Supporting Information

Maleic Anhydride Derivatives as Catalysts for *N*-oxidation of Pyridine using Hydrogen Peroxide

Ghellyn Gajeles^{a*}, Kyung-Koo Lee^b, Sang Hee Lee^{b**}

^aPhysical Science Department, West Visayas State University, Luna St., La Paz, Iloilo City, 5000 Iloilo, Philippines

^bDepartment of Chemistry, Kunsan National University, Gunsan 573-701, Republic of Korea

Authors' e-mail address

**Sang Hee Lee : <u>leesh@kunsan.ac.kr</u> *Ghellyn Gajeles : <u>gajelesghel@gmail.com</u>

SI-1: ¹H NMR and ¹³C NMR chemical shifts of N-Oxide products:

Pyridine N-Oxide: δ ¹H NMR (500 MHz, CDCl3): 7.35-7.37 (3H, m, Ar-H), 8.25-8.27 (2H, m, Ar-H) ppm. δ ¹³C NMR (125 MHz, CDCl3): 125.26, 125.53, 138.49 ppm.

2-Methylpyridine N-Oxide: δ ¹H NMR (500 MHz, CDCl3): 2.53 (3H, s, -CH3), 7.20-7.32 (3H, m, Ar-H), 8.29-8.30 (1H, d, J = 5.5 Hz, Ar-H); δ ¹³C NMR (500 MHz, CDCl₃): 17.31, 123.20, 125.53, 126.15, 138.85, 148.51 ppm.

Quinoline N-Oxide: δ ¹H NMR (500 MHz, CDCl3): 7.29-7.32 (1H, dd, J=6.0, 8.5 Hz, Ar-H), 7.62-7.65 (1H, t, J=7.5 Hz, Ar-H), 7.74-7.77 (2H, m, Ar-H), 7.86-7.87 (1H, d, J=8.5 Hz, Ar-H), 8.54-8.56 (1H, d, J=6 Hz, Ar-H), 8.73-8.75 (1H, d, J=9Hz, Ar-H) ppm; δ ¹³C NMR (500 MHz, CDCl₃): 119.37, 120.73, 126.18, 127.93, 128.55, 130.21, 130.29, 135.44, 141.10 ppm.

2-Chloropyridine N-Oxide: δ ¹H NMR (500 MHz, CDCl3): 7.28-7.32 (2H, m, Ar-H), 7.55-7.58 (1H, m, Ar-H), 8.40-8.41 (1H, m, Ar-H) ppm; δ ¹³C NMR (500 MHz, CDCl3 w/ DMSO): 123.78, 126.02, 126.04, 140.26, 141.46 ppm.

2-carboxypyridine N-Oxide: δ ¹H NMR (500 MHz, DMSO): 7.88-7.95 (2H, m, Ar-H), 8.30-8.32 (1H, dd, J=2.5 Hz, 7.5 Hz, Ar-H), 8.73-8.74 (1H, m, Ar-H) ppm; δ ¹³C NMR (500 MHz, DMSO): 128.63, 130.10, 132.84, 135.90, 138.99, 160.93 ppm.

Nicotinic N-Oxide: δ ¹H NMR (500 MHz, DMSO): 7.53-7.55 (1H, dd, J=6.8, 7.5 Hz, Ar-H), 7.76-7.78 (1H, d, J=8 Hz, Ar-H), 8.42-8.44 (1H, dd, J=0.7, 6.4 Hz, Ar-H), 8.48 (1H, s, Ar-H) ppm; δ ¹³C NMR (500 MHz, DMSO): 126.11, 127.18, 131.06, 139.41, 142.58, 164.67 ppm.

Isonicotinic N-oxide: δ ¹H NMR (500 MHz, DMSO): 7.81-7.82 (2H, d, J=6.5 Hz, Ar-H), 8.28-8.29 (2H, d, J=7 Hz, Ar-H).

2,6-Lutidine N-Oxide: δ ¹H NMR (500 MHz, CDCl₃): 2.55 (6H, s, 2 x -CH₃), 7.08-7.11 (1H, dd, J=6.5 Hz, 8.5 Hz), 7.15-7.17 (2H, d, 7.5 Hz)

¹H NMR and ¹³C NMR spectra of N-Oxide products:

SI-1A. ¹H NMR spectrum of Pyridine N-Oxide in CDCl₃.

SI-1A-1. ¹³C NMR spectrum of Pyridine N-Oxide in CDCl₃.

SI-1B. ¹H NMR spectrum of 2-Methylpyridine N-Oxide in CDCl₃.

SI-1B-1. ¹³C NMR spectrum of 2-Methylpyridine N-Oxide in CDCl₃.

SI-1C. ¹H NMR spectrum of Quinoline N-Oxide in CDCl₃.

