C1=CC=C(NC2=NC(N3CCNCC3)=NC=C2)C=C1)(C4=C(C)C=C(C)C=C4C)=O
18h	O=S(N(CC(O)=O)C1=CC=C(NC2=NC(N3CCNCC3)=NC=C2)C=C1)(C4=C(C)C=C(C)C=C4C)=O
19	O=S(N(CC(NO)=O)C1=CC=C(NC2=NC(N3CCNCC3)=NC=C2)C=C1)(C4=C(C)C=C(C)C=C4C)=O
21	O=S(N(CC(C1=NNN=N1)=O)C2=CC=C(NC3=NC(N4CCNCC4)=NC=C3)C=C2)(C5=C(C)C=C(C)
	C=C5C)=O

2. Representative MST and K_d curves

Figure S1. MST curves (colored in green) used for calculation of average response that was plotted against the logarithm of concentration of 1 in an attempt to evaluate the binding compound. Concentration range without the presence of aggregation was insufficient for K_d determination.

Figure S2. Representative MST curves (colored in green) used for calculation of average response that was plotted against the logarithm of concentration of **13g** to determine the K_d values of this compound with Hsp90 β (**A**). In an attempt to determine the K_d of **13g** with Hsp90 β in the presence of 1 μ M Cdc37 (**B**) the concentration range used was insufficient to enable quantification.

Figure S3. Representative MST curves (colored in green) used for calculation of average response that was plotted against the logarithm of concentration of **8c** to determine the K_d values of this compound with Hsp90 β in the presence of 0 (**A**), 0.5 (**B**), 1 (**C**) and 2 (**D**) μ M of Cdc37.

3. Western blot images used for quantification

Figure S4. Western blot pictures used for quantification of protein in MCF-7 lysates for first and second biological repetitions of ER α , Hsp90 and c-Raf along with β -actin which was used as a standard.

Figure S5. Western blot pictures used for quantification of protein in MCF-7 lysates for first and second biological repetitions of IGF1R, Hsp70, Akt and CDK-4 along with β -actin which was used as a standard.

4. NMR with Hsp90β - supporting data

Figure S6. ¹H NMR spectrum for the compound **13g** recorded at a concentration of 0.3 mM in 50 mM K-phosphate buffer (pD 7.5), 100 mM KCl, 2 % DMSO- d_6 in D₂O. The proton signals were calibrated to the DSS signal at 0.0 ppm.

Table S2	. Chemical	shifts in	ppm of	f the	assigned	protons	of	compound	13g i	in pho	osphate	buffer	(pD	7.5);
referenced	l to DSS.													

Proton	¹ H chemical			
	shift [ppm]			
3''	8.172			
2', 4'	7.697			
1', 5'	7.456			
1, 5	7.334			
2, 3, 4	7.020			
1''	6.144			
7	4.279			
1''', 4'''	3.831			
8	3.759			
2''', 3'''	3.294			

Proton	AMP	AMP absolute error	AMP relative error
3"	4.88	0.09	1.9
2', 4'	1.78	0.03	1.4
1', 5'	1.75	0.02	1.4
1, 5	2.18	0.03	1.2
2,3,4	2.14	0.02	0.8
1"	0.83	0.03	3.5

Table S3. STD amplification factors (AMP) and their absolute and relative errors of the assigned protons of compound 13g.

Table S4. NOE connectivities of the compound 13g with calculated distances.

NOE connectivity	Distance [Å]				
	2 NOE	4 NOE			
	interactions	interactions			
3" - (1"', 4"')	3.7	/			
(1', 5') - 8	/	3.7			
(1, 5) - 8	/	4.6			
1" - (1"', 4"')	/	2.9			
(2', 4') - 1"	3.9	/			

5. Representative HPLC traces of 8c and 13g

HPLC trace of 8c, UHPLC: t_r: 3.02 min (100% at 254 nm).

HPLC trace of **13g**, UHPLC: t_r: 2.82 min (99.1% at 254 nm).

6. NMR spectra

Compound **4a** ¹H NMR (400 MHz, DMSO- d_6):

Compound **5a** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **6a** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **6a** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound **6b** ¹H NMR (400 MHz, DMSO- d_6):

Compound **6c** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **6c** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound **7c** ¹H NMR (400 MHz, DMSO- d_6):

Compound **8a** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **8a** 13 C NMR (101 MHz, DMSO- d_6):

Compound **8b** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **8b** 13 C NMR (101 MHz, DMSO- d_6):

Compound **8c** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **8c** 13 C NMR (101 MHz, DMSO- d_6):

Compound **9g** ¹H NMR (400 MHz, DMSO- d_6):

Compound **10g** ¹H NMR (400 MHz, DMSO- d_6):

Compound **11a** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **11b** ¹H NMR (400 MHz, DMSO- d_6):

Compound **11c** ¹H NMR (400 MHz, DMSO- d_6):

Compound **11c** 13 C NMR (101 MHz, DMSO- d_6):

Compound **11d** ¹H NMR (400 MHz, DMSO- d_6):

Compound **11d** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound **11e** 1 H NMR (400 MHz, DMSO- d_{6}):

Compound **11f** ¹H NMR (400 MHz, DMSO- d_6):

Compound **11g** ¹H NMR (400 MHz, DMSO- d_6):

Compound **11h** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **11h** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound **11i** ¹H NMR (400 MHz, DMSO-*d*₆):

Compound **11i** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound 11j ¹H NMR (400 MHz, DMSO- d_6):

Compound **12g** ¹H NMR (400 MHz, DMSO- d_6):

Compound **13a** ¹H NMR (400 MHz, DMSO- d_6):

Compound **13b** ¹H NMR (400 MHz, DMSO- d_6):

³³

Compound **13c** ¹H NMR (400 MHz, DMSO- d_6):

Compound **13d** ¹H NMR (400 MHz, DMSO- d_6):

Compound **13d** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound **13f** ¹H NMR (400 MHz, DMSO- d_6):

Compound **13g** ¹H NMR (400 MHz, DMSO- d_6):

Compound **13h** ¹H NMR (400 MHz, DMSO- d_6):

Compound 13i ¹H NMR (400 MHz, DMSO- d_6):

Compound **13i** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound **13j** ¹H NMR (400 MHz, DMSO- d_6):

Compound 14 ¹H NMR (400 MHz, DMSO- d_6):

Compound 14 ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound 15 ¹H NMR (400 MHz, DMSO- d_6):

Compound **15** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound **16** ¹H NMR (400 MHz, DMSO- d_6):

Compound **16** 13 C NMR (101 MHz, DMSO- d_6):

Compound **18** ¹H NMR (400 MHz, DMSO- d_6):

Compound **18** ¹³C NMR (101 MHz, DMSO-*d*₆):

Compound **19** ¹H NMR (400 MHz, DMSO- d_6):

Compound **20** ¹H NMR (400 MHz, DMSO- d_6):

Compound **21** 13 C NMR (101 MHz, DMSO- d_6):

Compound **23** ¹H NMR (400 MHz, DMSO- d_6):

Compound **23** 13 C NMR (101 MHz, DMSO- d_6):

Compound **24** ¹H NMR (400 MHz, DMSO- d_6):

Literature

[1] L. Wang, J. Jiang, L. Zhang, Q. Zhang, J. Zhou, L. Li, X. Xu, Q. You, J. Med. Chem. 2020, 63, 1281– 1297.