SUPPORTING INFORMATION Potent EGFR/PARP-1 Inhibition by Spirooxindole-Triazole Hybrids for Targeted Liver Cancer Therapy

Mohamed S. Nafie ^{1,2}, M. Ali ³, Moayad Abdullah Alwehaibi³, Abdulmajeed Abdullah Alayyaf³, Muhanna K. Al-Muhanna,⁴ Naif S. Almuqati, ⁵ Abdullah A. Alghamdi, ⁵ Matti Haukka ⁶, Syeda Sumayya Tariq⁷, Zaheer Ul-Haq⁷ and Assem Barakat ^{3,*}

- ¹ Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. 27272), United Arab Emirates (UAE); mohamed.elsayed@sharjah.ac.ae
- ² Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, (P.O. 41522), Egypt; mohamed_nafie@science.suez.edu.eg
- ³ Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia. mayyaf@ksu.edu.sa (A.A.A.); Maly.c@ksu.edu.sa(M.A.); 442105720@student.ksu.edu.sa (M.A.A.).
- ⁴ The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; mmuhanna@kacst.edu.sa (M.K.A-M.).
- ⁵ Refining and Petrochemical Technologies Institute (RPTI), KACST
- ⁶ Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; matti.o.haukka@jyu.fi (M.H.).
- ⁷ Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. sumayyatariq7@gmail.com (S.S.T.); zaheer_qasmi@hotmail.com (Z.U.-H.).
 - * Correspondence: ambarakat@ksu.edu.sa (A.B.)

X-Ray structure determinations

The crystals of **acetyl-triazole derivative**, **1a**, and **1b** were immersed in cryo-oil, mounted in a loop, and measured at a temperature of 120-121 K. The X-ray diffraction data were collected on a Rigaku Oxford Diffraction Supernova diffractometer using Cu K α radiation (**acetyl-triazole derivative** and **1b**) or Mo K α radiation (**1a**). The *CrysAlisPro¹* software package was used for cell refinements and data reductions. A multi-scan (**acetyl-triazole derivative** and **1a**) or an analytical (**1b**) absorption correction (*CrysAlisPro¹*) was applied to the intensities before the structure solutions. The structures were solved by the intrinsic phasing (*SHELXT²*) method. Structural refinements were carried out using *SHELXL³* software with *SHELXLE⁴* graphical user interface. All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C-H = 0.95-0.99 Å and U_{iso} = 1.2-1.5·U_{eq}(parent atom). The crystallographic details are summarized in Table S1.

	acetyl-triazole derivative	1a	1b
CCDC	2360616	2360617	2360618
empirical formula	$C_{11}H_8Cl_3N_3O$	$C_{20}H_{12}Cl_{3}N_{3}O_{2} \\$	$C_{20}H_{12}Cl_3N_3OS$
fw	304.55	432.68	448.74
temp (K)	121(2)	120(2)	120(2) K
$\lambda(\text{\AA})$	1.54184	0.71073	1.54184 Å
cryst syst	Monoclinic	Monoclinic	Monoclinic
space group	$P2_I/n$	$P2_1$	12/a
<i>a</i> (Å)	10.62874(18)	7.66680(10)	25.8395(3)
<i>b</i> (Å)	10.43514(18)	13.8977(2)	7.12869(6)
<i>c</i> (Å)	11.62031(19)	9.5441(2)	23.3863(2)
a(deg)			
β (deg)	93.7149(15)	111.742(2)	114.7797(13)
γ(deg)			
$V(Å^3)$	1286.13(4)	944.59(3)	3911.17(8)
Z	4	2	8

 Table S1. Crystal Data of acetyl-triazole derivative, 1a, and 1b.

$ ho_{ m calc}({ m Mg}/{ m m}^3)$	1.573	1.521	1.524		
μ (Mo K α) (mm ⁻¹)	6.387	0.507	5.383		
No. reflns.	16383	19035	63498		
Unique reflns.	2740	9361	4221		
Completeness to $\theta=67.684^{\circ}$	100 %		100 %		
Completeness to $\theta=25.242^{\circ}$		100 %			
Absolute structure parameter		-0.019(18)			
GOOF (F ²)	1.072	1.033	1.098		
R _{int}	0.0343	0.0270	0.0333		
R1 ^a ($I \ge 2\sigma$)	0.0309	0.0373	0.0289		
wR2 ^b ($I \ge 2\sigma$)	0.0839	0.0772	0.0790		
$a R_{1} = \sum E - E / \sum E - b_{W}R_{2} = \sum \sum w(E ^{2} - E ^{2})^{2} / \sum w(E ^{2})^{2} ^{1/2}$					

$${}^{t}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \ {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}$$

References

- 1. Rikagu Oxford Diffraction, CrysAlisPro 1.171.43.100a, 2023, Rikagu Oxford Diffraction inc., Yarnton, Oxfordshire, England.
- 2. Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
- 3. Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
- 4. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Cryst. 2011, 44, 1281-1284.

Figure S1: ¹HNMR (DMSO-*d*₆) for acetyl-triazole derivative

Figure S2: ¹³CNMR (DMSO-*d*₆) for acetyl-triazole derivative

Figure S3: ¹HNMR (CDCl₃) for 1a

Figure S4: ¹³CNMR (CDCl₃) for 1a

Figure S5: ¹HNMR (CDCl₃) for 1b

Figure S6: ¹³CNMR (CDCl₃) for 1b

Figure S7: ¹HNMR (DMSO-*d*₆) for 4a

Figure S8: ¹³CNMR (DMSO-*d*₆) for 4a

Figure S9: ¹HNMR (DMSO-*d*₆) for 4c

100 90 f1 (ppm)

Figure S10: ¹³CNMR (DMSO-*d*₆) for 4c

100 90 f1 (ppm)

Figure S12: ¹³CNMR (DMSO-*d*₆) for 4d

Figure S13: ¹HNMR (DMSO-*d*₆) for 4e

Figure S14: ¹³CNMR (DMSO- d_6) for 4e

Figure S16: ¹³CNMR (DMSO-*d*₆) for 4f

Figure S17: ¹HNMR (CDCl₃) for 4g

Figure S18: ¹³CNMR (CDCl₃) for 4g

Figure S20: ¹³CNMR (DMSO-*d*₆) for 4i

Figure S21: ¹HNMR (DMSO-*d*₆) for 4j

AB1431 — single pulse decoupled gated NOE

Figure S22: ¹³CNMR (DMSO-*d*₆) for 4j

Figure S23: ¹HNMR (DMSO- d_6) for 4k

Figure S24: ¹³CNMR (DMSO-*d*₆) for 4k

Figure S26: MS for 4b

Figure S27: MS for 4c

Figure S28: MS for 4d

Figure S30: MS for 4f

Figure S31: MS for 4g

Figure S32: MS for 4h

Figure S34: MS for 4j

Figure S35: MS for 4k