SI-1C-1. ¹³C NMR spectrum of Quinoline N-Oxide in CDCl₃.

SI-1D. ¹H NMR spectrum of 2-Chloropyridine N-oxide in CDCl₃.

SI-1D-1. ¹³C NMR of 2-Chloropyridine N-oxide in CDCl₃ (with a drop of DMSO).

SI-1E. ¹H NMR spectrum of 2-Carboxypyridine N-Oxide in DMSO.

SI-1E-1. ¹³C NMR spectrum of 2-Carboxypyridine N-Oxide in DMSO.

SI-1F. ¹H NMR spectrum of Nicotinic N-Oxide in DMSO.

SI-1F-1. ¹³C NMR spectrum of Nicotinic N-Oxide in DMSO.

SI-1G. ¹H NMR spectrum of Isonicotinic N-Oxide in DMSO.

SI-1H. ¹H NMR spectrum of 2,6-Lutidine N-Oxide in CDCl₃.

SI-2B. ¹³C NMR of CHMA-diacid in CD_3CN . It was initially synthesized from CHMA by hydrolysis: contains 15% anhydride

Figure SI-2D. ¹³C NMR of CHMA in CD₃CN + 30% H₂O₂(2 eq), rt, 3 h.

SI-2D-1. $^{13}\mathrm{C}$ NMR of CHMA in CD_3CN + 30% H_2O_2, rt, 3 h

SI-2E. ^{13}C NMR of CHMA in CD_3CN + 30% H_2O_2, rt, 6 h.

SI-2F. ^{13}C NMR of CHMA in CD_3CN + 30% H_2O_2, rt, 9 h.

SI-2G. $^{13}\mathrm{C}$ NMR of CHMA in CD_3CN + 30% H2O2, rt, 12 h.

Figure SI-2H. $^{13}\mathrm{C}$ NMR of CHMA in CD_3CN + 30% H_2O_2, rt, 24 h.

SI-2H-1. ¹³C NMR of CHMA in CD₃CN + 30% H_2O_2 , rt, 24 h.

SI-2I-1. $^{13}\mathrm{C}$ NMR of CHMA in CD_3CN + 30% H_2O_2, rt, 48 h.

SI-2J. ^{13}C NMR of CHMA in CD_3CN + 30% H_2O_2, rt, 96 h.

SI-3: ¹³C NMR spectra for perhydrolysis of DMMA in H₂O₂.

SI-3B. $^{13}\mathrm{C}$ NMR of **DMMA** in CD₃CN + 30% H₂O₂, rt, 3 h.

SI-3C. $^{13}\mathrm{C}$ NMR of DMMA in CD_3CN + 30% H_2O_2, rt, 48 h.

SI-4: ¹³C NMR study for the determination of the equilibrium species of CHMA in the presence of quinoline and 2-chloropyridine.

CHMA in H_2O_2 with 2-Chloropyridine

SI-4A. ¹³C NMR full spectrum of the perhydrolysis of CHMA with H_2O_2 in CD₃CN in the presence of 2chloropyridine at rt, 3 h (peracid determination).

SI-4A-1. ¹³C NMR of the perhydrolysis of CHMA with H_2O_2 in CD₃CN in the presence of 2chloropyridine at rt, 3 h (peracid determination).

SI-4B. ¹³C NMR full spectrum of the perhydrolysis of CHMA with H_2O_2 in CD₃CN in the presence of 2chloropyridine at rt, 12 h (peracid determination).

SI-4B-1. ¹³C NMR of the perhydrolysis of CHMA with H_2O_2 in CD₃CN in the presence of 2chloropyridine at rt, 12 h (peracid determination).

SI-4C. ¹³C NMR full spectrum of the perhydrolysis of CHMA with H_2O_2 in CD₃CN in the presence of 2chloropyridine at rt, 24 h (peracid determination).

SI-4C-1. ¹³C NMR of the perhydrolysis of CHMA with H_2O_2 in CD₃CN in the presence of 2chloropyridine at rt, 24 h (peracid determination).

CHMA in H_2O_2 with quinoline

SI-4D. ¹³C NMR full spectrum of the perhydrolysis of CHMA with H_2O_2 in CD_3CN in the presence of quinoline at rt, 3 h (peracid determination).

SI-4D-1. ¹³C NMR of the perhydrolysis of CHMA with H_2O_2 in CD₃CN in the presence of quinoline at rt, 3 h (peracid determination).

SI-4E. ¹³C NMR full spectrum of the perhydrolysis of CHMA with H_2O_2 in CD_3CN in the presence of quinoline at rt, 24 h (peracid determination).

SI-4E-1. ¹³C NMR spectrum of the perhydrolysis of CHMA with H_2O_2 in CD₃CN in the presence of quinoline at rt, 24 h (peracid determination).